
Integrating Fine-Grained Application Adaptation with
Global Adaptation for Saving Energy

�

Vibhore Vardhan, Daniel Grobe Sachs, Wanghong Yuan, Albert F. Harris,
Sarita V. Adve, Douglas L. Jones, Robin H. Kravets, and Klara Nahrstedt

University of Illinois at Urbana-Champaign
grace@cs.uiuc.edu

Abstract

Energy efficiency has become a primary design criterion
for mobile multimedia devices. Prior work has proposed
saving energy through coordinated adaptation in multiple
system layers, in response to changing application demands
and system resources. The scope and frequency of adapta-
tion pose a fundamental conflict in such systems. The Illi-
nois GRACE project addresses this conflict through a hier-
archical solution which combines (1) infrequent (expensive)
global adaptation that optimizes energy for all applications
in the system and (2) frequent (cheap) per-application (or
per-app) adaptation that optimizes for a single application
at a time. This paper demonstrates the benefits of the hi-
erarchical adaptation through a second-generation proto-
type, GRACE-2. Specifically, it shows that in a network
bandwidth constrained environment, per-app application
adaptation yields significant energy benefits over and above
global adaptation.

1 Introduction

Mobile devices primarily running soft real-time multi-
media applications are becoming an increasingly important
computing platform. Such systems are often limited by their
battery life, and saving energy is a primary design goal. A
widely used energy saving technique is to adapt the system
in response to changing application demands and system
resources. Researchers have proposed such adaptations in
all layers of the system; e.g., hardware, application, oper-
ating system, and network. Recent work has demonstrated
significant energy benefits in systems that employ coordi-
nated multiple adaptive system layers or cross-layer adap-
tation [30, 31].

Such systems must employ intelligent control algorithms
�

This work is supported in part by the National Science Foundation
under Grant No. CCR-0205638 and a gift from Texas Instruments.

that determine when and what adaptations to invoke, to ex-
ploit the full potential of the underlying adaptations. These
algorithms must balance the conflicting demands of adapta-
tion scope and frequency. On one hand, an algorithm that
considers all applications and adaptive system layers, re-
ferred to as global, is likely to save more energy than a more
limited scope algorithm (e.g., considering only one applica-
tion at a time). On the other hand, global algorithms are
also likely to be more expensive since they must optimize
across the cross-product of all configurations of all adaptive
layers, considering the demands of all (possibly adaptive)
applications on these configurations.

Previous cross-layer adaptation work, therefore, per-
forms global adaptation relatively infrequently (e.g., when
an application enters or leaves the system [30, 31]). This
infrequent invocation in turn reduces the system’s respon-
siveness to change, potentially sacrificing energy benefits.
Other work performs adaptations more frequently, but as-
sumes only one application in the system [25] or only a sin-
gle adaptive layer [8].

To balance the conflict of frequency vs. scope, the Illi-
nois GRACE project (Global Resource Adaptation through
CoopEration) takes a hierarchical approach that invokes
expensive global adaptation occasionally, and inexpensive
limited-scope adaptations frequently [24, 30, 31]. GRACE
uses three adaptation levels, exploiting the natural frame
boundaries in periodic real-time multimedia applications
(Figure 1 [24]). Global adaptation considers all applications
and system layers together, but only occurs at large system
changes (e.g., application entry or exit). Per-application
adaptation (or per-app) considers one application at a time
and is invoked every frame, adapting all system layers
to that application’s current demands. Internal adaptation
adapts only a single system layer (possibly considering sev-
eral applications) and may be invoked several times per ap-
plication frame. All adaptation levels are tightly coupled by
ensuring that the limited-scope adaptations respect the re-
source allocations made by global adaptation. The different
adaptation levels may or may not consider the same adap-

1

(a) Global
cross-layer adaptation

(b) Per-app
cross-layer
adaptation

(c) Internal
per-layer adaptation

time

la
ye

r

ap
p

coarse
granularity

hardware

network

OS

app 1
…
app n la

ye
r

hardware

network

OS

medium
granularity

fine
granularity

time

app i

ap
p

app i

h/w

n/w

OS

Figure 1. GRACE adaptation hierarchy. (We
do not yet adapt the network.)

tations; they are distinguished by the granularity at which
they consider an adaptation (e.g., both global and per-app
levels may consider dynamic voltage and frequency scaling
or DVFS for CPU adaptation).

We previously reported on the first GRACE prototype,
GRACE-1, with adaptations in the CPU (DVFS), applica-
tion (frame rate and dithering), and soft real-time scheduler
(CPU time allocation) [30, 31]. GRACE-1’s focus was on
cross-layer global adaptation, for which it showed signifi-
cant energy benefits. It reported a few experiments with hi-
erarchical adaptation in the CPU and scheduler, but showed
only modest benefits over global adaptation

This work focuses on the benefits of hierarchical adap-
tation in a mobile multimedia system, and reports results
from the second generation prototype, GRACE-2. Our main
contribution is to show that per-app application adaptation
provides significant benefits over and above global adapta-
tion when network bandwidth is constrained. These ben-
efits occur with and without per-app CPU adaptation. No-
tably, the benefits with both per-app application and per-app
CPU adaptation are often more than additive. In contrast,
GRACE-1 neither provided per-app application adaptation
nor implemented a network constraint, and is thus unable to
obtain GRACE-2’s benefits. Further, GRACE-1’s hierarchi-
cal adaptation had to be redesigned to incorporate per-app
application adaptation because it implicitly assumed a fixed
application configuration between global adaptations.

GRACE-2 is implemented on a Pentium M based laptop
running Linux 2.6.8-1. As illustrated in Table 1, GRACE-2
implements global adaptations in the CPU, application, and
soft real-time scheduler; per-app adaptation in the CPU and
application; and internal adaptation in the scheduler. It re-
spects the constraints of CPU utilization and network band-
width, while minimizing CPU and network transmission en-
ergy. All aspects of the system are fully implemented except
for network communication. We report both the measured
energy savings for the entire system and modeled energy

Objective: Minimize CPU and network transmission energy
Constraints: CPU time, network bandwidth

Layer Adaptation Hierarchy level
Global Per-app Int.

CPU Dynamic voltage
and frequency
scaling (DVFS)

yes yes no

Application Drop DCT and
motion estimation
computations
based on adaptive
thresholds

yes yes no

Scheduler Change CPU
time, network
bandwidth budget

yes no yes

Table 1. Adaptations supported in GRACE-2

savings for just the CPU and network (we could not isolate
the CPU energy through measurements).

We emphasize that the individual adaptations in
GRACE-2 are not our focus, and have been previously pro-
posed. Our focus is on their hierarchical control, and specif-
ically on per-app application adaptation.

To our knowledge, this work is the first to demonstrate
the benefits (energy savings) from per-app application adap-
tation over and above global adaptation. It is also the first
to demonstrate significant benefits from hierarchical adap-
tation on a real multimedia system implementing multiple
applications, adaptations, and constraints. Section 6 further
discusses related work.

2 Layer Adaptations and Models

2.1 CPU

Adaptations: We study dynamic voltage and frequency
scaling (DVFS). Our Pentium M CPU supports five fre-
quencies

�
600, 800, 1000, 1200, 1300 MHz � and corre-

sponding voltages
�
956, 1260, 1292, 1356, 1388 mV � [13].

To partially alleviate the limitations of the small number
of discrete DVFS points supported, we emulate a continu-
ous set of DVFS points as follows [14]. If we need to run
at an unsupported frequency, � , we run at the supported fre-
quency just below � (say ���) for some number of cycles (say� �) and the supported frequency just above � (say ���) for the
remaining cycles (say � �). If � cycles need to be executed,
then � �	� � ��
 � and �
 ��� � � ��� �Energy model: We report energy measurements from
the actual system. However, we could not isolate the CPU
energy from the rest of the measured system energy. To
better understand the impact of our adaptations on the CPU

2

Bandwidth (Mbps) 2 5.5 11
Energy per byte (���

�
J) 4 2 .08

Table 2. Network bandwidth and energy/byte.

energy and to provide a CPU energy model to the adap-
tation control algorithms, we use the following: Energy =
Power � Execution Time, where we approximate power at
frequency � and voltage

�
by dynamic power �

���
� � .

We derive the proportionality constant using published
numbers for the maximum Pentium M power. The above
model does not incorporate leakage (static) power or the ef-
fect of application-specific clock gating (as is the case in
much of the DVFS literature). These are difficult to incor-
porate analytically and do not affect the overall trends in the
impact of per-app adaptation. This is substantiated by our
measured (entire system) energy numbers which do include
all effects.

It is noteworthy that CMOS technology is currently in
the realm where frequency reductions result in sub-linear
voltage reductions. Thus, while previously frequency re-
ductions resulted in quadratic energy reductions (due to lin-
ear voltage reductions), this is no longer the case.

2.2 Network (non-adaptive)

We assume a non-adaptive (simulated) network layer
with fixed available bandwidth. We model network trans-
mission energy using a fixed energy/byte cost: Network
Energy = EnergyPerByte � BytesTransmitted [4]. Table 2
summarizes energy per byte for different bandwidth values
in an IEEE 802.11b wireless network, based on the energy
consumption of a Cisco Aironet 350 series PC card [4].

We use different bandwidth values to model different
constraints in the system. If the value selected is between
two values in Table 2 (possible since not all the bandwidth
of the channel is available to one node), we assume trans-
mission cost of the higher bandwidth. We believe our net-
work configurations represent reasonable scenarios seen in
practice. Responding to variations in network bandwidth
with an adaptive network layer is part of our ongoing work.

2.3 Applications

We consider periodic soft real-time applications or tasks.
An application releases a job or a frame at the end of each
period. We study workloads consisting of various combi-
nations of speech and video encoders and decoders (Sec-
tion 4). Our H.263 video encoder is adaptive while the other
applications are non-adaptive.

Adaptations in the H.263 video encoder: We use the
adaptations proposed in [25] (in the context of a system with
a single application, and without global adaptation). Since

these are not our focus, we only summarize them next and
refer to [25] for details.

The adaptations trade off CPU computation (i.e., CPU
energy) for the number of bytes transmitted (i.e., network
transmission energy), to minimize the total CPU+network
transmission energy. The appropriate trade off varies dy-
namically, depending on the video stream, the system load,
and the ratio of network energy per byte to CPU energy per
cycle (which depends on the chosen CPU frequency).

The adaptations work at the granularity of a single video
frame. They enable dropping certain DCT (discrete cosine
transform) computations and motion searches based on a
threshold (set by the adaptation control algorithm) for the
corresponding frame. The net effect is that, by changing the
thresholds, the control algorithm can vary the bit rate and
the computation cycles for a frame by about a factor of two.
These adaptations can potentially reduce the PSNR (pseudo
signal to noise ratio) of the stream, but this is compensated
for by adjusting the quantizer step size. Thus, the adaptive
encoder can be scaled between a highly compute-intensive
but lower bit rate configuration to a less compute-intensive
higher bit rate configuration, without affecting the quality of
the decoded video.

We study four DCT and four motion-search thresholds,
resulting in a configuration space of sixteen different en-
coder configurations.

Deadline misses and frame drops: A frame that does
not complete computation or transmission of all its bytes
by the end of the ensuing period is said to miss its dead-
line, with one exception. For video encoders, if a frame
finishes its computation within 1ms of its period, we do not
count it as a miss. We find these delays do not accumulate
(the misses are not clustered). If the video encoder misses
its deadline for one frame, the encoding/transmission for
that frame continues in the next period, borrowing from the
budget of the next frame. If it misses the deadline for two
frames in a row, then the next frame is entirely dropped
(i.e., incurs no computation or network transmission), en-
abling the encoder to catch up on its previous frame over-
runs. We have not (yet) modified the other applications to
drop frames.

Since we use soft real-time applications, we assume that
we may miss the deadline for or drop a total of up to 5%
of all frames, without affecting quality. Although strictly
speaking, missing a deadline by a small interval and drop-
ping an entire frame have different effects on quality, we do
not distinguish between the two and seek to limit both of
these effects to a total of 5%.

2.4 OS Scheduler

We assume an earliest-deadline-first (EDF) soft real-time
scheduler for CPU time and network bandwidth. The sched-

3

uler is responsible for enforcing budget allocations for both
CPU time and network bandwidth. To reduce deadline
misses due to imperfect predictions of resource demands,
the scheduler performs an internal adaptation called budget
sharing [2]. Briefly, this allows an application to reclaim
unused budget from previous applications’ underruns. The
EDF CPU scheduler maintains a record of all unused bud-
gets and their expiration times (i.e., the deadline for the job
that released the budget). When an application is scheduled,
the scheduler first tries to exhaust any unused budget before
charging the elapsed cycles to the application. The unused
budget can be given to an application only if the expiration
time of the budget is less than the deadline for the appli-
cation [2]. We similarly exploit network bandwidth sharing
between applications. Unless stated otherwise, budget shar-
ing is used in all systems studied here.

3 Adaptation Control Algorithms

3.1 Global Control

Overview: We use a global control algorithm similar
to that in [31], but extended to incorporate a network band-
width constraint. The algorithm is invoked on large changes
in the system; e.g., when an application enters or exits.
As input, the algorithm receives the resource requirements
(CPU utilization, network bandwidth, CPU+network en-
ergy) for each combination of application and CPU config-
uration. The algorithm must then choose, for each applica-
tion, the combination of the application and CPU configu-
ration such that (i) the total CPU+network energy is mini-
mized, and (ii) the resource requirements for all the appli-
cations (running with the chosen configurations) are met.

More formally, for application � , let Period � be its period
and ��� be a chosen CPU and application configuration com-
bination. Let Energy ��� ��� be the energy consumed, Time ��� ���
be the CPU time taken, and Bytes ��� ��� be the network bytes
required by a frame of application � with configuration � � .
Let there be a total of 	�
���� applications in the system and
let � be the total network bandwidth (assumed to be fixed).
Then the global algorithm must choose the CPU and appli-
cation configuration � � for each application � to:

minimize ���������������� Energy ��� � �
subject to EDF scheduling and bandwidth constraints:

� ��������
�����

Time ��� � �
Period �! #" and

� ���$���
�����

Bytes �%� � �
Period �& �

Solving the optimization: The above optimization
problem is a multi-dimensional multiple-choice knapsack
problem (MMKP) [17] and is known to be NP-hard. For the

purpose of determining energy savings, we solve this prob-
lem using a brute force exhaustive search approach (with
one modification below), to give global control the best
showing. This approach is impractically expensive for a
real system. When reporting the overhead for global, we
use a more practical, but possibly sub-optimal heuristic ap-
proach based on Lagrangian techniques [17]. (We found the
energy savings of both approaches to be comparable for the
scenarios studied here.)

To reduce the complexity of both solution approaches,
we choose the same frequency (CPU configuration) for all
applications. We justify this heuristic by Jensen’s inequal-
ity [15]: if the CPU energy per unit time is a convex func-
tion of frequency, then the best frequency setting is a single
point for all applications (if the CPU does not support this
single point, then a combination of adjacent supported fre-
quencies is best). This optimization enables us to solve the
MMKP problem separately for each supported frequency.
We then pick the frequency that provides the minimum en-
ergy with the chosen application configurations at that fre-
quency.

After the above process, it is possible that the chosen
application configurations and frequency do not exhaust all
the CPU utilization and network bandwidth. In that case,
the leftover resources are divided among the applications
in proportion to their current allocation. This leftover CPU
utilization allows a further reduction in frequency. If the
resulting frequency is not directly supported, the continuous
DVFS emulation discussed in Section 2.1 is used.

Predicting resource requirements: The global al-
gorithm requires predicted resource usage of a frame
(Energy��� ��� , Time ��� ��� , and Bytes �%� �'� in the optimization
equations). These predictions must be representative of all
frames until the next global adaptation is invoked. Follow-
ing previous work on resource allocation and scheduling for
soft real-time multimedia applications [3, 31], we use pro-
filing of several frames to determine the resource usage. (In
our experiments, since our streams are relatively short and
since we would like to give global the best showing, we
profiled the entire stream off-line.)

To reduce the amount of profiling, we leverage findings
from [12]. Specifically, for our applications, the number
of execution cycles for a given frame for a given appli-
cation configuration is roughly independent of frequency;
therefore, execution time scales roughly linearly with fre-
quency.1 Thus, by profiling each application configuration
at a single CPU frequency, we are able to estimate the ex-
ecution time (and the number of bytes) at all frequencies.
These estimates also allow estimation of energy using the
models in Section 2.

Since we assume a 5% deadline miss rate is acceptable,

1This is because these applications generally hit in the cache and do not
see much memory stall time [12].

4

we use the execution time (and bytes) from the frame that
falls in the 95th percentile of all profiled frames. For en-
ergy, we are concerned with minimization and not meeting
a constraint. We therefore use the average time and bytes
from the profiled frames as input to the energy models.

In practice, we expect to use on-line profiling of a few
hundred frames [29]. For long streams, this poses a negli-
gible overhead. In our experiments, since our streams are
short and since we would like to give global the best show-
ing, we profiled the entire stream off-line to determine the
95th percentile and average values.

3.2 Per-App Control

The per-app control algorithm (derived from [25]) is in-
voked at the start of a frame with the following inputs: (1)
the resource allocation for the frame and (2) the resource
requirements for the frame for each application configura-
tion. The algorithm then simply chooses the application and
CPU configuration combination that has the least energy,
and whose CPU time and network bandwidth requirement
is within its allocation. If such a combination is not found,
then we use the application and CPU configuration of the
last frame (likely leading to a deadline miss). The complex-
ity of this algorithm is of the order of the product of the
number of application and CPU configurations.

Predicting resource requirements: As for the global
algorithm, estimating the execution cycles and bytes for a
frame enables estimating all its resource requirements (exe-
cution time, bandwidth, and energy). Unlike global control,
per-application control requires predicting resource usage
for only the next frame.

For non-adaptive applications, we use a common
history-based technique, where the average of the execu-
tion cycles and bytes in the last five frames is used to predict
these quantities for the next frame. For the adaptive appli-
cation, the history of the past frames may be for different
application configurations, and cannot be used directly to
predict the behavior of the next frame for yet other configu-
rations. We therefore use an off-line profiling based predic-
tion technique proposed by Sachs et al. as follows [25].

The technique generates an execution cycle predictor
off-line by repeatedly encoding one or more sequences (for
a fixed hardware frequency), randomly changing the en-
coder configuration at each frame. This off-line run gen-
erates several points for every pair of (previous, next) en-
coder configurations, mapping the number of cycles in the
previous frame to the those in the next frame. The predictor
is generated by fitting a function in the least-squared sense,
for every pair of (previous, next) configurations. A byte
count predictor is similarly generated. To avoid deadline
misses, we conservatively add an adaptive leeway into the
predicted values for both execution cycles and bytes. Im-

C
P

U

Application

Per-app Controller

Scheduler

long-term
resource demands

allocated time,
bandwidth

app config

Global Controller

next frame’s
source demands

 frequency

Monitor Adaptor Predicto
r

Monitor

bandwidth

frequency

status:
energy;
miss,
overrun

cycles
usageallocated time,

bandwidth, energy

N
et

w
or

k

M
on

ito
r

M
on

ito
r

A
da

pt
or

Figure 2. Integrated global and per-
application control.

proving the predictors for adaptive applications is part of
our future work.

When the per-app adaptation is invoked, it determines
the cycle count and byte count for each application config-
uration for the next frame by using the appropriate predic-
tor, given the knowledge of the previous frame’s application
configuration, actual cycle count, and actual byte count.

3.3 Integrating Global and Per-App Control

A system that runs with only global control uses the
frequency and application configurations as chosen by the
global algorithm. In a system that additionally incorporates
per-app control, the global algorithm’s choice of configu-
ration is only used to determine the resource allocation for
each application. This resource allocation is fed as input to
the per-app control algorithm. The latter then determines
the appropriate configurations for the next frame based on
its predictions of the resource usage of that frame and its al-
location. Since the per-app controller makes a prediction
only for the next frame, based on knowledge of all past
frames, it is likely that its prediction is better than that of
the global algorithm. Therefore, the per-app controller is
likely to better utilize the resources that were allocated to
its application by the global algorithm. Figure 2 summa-
rizes the integrated system. As shown, the only interaction
between the global and per-app controller is that the former
gives the resource allocation to the latter.

4 Experimental Methodology

Implementation: We have implemented all aspects of
the system studied except for the network communication
(which is replaced with file I/O). Our implementation is
on an IBM ThinkPad R40 laptop running the Linux kernel
2.6.8-1, and is described in detail in [27].

Energy measurement: We use an Agilent 66319D sam-
pling power supply to measure the energy consumed by the

5

Applications Inputs Fps Mbps
1 video (enc, enc) foreman, buggy 30 2
2 video (enc, enc) foreman, buggy 20 3.3
3 video (enc, dec) carphone, paris 30 2
4 video (enc, dec) carphone, paris 30 2.1

audio (enc, dec) clinton, lpcqutfe 50
5 video (enc, dec, dec) foreman, carphone, 30 6.7

football
audio (enc, dec, dec) female, clinton, male 50

Table 3. Workloads evaluated.

entire system. The measurements were done with the dis-
play brightness set to level 3 (0 is minimum). The wireless
card was turned off, the laptop battery was removed, and
the only applications running were from the experimental
workload. All other parts of the system (e.g., hard drive)
were on. The network energy used was calculated using the
model in Section 2.2, and was added to the above measured
energy to give the total system energy in Section 5.3.

Since we cannot isolate the CPU energy in our measure-
ments and since the CPU and the network are the targets of
our energy adaptations, our first set of results (Section 5.2)
are based on modeled CPU (+network) energy, using the
model in Section 2.1.

Workloads: We study various combinations of an H.263
video encoder and decoder and a speech encoder and de-
coder [28], representing workloads such as remote sensing
and teleconferencing [27]. The video encoder is adaptive
(Section 2.3) while the other applications are non-adaptive.
We use standard video and audio input streams available on
the Internet (QCIF size frames for the video encoder and
CIF for the video decoder). To study the effect of differ-
ent types of resource constraints (CPU load, network band-
width), we run the workloads with different periods (frame
rates) for the constituent applications and different values
of the available network bandwidth. We studied 16 differ-
ent workloads covering four resource constraint scenarios:
unconstrained, only CPU constrained, only network con-
strained, and both CPU and network constrained [27]. For
space, here we report detailed results from the (most sig-
nificant) last two scenarios (i.e., those with a network con-
straint), and summarize the rest. We choose five representa-
tive workloads for the network constrained scenarios, sum-
marized in Table 3. Each run includes between 150 to 500
frames for each application.

5 Results

5.1 Overheads

A detailed discussion of experiments showing the over-
heads of global and per-app adaptation appears in [27],

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5
Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 G
lo

ba
l

Global Per-app CPU
Per-app application GRACE-2

Figure 3. CPU+network energy benefits from
per-app application adaptation. For each
workload, the leftmost bar shows energy for
a system with global adaptation in the CPU,
application, and scheduler. The next three
bars include this global adaptation as well
as per-app CPU adaptation, per-app applica-
tion adaptation, and both per-app CPU and
per-app application adaptation (i.e., GRACE-
2) respectively. The energy for each system
is normalized to the system with only global
adaptation (leftmost bar).

here we briefly summarize our observations. As expected,
global adaptation is significantly more expensive than per-
app adaptation. For example, in one case, global adaptation
took about 4% of a video encoder’s average frame com-
putation time, without including the overhead for on-line
profiling for predicting the application’s resource usage. In
contrast, the per-app adaptation overhead was 8X lower.
Further, as the number of possible adaptive layers, adap-
tive components within each layer, and the number of adap-
tive states within each component increases, the overhead
of global will increase much faster than per-app.

5.2 CPU and Network Energy Savings

Figure 3 illustrates the energy benefits in the CPU-
network subsystem of per-app application adaptation. For
each workload, the leftmost bar shows a system with global
adaptation in the application, CPU, and scheduler. The next
three bars shows systems that incorporate this global adap-
tation and additionally have per-app CPU adaptation (sec-
ond bar), per-app application adaptation (third bar), and
both per-app application and per-app CPU adaptation (the
last bar, which represents GRACE-2). The energy of all
systems is normalized to that consumed by the system with
only global adaptation (the first bar).

6

Figure 3 shows that adding per-app application adapta-
tion to a system with global adaptation can result in sig-
nificant energy benefits. The benefits remain significant re-
gardless of whether the base global system contains per-app
CPU adaptation (second bar) or not. Relative to a system
with only global adaptation, the energy savings from adding
per-app application adaptation range from 9% to 18% with
an average of 14% for the cases shown here. Relative to a
system with both global and per-app CPU adaptation, the
energy savings from adding per-app application adaptation
range from 12% to 31% with an average of 21%.

It is noteworthy that adding only per-app CPU adapta-
tion to global adaptation gives modest benefits.2 In con-
trast, combining CPU and application adaptation at the per-
app level gives more than additive benefits in some cases,
resulting in quite significant overall savings of hierarchical
adaptation relative to a system with only global adaptation.

Experiments from scenarios without a network con-
straint showed no benefit from per-app application adapta-
tion and modest benefit (6% average) from per-app CPU
adaptation, relative to global adaptation [27]. For reference,
we also note that global adaptation gave significant benefits
(41% average) relative to the non-adaptive system [27].

Analysis: A detailed analysis and supporting data to
explain why per-app application adaptation shows signifi-
cant benefits for the network constrained case and not for
other cases appears in [27]. Briefly, for the specific case of
our laptop based system, CPU energy dominates over the
network energy. Therefore, the application configuration
with the least computation is typically the most energy ef-
ficient. However, in a network bandwidth constrained sce-
nario, there may be some frames for which this configura-
tion produces too many bytes. Since the global-only system
must pick a configuration safe for most frames, it cannot
pick this configuration. GRACE-2’s frame by frame adap-
tation, however, is able to pick this configuration for all the
frames that produce bytes within the bandwidth constraint,
thereby resulting in energy savings.

5.3 System-Wide Energy Savings

We next discuss (measured) system-wide energy savings
of GRACE-2 over a system with only global adaptation.3

Across all workloads in the scenarios with a network con-
straint reported in [27], we found that GRACE-2’s per-app
adaptation provides a system-wide energy benefit of 7% to
14% with an average of 10% (relative to only global adap-
tation). These savings are significant, considering that they

2The benefits from CPU adaptation are modest relative to those seen
for DVFS in much prior work due to the sub-linear relationship between
frequency and voltage reductions in recent processors (Section 2.1).

3As explained, the network energy is realistically modeled, but is a very
small part of the system energy [27].

are for the entire system including the display, disk, power-
supply loss, and memory system; they are actual measured
values; and they come from only adaptation of the CPU and
application. (As reference, the one workload with multiple
applications reported for GRACE-1 showed system-wide
savings from hierarchical adaptation of only 3.8%, relative
to global adaptation [30].)

5.4 Deadline Misses and Budget Sharing

The main benefit of budget sharing (i.e., the internal
scheduler adaptation described in Section 2.4) is in re-
ducing the number of deadline misses (including frame
drops). Budget sharing has negligible (� 1%) effect on en-
ergy. GRACE-2 shows acceptable deadline misses (within
5%) for each application in each scenario/workload stud-
ied. Without budget sharing, the deadline miss ratios are
high (up to 23%) for several cases. Thus, budget sharing is
effective and critical for our system.

6 Related Work

There has been a large amount of work on energy and
bandwidth driven adaptations and resource allocation that
is relevant to this work. This includes CPU adaptation
with and without coordination with a real-time scheduler
(e.g., [1, 8, 19, 20, 22, 26, 32]), adaptation of one or
more applications with and without OS/middleware support
(e.g., [6, 7, 9, 10, 16, 18, 21]), and single-layer or cross-
layer adaptation or resource allocation with only global
control supporting multiple applications (e.g., [11, 33, 23])
or only per-app control supporting a single application
(e.g., [25]). The focus of this work, however, is on hier-
archical adaptation control in a cross-layer adaptive system,
and more specifically on fine-grained (per-app) application
adaptation. None of the above systems exhibit this property.

The systems most closely related to the hierarchical
adaptation of GRACE-2 are GRACE-1 [30, 31] which has
already been discussed and Fugue [5]. Fugue proposed
adaptation at multiple time scales for wireless video [5].
This is one of the key features of GRACE-2’s hierarchi-
cal control. However, Fugue differs from GRACE-2 in the
following important ways. First, it considers only one ap-
plication running. Second, it is based on the insight that
different types of adaptations work on different time scales;
e.g., application quality control must occur at a coarser time
scale than network transmission power control. GRACE-
2’s global and per-app controllers consider the same set of
adaptations, but for different purposes – the former uses
them for resource allocation among multiple applications
while the latter does the actual adaptation. Incorporating
adaptations that inherently work at different time scales can

7

be viewed as an orthogonal issue – our system incorporates
these as well, but that is not the focus of this work.

7 Conclusions

The GRACE project balances the scope and frequency of
energy saving adaptations in multiple layers through a hier-
archical approach, where expensive and infrequent global
adaptation allocates resources among applications based
on long-term predictions, and inexpensive per-application
control seeks to make the energy-optimal use of these re-
sources through localized short-term predictions and cross-
layer adaptations.

This paper presents results from the second generation
prototype, GRACE-2. Specifically, it shows that per-app
application adaptation provides significant benefits over and
above global adaptation when the network bandwidth is
constrained. These benefits are seen both with and without
per-app CPU adaptation. For example, the energy savings
in the CPU+network from adding per-app application adap-
tation to a system with global adaptation and per-app CPU
adaptation were seen to be up to 31% (average 23%). Inter-
estingly, when both per-app CPU and per-app application
adaptation are added to a system with global adaptation, the
combined benefits are more than additive.

To our knowledge, this work is the first to demonstrate
the benefits from per-app application adaptation control
over and above global control. It is also the first to demon-
strate significant benefits from hierarchical adaptation on
a real multimedia system implementing multiple applica-
tions, adaptations, and constraints. Given the low overhead
of per-app control and the relatively low added system im-
plementation complexity over a system with global control,
the benefits achieved seem worthwhile to exploit.

Our ongoing work is incorporating an adaptive network
layer that responds to variations in network bandwidth, and
is also exploring other possible application adaptations in-
cluding those that affect user perception.

References

[1] H. Aydin et al. Dynamic and aggressive scheduling tech-
niques for power-aware real-time systems. In RTSS, 2001.

[2] M. Caccamo et al. Capacity sharing for overrun control. In
RTSS, Dec. 2000.

[3] H. H. Chu and K. Nahrstedt. CPU service classes for multi-
media applications. In ICMCS, 1999.

[4] Cisco Aironet 350 Series Client Adapters Datasheet.
http://www.cisco.com/en/US/products/hw/wireless/ps4555/
products data sheet09186a0080088828.html, 2004.

[5] M. Corner et al. Fugue: time scales of adaptation in mobile
video. In MMCN, Jan. 2001.

[6] E. de Lara et al. HATS: hierarchical adaptive transmis-
sion scheduling for multi-application adaptation. In MMCN,
2002.

[7] C. Efstratiou et al. A platform supporting coordinated adap-
tation in mobile systems. In WMCSA, June 2003.

[8] K. Flautner and T. Mudge. Vertigo: Automatic performance-
setting for linux. In OSDI, Dec. 2002.

[9] J. Flinn et al. Reducing the energy usage of office applica-
tions. In Proc. of Middleware, Nov. 2001.

[10] J. Flinn and M. Satyanarayanan. PowerScope: A tool for
proling the energy usage of mobile applications. In WMCSA,
1999.

[11] K. Gopalan and T. Chiueh. Multi-resource allocation and
scheduling for periodic soft real-time applications. In
MMCN, Jan. 2002.

[12] C. J. Hughes et al. Variability in the Execution of Multimedia
Applications and Implications for Architecture. In Proc. of
the 28th Annual Intl. Symp. on Comp. Architecture, 2001.

[13] Intel Pentium M Processor Datasheet. http://www.intel.
com/design/mobile/datashts/25261203.pdf, 2003.

[14] T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In ISLPED, 1998.

[15] S. Krantz, S. Kress, and R. Kress. Jensen’s Inequality.
Birkhauser, 1999.

[16] M. Mesarina and Y. Turner. Reduced energy decoding of
MPEG streams. In MMCN, Jan. 2002.

[17] M. Moser et al. An algorithm for the multidimensional
multiple-choice knapsack problem. In IEICE Trans. Fun-
damentals of Electronics, 1997.

[18] B. Noble et al. Agile application-aware adaptation for mo-
bility. In SOSP, Dec. 1997.

[19] T. Pering et al. Voltage scheduling in the lpARM micropro-
cessor system. In ISLPED, July 2000.

[20] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In SOSP, 2001.

[21] C. Poellabauer et al. Cooperative run-time management of
adaptive applications and distributed resources. In Proc. 10th
ACM Multimedia Conf., Dec. 2002.

[22] G. Quan and X. Hu. Energy efficient fixed-priority schedul-
ing for real-time systems on variable voltage processors. In
DAC, 2001.

[23] C. Rusu et al. Maximizing the system value while satisfying
time and energy constraints. In RTSS, Dec. 2002.

[24] Sachs et al. GRACE: A Cross-Layer Adaptation Framework
for Saving Energy. SIDEBAR in IEEE Computer, dec 2003.

[25] D. Sachs et al. Adaptive video encoding to reduce energy on
general-purpose processors. In ICIP, Sept. 2003.

[26] T. Simunic et al. Dynamic voltage scaling and power man-
agement for portable systems. In DAC, 2001.

[27] V. Vardhan et al. Integrating Fine-Grained Applica-
tion Adaptation with Global Adaptation for Saving En-
ergy (extended version). Technical report, UIUC, 2005.
http://www.cs.uiuc.edu/grace/papers/perapp-tr.pdf.

[28] Xiph.org. Speex. http://www.speex.org/, 2003.
[29] W. Yuan. GRACE-OS: An Energy-Efficient Mobile Multi-

media Operating System. PhD thesis, UIUC, 2004.
[30] W. Yuan et al. GRACE: Cross-Layer Adaptation for Mul-

timedia Quality and Battery Energy. IEEE Trans. Mobile
Computing. Accepted for publication.

[31] W. Yuan et al. Design and evaluation of cross-layer adapta-
tion framework for mobile multimedia systems. In MMCN,
2003.

[32] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. In SOSP,
2003.

[33] H. Zeng et al. Ecosystem: Managing enegy as a first class
operating system resource. In ASPLOS-X, 2002.

8

