
Energy-Efficient Scheduling of Periodic
Real-Time Tasks over Homogeneous Multiprocessors

Jian-Jia Chen and Tei-Wei Kuo
Department of Computer Science and Information Engineering,

Graduate Institute of Networking and Multimedia,
National Taiwan University, Taipei, Taiwan, ROC.

Email:{r90079, ktw}@csie.ntu.edu.tw

Abstract

Different from many previous energy-efficient schedul-
ing studies, this paper explores energy-efficient multipro-
cessor scheduling of periodic real-time tasks with differ-
ent power consumption functions. When the goal is on the
minimization of energy consumption, we propose a1.412-
approximation algorithm in the derivation of a feasible
schedule. A series of simulation experiments was done for
the performance evaluation of the proposed algorithm.

1 Introduction

With the advance technology of VLSI circuit designs,
many modern processors, such as the Intel StrongARM
SA1100 processor [19] and the Intel XScale [20], could
now operate at various supply voltages and have different
processor speeds. The power consumption of processors
is usually a convex and increasing function of processor
speeds, which is highly dependent on the hardware designs.
The lower the speed, the less the power consumption is,
where a lower processor speed usually means longer exe-
cution time for tasks.

In the past decades, energy-efficient task scheduling with
various deadline constraints has received a lot of attention.
Although many studies have been done for uniprocessor
scheduling, such as [4, 6, 10, 11, 17, 25], not much work has
been done for multiprocessor scheduling. As pointed out
in [2], implementations of real-time systems with multiple
processors could be often much more energy-efficient than
those with a single processor, because of the convexity of
power consumption functions. Due to theNP-hardness of
many multiprocessor energy-efficient scheduling problems,
various heuristics were proposed in the derivation of sched-
ules for different task models with an objective in the min-
imization of energy consumption, e.g., [1, 5, 8, 9, 12, 13, 18,
24, 26, 27]. In particular, several energy-efficient schedul-

ing algorithms based on list heuristics were proposed [12,
13, 26]. Heuristic algorithms for periodic tasks in multi-
processor environments were proposed in [1, 5]. Zhu, et
al. [27] explored on-line task scheduling with reclamation
of slacks resulted from early completion of tasks during
the run time. Mishra, et al. [18] explored energy-efficient
scheduling issues with the considerations of the communi-
cation delay of tasks. In addition to the considerations of
energy-efficient scheduling, Anderson and Sanjoy [2] ex-
plored the tradeoff between the total energy consumption
of task executions and the number of required processors,
where tasks in the proposed solutions run at the same speed.
So far, not much work is done with approximation ratios
in energy-efficient multiprocessor real-time scheduling.An
example result is the approximation algorithms proposed
for the scheduling of frame-based tasks in [8], where tasks
share the same power consumption function, and [9], where
tasks might have different power consumption functions.
Energy-efficient multiprocessor scheduling of frame-based
task sets was also explored in [24] for chip-multiprocessor
(CMP) architectures, in which cores, i.e., processors, on a
chip must share the same processor speed at any given time
moment.

This paper considers energy-efficient scheduling of pe-
riodic real-time tasks over multiple processors. Different
from previous energy-efficient scheduling studies, this re-
search explores energy-efficient multiprocessor scheduling
for periodic real-time tasks, in which each task might have
different periods, initial arrival times, CPU execution cy-
cles, and power consumption functions. The power con-
sumption functions of tasks are modeled ash·sα [6, 14, 25],
whereα is a hardware-dependent factor, andh is a param-
eter related to the task under executions (Please see the dis-
cussions of power consumption functions in the next sec-
tion). When the goal is on the minimization of energy con-
sumption, we propose an approximation algorithm with an

approximation ratio(α−1)α−1(2α−1)α

αα(2α−2)α−1 , which is bounded by
1.412 since the value ofα is at most3 [6, 14, 25], in the

derivation of a feasible schedule. Simulation results show
that our proposed algorithm not only guarantees the approx-
imation factors but also derives solutions close to optimal
solutions.

The rest of this paper is organized as follows: In Sec-
tion 2, we define the system models and the multiproces-
sor energy-efficient scheduling problem. Section 3 presents
an approximation algorithm for the multiprocessor energy-
efficient scheduling problem. Section 4 presents evaluation
results. Section 5 is the conclusion.

2 Models and Problem Definitions

2.1 Processor Models

We are interested in energy-efficient scheduling over ho-
mogeneous multiprocessors, where the power consumption
function of each task remains the same for every processor.
The power consumption functionP () in the dynamic volt-
age circuits is defined as a function of the adopted processor
speeds [7, 23]:

P (s) = CefV 2
dds, (1)

wheres = k (Vdd−Vt)
2

Vdd
, andCef , Vt, Vdd, andk denote the

effective switch capacitance, the threshold voltage, the sup-
ply voltage, and a hardware-design-specific constant, re-
spectively (Vdd ≥ Vt ≥ 0, k > 0, andCef > 0). The
value of the effective switch capacitance is highly related
to the software implementation and the execution path of
a task (usually derived by profiling). Note that the power
consumption function is a convex and increasing function
of processor speeds. WhenVt is 0, the power consump-
tion functionP (s) could be rephrased as a cubic function
of the processor speeds. As reported in the literature, e.g.,
[6, 14, 25], the power consumption function can be phrased
ash · sα, whereα is a hardware-dependent factor, andh is
a parameter related to the task under executions.

In this study, we assume that each processor could op-
erate at any speed in[0,∞], and the speed of each proces-
sor could be adjusted independently from each another. We
assume that the number of CPU cycles executed in a time
interval is linearly proportional to the processor speed, and
that the energy consumed for a processor in the execution of
a task at the processor speeds for t time units is the multipli-
cation oft and its corresponding power consumptionP (s)
at the speeds. Let the amount of CPU cycles completed for
a task running at a speeds for t time units be the multiplica-
tion of s andt. Suppose that the time and energy overheads
required on speed/voltage switching be negligible.

2.2 Task Models

Tasks under discussions in this paper are periodic and
independent in executions. A periodic task is an infinite

sequence of task instances, referred to asjobs, where each
job of a task comes in a regular period [15, 16]. Each task
τi is associated with its initial arrival time (denoted byai),
its execution CPU cycles (denoted byci), its period (de-
noted bypi), and its power consumption function (denoted
by Pi()). Note thatci denotes the maximum number of
CPU cycles required to complete the execution of any job
of τi. The power consumption functionPi() of each taskτi

is rephrased as a convex and increasing function of the pro-
cessor speeds, i.e.,Pi(s) = hi · sα, whereα is a hardware-
dependent constant between2 and3 [17, 21], andhi is a
positive parameter characterizing the average switch capac-
itance and the hardware factor. It is clear that eachPi(s)
is second-order differentiable. Given a setT of tasks, the
hyper-periodof T, denoted byL, is defined as the least
common multiple (LCM) of the periods of tasks inT. Let
the relative deadline of each taskτi be equal to its period
pi in this paper. That is, the arrival time and deadline of
thej-th job of taskτi areai + (j − 1) · pi andai + j · pi,
respectively.

2.3 Problem Definitions

A scheduleof a task setT is a mapping of the executions
of tasks inT to processors in the system with an assignment
of a processor speed for each corresponding task execution,
where the job arrivals of each taskτi ∈ T satisfy its tim-
ing constraintsai andpi. A schedule isfeasibleif no job
misses its deadline, and all jobs of the same task execute on
the same processor. The energy consumption of a schedule
S, denoted asΦ(S), is the sum of the energy consumption
of the executions of jobs inS. We are interested in real-
time energy-efficient scheduling of independent tasks over
multiple processors, where no task migration is allowed:

Definition 1 The Minimization Problem of the Energy Con-
sumption for Multiprocessor Scheduling

Given a setT of independent tasks executing overM
identical processors, the objective is to find a feasible sched-
uleS for T in its hyper-period such thatΦ(S) is minimized.

Suppose that jobs of each taskτi in a given scheduleS
execute at a speedsi. Φ(S) is equal to

∑
τi∈T

L
pi

Pi(si)
ci

si
,

whereT is a given set of tasks under considerations, andL
is the hyper-period ofT.

Theorem 1 The Minimization Problem of the Energy Con-
sumption for Multiprocessor Scheduling isNP-hard.

Proof. The correctness of this theorem follows from the
fact that the corresponding problems, whenPi(s) = s3,
ai = 0, andpi = D, areNP-hard (A similar argument to
the proof in [8, Theorem 1]).

With theNP-hardness of the above problems, the objec-
tive of this research is to propose approximated solutions

with approximation bounds. Formally, aγ-approximation
algorithm for the Minimization Problem of the Energy Con-
sumption for Multiprocessor Scheduling is an algorithm
that derives a feasible schedule with an amount of energy
consumption no more thanγ times of an optimal solution
(based on the definition ofγ approximation in [22,§1]).

3 On the Minimization Problem of the En-
ergy Consumption

In this section, we propose an approximation algorithm
for the Minimization Problem of the Energy Consumption
for Multiprocessor Scheduling. If the number of tasks in
T is no more thanM , an optimal schedule would execute
each taskτi on a different processor at the speedci/pi, for
i = 1, . . . , |T|. For the rest of this section, we will focus
our discussions on cases, where the number of tasks inT is
more thanM .

Let S be a feasible schedule ofT for the Minimiza-
tion Problem of the Energy Consumption for Multiproces-
sor Scheduling. LetSm denote the partial schedule ofS on
the m-th processor by removing the tasks running on the
other processors, andTm denote the set of tasks assigned
to execute on them-th processor. Note that∪M

m=1Tm = T

andTm ∩ Tn = ∅ for any m 6= n. We claim that there
must exist an optimal scheduleS∗ that satisfies the follow-
ing two properties for any partial scheduleS∗

m of S∗, where
1 ≤ m ≤ M : (1) For every taskτi in T ∗

m, all jobs ofτi exe-
cute at a common processor speed. (2) The total utilization
tasks inS∗

m, which is defined as the sum of the utilization
of each task (i.e., its execution time divided by its period)in
S∗

m, is equal to100%. This claim could be proved based on
the convexity of power consumption functions by a similar
argument to that for optimal energy-efficient scheduling in
a uniprocessor system [4].

Let xim be a binary variable to indicate whetherτi is as-
signed to execute on them-th processor, andti be a variable
denoting the execution time of taskτi. We can re-formulate
the Minimization Problem of the Energy Consumption for
Multiprocessor Scheduling as a convex programming as fol-
lows:

minimize
∑

τi∈T
Ei(ti)

subject to
∑

τi∈T
xim · ti/pi = 1, for m = 1, . . . , M

ti > 0, ∀τi ∈ T,∑M

m=1 xim = 1, ∀τi ∈ T, and
xim ∈ {0, 1} , ∀m = 1, . . . , M, andτi ∈ T,

whereEi(ti) is defined as theenergy consumptionto exe-
cute all of the jobs ofτi in the hyper-periodL at the speed
ci

ti
, i.e.,Ei(ti) = L

pi
Pi(

ci

ti
)ti = Lhi

pi

cα
i

t
α−1

i

. The reason why

ti > 0 comes from the assumption that the available speeds
are continuous in[0,∞].

Our proposed algorithm for the Minimization Problem
of the Energy Consumption for Multiprocessor Scheduling

consists of two phases: the relaxation phase and the round-
ing phase. In the relaxation phase, we relax the integral con-
straints on the variablesxim and derive an optimal solution
for the relaxed problem (which is a lower bound on the en-
ergy consumption of an optimal schedule). In the rounding
phase, we derive a feasible schedule based on the solution
derived in the first phase.

3.1 Relaxation Phase

With the integral constraints onxim being relaxed, we
could first rewrite the above convex programming problem
as follows:

minimize
∑

τi∈T
Ei(ti),

subject to
∑

τi∈T
ti/pi = M, and

0 < ti ≤ pi.
(2)

An optimal solution for Equation (2) is a lower bound on
the energy consumption for optimal schedules forT in the
Minimization Problem of the Energy Consumption for Mul-
tiprocessor Scheduling. Equation (2) can be resolved by
applying the Karush-Kuhn-Tucker optimality condition in
O(|T| log |T|). (Detail procedures to derive an optimal
solution of Equation (2) can be found in [3, 4, 9].) Let
(t∗1, t

∗
2, . . . , t

∗
|T|) be an optimal solution for Equation (2).

Lemma 1 When t∗i < pi and t∗j < pj , piE
′
i(t

∗
i) =

pjE
′
j(t

∗
j), whereE′

i() andE′
j() are the derivatives ofEi()

andEj(), respectively.

Proof. This Lemma is based on the Karush-Kuhn-
Tucker condition for the optimal solution(t∗1, t

∗
2, . . . , t

∗
|T|),

in which E′
i(t

∗
i) −

λ
pi

= 0, andE′
j(t

∗
j) −

λ
pj

= 0 for some
constantλ whent∗i < pi andt∗j < pj.

3.2 Rounding Phase

Let the utilizationu∗
i = t∗i /pi of task τi in T derived

in the first phase be called theestimated utilizationof τi.
In this phase, we derive a feasible schedule based on the
estimated utilizations of the tasks derived in the first phase,
i.e., (u∗

1, u
∗
2, . . . , u

∗
|T|), by adopting theLargest-Estimated-

Utilization-First strategy. The proposed algorithm is shown
in Algorithm 1 and denoted as AlgorithmLEUF:

Let Tm denote the set of the tasks assigned to execute on
them-th processor, which is an empty set initially.Um de-
notes thetotal estimated utilizationon them-th processor,
which is defined as the sum of the estimated utilizations of
tasks inTm. Tasks are considered to execute on a selected
processor in a non-increasing order of their estimated uti-
lizations. A task under consideration is assigned to execute
on them-th processor with the smallest total estimated uti-
lizationUm (Tie-breaking is done by choosing the smallest
indexm). After all of the tasks inT are assigned to execute

on a specific processor, the utilization ofτi is set asu∗

i

Um
for

every taskτi in Tm. That is, the execution time of every job
of taskτi is set as t∗i

Um
. The transformation of job execu-

tion times would result in a situation in which the total uti-
lization of tasks assigned on a processor is exactly equal to
100%. The scheduling of tasks on each processor could be
done successfully by the earliest-deadline-first scheduling
algorithm because the earliest-deadline-first schedulingal-
gorithm could always schedule periodic real-time indepen-
dent tasks with a total utilization no more than one [15].
The time complexity of AlgorithmLEUF is O(|T| log |T|).
For the simplicity of representation, any schedule derived
by Algorithm LEUF is denoted asSLEUF.

Algorithm 1 : LEUF

Input: (T,M);
Output: A feasible schedule;

1: if |T| ≤M then
2: return the schedule by executing each taskτi in T at the

speedci

pi
on thei-th processor;

3: let u∗
i be the estimated utilization forτi ∈ T;

4: sort T in a non-increasing order of their estimated utiliza-
tions;

5: U1 ← U2 ← · · · ← UM ← 0, andT1 ← T2 ← · · · ←
TM ← ∅;

6: for i = 1 to |T| do
7: find the smallestUm; (break ties by choosing the smallest

indexm)
8: Tm ← Tm ∪ {τi} andUm ← Um + u∗

i ;
9: for m = 1 to M do

10: for each taskτi ∈ Tm do
11: t′i ← t∗i ×

1

Um
;

12: return the scheduleSLEUF which executes taskτi in Tm

(1 ≤ m ≤ M) at the speedci/t′i on them-th processor
in an earliest-deadline-first order;

3.3 Analysis of the Approximation Ratio

For notational brevity, lete∗i be theestimated energy con-
sumptionof the jobs of taskτi in the hyper-period, i.e.,
e∗i = Ei(t

∗
i). Let T′ be the subset ofT, whereT′ consists

of tasks whose estimated utilizations are all strictly lessthan
1. That is,T′ = {τi | t∗i /pi < 1, ∀τi ∈ T}. For notational
brevity, letT̂ beT \ T

′. Note that we only focus our dis-
cussions on the case thatT

′ is not empty, since Algorithm
LEUT guarantees to derive an optimal schedule for the other
case.

Lemma 2 For any two tasksτi, τj ∈ T
′, e∗

i

u∗

i

=
e∗

j

u∗

j

.

Proof. By the equality ofhi
L
pi

cα
i

(t∗
i
)α · pi = L

pj
hj

cα
j

(t∗
j
)α · pj

in Lemma 1, we know thatu
∗

i

u∗

j

=
e∗

i

e∗

j

.

Lemma 3 Suppose thatUm∗ andUm̂ are the maximum and
the minimum total utilizations, respectively, thenUm̂ ≤ 1 ≤
Um∗ ≤ 2Um̂.

Proof. By definition, we know thatUm̂ ≤ 1 ≤ Um∗ . If
Um∗ is equal to1, we know thatUm̂ is also equal to1 by
applying the pigeon-hole principle. For the rest of this dis-
cussion, we only focus on the other case thatUm∗ is greater
than1. Since the estimated utilization of a task is no greater
than1, Tm∗ consists of at least two tasks. Letτv be the last
one inserted intoTm∗ . Since the tasks are assigned in a non-
increasing order of their estimated utilization to executeon
the processor whose current total estimated utilization isthe
smallest, we knowu∗

v ≤ Um∗ − u∗
v ≤ Um̂. Therefore, we

haveUm∗ ≤ 2Um̂.

Lemma 4 Supposef(x) = k · (2x)α + (H − k)xα for
a positive numberH and a non-negative numberk, where
0 ≤ k ≤ H and2k · x + (H − k) · x = H , then

f(x) ≤
(α − 1)α−1(2α − 1)α

αα(2α − 2)α−1
H.

Proof. Since2k·x+(H−k)·x = H , we knowk = H−Hx
x

.
Therefore,

f(x) = H(xα−1(2α − 1) + xα(2 − 2α)),

and the derivative off(x) is

f ′(x) = H((α − 1)xα−2(2α − 1) + αxα−1(2 − 2α)).

f(x) is maximized atx∗ when f ′(x∗) = 0. By solving
f ′(x∗) = 0, we havex∗ = (α−1)(2α−1)

α(2α−2) . As a result, we

conclude thatf(x) ≤ f(x∗) = (α−1)α−1(2α−1)α

αα(2α−2)α−1 H.

Based on Lemmas 2, 4, and 3, the approximation ratio of
the algorithm could be proved as follows:

Theorem 2 AlgorithmLEUT is a polynomial-time
(α−1)α−1(2α−1)α

αα(2α−2)α−1 -approximation algorithm for the Mini-
mization Problem of the Energy Consumption for Multipro-
cessor Scheduling.

Proof. Let τr be a task inT′. Based on Lemma 2 and the
optimality of

∑
τi∈T

e∗i , we haveΦ(S∗) ≥
∑

τi∈T
e∗i =∑

τi∈T̂
e∗i + e∗r/u∗

r

∑
τi∈T′ u∗

i =
∑

τi∈T̂
e∗i + e∗r/u∗

r(M −

|T̂|), whereS∗ is an optimal schedule forT.
Sinceu∗

i is equal to1 for 1 ≤ i ≤ |T̂|, thei-th processor
is assigned only a task inSLEUF . Based on Lemma 2, we
have

Φ(SLEUF) =
∑

τi∈T̂

e∗i +

M∑

m=|T̂|+1

e∗r
u∗

r

(Um)α. (3)

The approximation ratioA of Algorithm LEUF is

A =
Φ(SLEUF)

Φ(S∗)
≤

∑M

m=|T̂|+1(Um)α

M − |T̂|
. (4)

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Ap
pr

ox
im

ati
on

 ra
tio

α

Algorithm LEUF

Figure 1. The approximation ratio of Algo-
rithm LEUF for different values of α.

Based on Lemma 3, we have2Um̂ ≥ Um∗ ≥ Um ≥ Um̂,
for all |T̂| < m ≤ M . Because of the convexity of the
functionUα

m of Um and the fact2Um̂ − Um ≥ 0, we have

M
X

m=|T̂|+1

Uα
m ≤ k · (2Um̂)α + (M − |T̂| − k)(Um̂)α,

where2k · Um̂ + (M − |T̂| − k)Um̂ = (M − |T̂|). Let
f(x) be defined ask · (2x)α + (H − k)xα for a positive
numberH and a non-negative numberk, wherek ≤ H
and2k · x + (H − k) · x = H . By Lemma 4,f(x) ≤
(α−1)α−1(2α−1)α

αα(2α−2)α−1 H by solvingf ′(x) = 0. By settingH

as (M − |T̂|) and considering Equation (4), this theorem is
proved.

Corollary 1 The approximation ratio of AlgorithmLEUF is
1.412.

Proof. The proof is done by settingα as3.
For different values ofα, the approximation ratio of Al-

gorithmLEUF is illustrated in Figure 1.

4 Performance Evaluation

In this section, we provide performance evaluation on the
energy consumption of AlgorithmLEUF. We also imple-
mented algorithms in [1, 5], and revised the algorithm [8]
by sorting tasks in a non-increasing order ofci/pi. How-
ever, the performace of these algorithms was much worse
than AlgorithmLEUF since they were proposed for tasks
with the same power consumption function. Hence, another
algorithm, denoted as AlgorithmRAND, which is very sim-
ilar to AlgorithmLEUF, was simulated for comparison. The
only difference between AlgorithmRAND and Algorithm
LEUF is that tasks are not sorted before the assignment pro-
cedure in AlgorithmRAND.

4.1 Workload Parameters and Performance Met-
rics

Each periodic real-time task was generated based on
three parameters: the numberbi of jobs within the time in-

tervalL, the required CPU cyclesci, and the coefficienthi

of the power consumption function. The value ofbi was
an integral variable uniformly distributed in the range of
[1, 16]. ci was an integral variable uniformly distributed in
the range of[1, 100], while hi was uniformly distributed in
the range of[2, 10]. The exponent of the power consump-
tion functions of the processor speeds was set as3, i.e.,
Pi(s) = his

3, provided that the threshold voltageVt is 0.
To evaluate the effect of the exponent of the power con-
sumption function, we also perform simulations by setting
α as a random variable between2.5 and3 used for a set of
tasks under simulations. The period of taskτi was set asL

bi
.

We simulated the algorithms for the effects on the ratio
of the number of tasks to the number of processors. For a
given ratioη of the number of tasks to the number of proces-
sors, the number of processorsM was an integral random
variable between10 and30, and the number of tasks was set
as the floor of the multiplication ofη andM , i.e.,⌊η · M⌋.
The relative energy consumption ratiowas adopted as the
performance metric in our experiments. The relative energy
consumption ratio for an input instance was defined as the
energy consumption of the schedule derived by the algo-
rithm to the optimal solution of Equation (2).

4.2 Experimental Results

For the Minimization Problem of the Energy Consump-
tion for Multiprocessor Scheduling, Figures 2(a) and 2(b)
present the average relative energy consumption ratios for
the simulated algorithms whenα is in the range of[2.5, 3]
and is3, respectively. The performance of AlgorithmLEUF

was very close to that of the optimal solutions. The aver-
age relative energy consumption ratios for AlgorithmLEUF

were less than1.01. The average relative energy consump-
tion ratios for AlgorithmRAND were less than1.46. When
the ratio of the number of tasks to the number of processors
was small, both of AlgorithmLEUF and AlgorithmRAND

might assign a task along with improper tasks on a proces-
sor. Such an assignment might result in a significant in-
crease on the energy consumption of these tasks when the
energy consumption for the other tasks were almost as the
same as that in the optimal schedule. When the ratio of the
number of tasks to the number of processors was small, in
most cases, most processors were assigned with only one
task, and the assignment was almost as the same as that of
an optimal schedule. Therefore, the average energy con-
sumption ratio was relatively small when the ratio of the
number of tasks to the number of processors was less than
1.6.

5 Conclusion

In this paper, we explore approximation algorithms for
energy-efficient scheduling of periodic real-time tasks over

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

A
ve

ra
ge

 r
el

at
iv

e
en

er
gy

 c
on

su
m

pt
io

n
ra

tio

Ratio of number of tasks to number of processors

LEUF
RAND

(a) Average ratio whenα is in the range of2.5 and3

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

A
ve

ra
ge

 r
el

at
iv

e
en

er
gy

 c
on

su
m

pt
io

n
ra

tio

Ratio of number of tasks to number of processors

LEUF
RAND

(b) Average ratio whenα = 3

Figure 2. (a) and (b): average relative energy consumption r atios for different settings on α.

multiple processors, where the scheduling problem isNP-
hard. The task model explored in this work is more general
than many previous studies in energy-efficient multiproces-
sor real-time scheduling, where tasks under considerations
might have different periods, initial arrival times, CPU exe-
cution cycles, and power consumption functions. When the
goal is on the minimization of energy consumption, we pro-
pose a1.412-approximation algorithm in the derivation of a
feasible schedule.

References

[1] T. A. AlEnawy and H. Aydin. Energy-aware task allocationfor
rate monotonic scheduling. InProceedings of the 11th IEEE
Real-time and Embedded Technology and Applications Symposium
(RTAS’05), pages 213–223, 2005.

[2] J. H. Anderson and S. K. Baruah. Energy-efficient synthesis of peri-
odic task systems upon identical multiprocessor platforms. In Pro-
ceedings of the 24th International Conference on Distributed Com-
puting Systems, pages 428–435, 2004.

[3] H. Aydin, R. Melhem, D. Mosse, and P. Alvarez. Optimal reward-
based scheduling for periodic real-time tasks. InProceedings of the
20th IEEE Real-Time Systems Symposium (RTSS’99), pages 79–89,
1999.

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez. Determin-
ing optimal processor speeds for periodic real-time tasks with dif-
ferent power characteristics. InProceedings of the IEEE EuroMicro
Conference on Real-Time Systems, pages 225–232, 2001.

[5] H. Aydin and Q. Yang. Energy-aware partitioning for multiproces-
sor real-time systems. InProceedings of 17th International Parallel
and Distributed Processing Symposium (IPDPS), pages 113 – 121,
2003.

[6] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to
manage energy and temperature. InProceedings of the 2004 Sym-
posium on Foundations of Computer Science, pages 520–529, 2004.

[7] A. Chandrakasan, S. Sheng, and R. Broderson. Lower-power
CMOS digital design. IEEE Journal of Solid-State Circuit,
27(4):473–484, 1992.

[8] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and
T.-W. Kuo. Multiprocessor energy-efficient scheduling with task
migration considerations. InEuroMicro Conference on Real-Time
Systems (ECRTS’04), pages 101–108, 2004.

[9] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient schedul-
ing for real-time tasks with different power characteristics. InInter-
national Conference on Parallel Processing (ICPP), pages 13–20,
2005.

[10] J.-J. Chen, T.-W. Kuo, and H.-I. Lu. Power-saving scheduling for
weakly dynamic voltage scaling devices. InWorkshop on Algo-
rithms and Data Structures (WADS), pages 338–349, 2005.

[11] J.-J. Chen, T.-W. Kuo, and C.-L. Yang. Profit-driven uniprocessor
scheduling with energy and timing constraints. InACM Symposium
on Applied Computing, pages 834–840, 2004.

[12] F. Gruian. System-level design methods for low-energyarchitec-
tures containing variable voltage processors. InPower-Aware Com-
puting Systems, pages 1–12, 2000.

[13] F. Gruian and K. Kuchcinski. Lenes: Task scheduling forlow en-
ergy systems using variable supply voltage processors. InProceed-
ings of Asia South Pacific Design Automation Conference, pages
449–455, 2001.

[14] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 37–46. Society for Industrial and Ap-
plied Mathematics, 2003.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment.Journal of the ACM,
20(1):46–61, 1973.

[16] J. W. Liu. Real-Time Systems. Prentice Hall, Englewood, Cliffs,
NJ., 2000.

[17] P. Mej́ıa-Alvarez, E. Levner, and D. Mossé. Adaptive scheduling
server for power-aware real-time tasks.ACM Transactions on Em-
bedded Computing Systems, 3(2):284–306, 2004.

[18] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem. Energy
aware scheduling for distributed real-time systems. InInternational
Parallel and Distributed Processing Symposium, page 21, 2003.

[19] INTEL. Strong ARM SA-1100 Microprocessor Developer’s Man-
ual, 2003. INTEL.

[20] INTEL-XSCALE, 2003. http://developer.intel.com/design/xscale/.
[21] Y. Shin and K. Choi. Power conscious fixed priority scheduling for

hard real-time systems. InProceedings of the 36th ACM/IEEE Con-
ference on Design Automation Conference, pages 134–139. ACM
Press, 1999.

[22] V. V. Vazirani. Approximation Algorithms. Springer, 2001.
[23] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for

reduced CPU energy. InProceedings of Symposium on Operating
Systems Design and Implementation, pages 13–23, 1994.

[24] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximationalgo-
rithm for energy-efficient scheduling on a chip multiprocessor. In
Proceedings of the 8th Conference of Design, Automation, and Test
in Europe (DATE), pages 468–473, 2005.

[25] F. Yao, A. Demers, and S. Shenker. A scheduling model forre-
duced CPU energy. InProceedings of the 36th Annual Symposium
on Foundations of Computer Science, pages 374–382. IEEE, 1995.

[26] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage
selection for energy minimization. InAnnual ACM IEEE Design
Automation Conference, pages 183–188, 2002.

[27] D. Zhu, R. Melhem, and B. Childers. Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in multi-processor
real-time systems. InProceedings of IEEE 22th Real-Time System
Symposium, pages 84–94, 2001.

