
Profiles in Power:  
Optimizing Real-Time Systems for Power 

 

Graham R. Hellestrand Mahdi Seddighnezhad James E. Brogan 
g.hellestrand@vastsystems.com m.seddighnezhad@vastsystems.com j.brogan@vastsystems.com 

VaST Systems Technology Corporation 
1250 Oakmead Pkwy, Suite 310 

Sunnyvale, CA 94085 
+1-408-328-0949 

 
ABSTRACT 
High-performance, timing accurate models of complex systems 
(called Virtual System Prototypes (VSP)) enable the 
computation of relatively accurate power in terms of events that 
occur in the model. VSPs are the integrations of models of 
electronic hardware, communication and mechanical 
subsystems into systems that execute software accurately. 
Software has a first order impact on system performance and 
has, typically, the major effect on modern system optimization. 
The computation of relative power, although fundamental, is not 
useful by itself – doubling the talk time of a mobile phone is not 
useful if, concomitantly, the speed dwindles so that look-up 
functions take 20 seconds rather than the 2 seconds that 
competitors take. Power is an exemplar of the complex, 
concept-based functions, with many hardware, software and 
system parameters, that constitute optimization functions and 
will be treated in detail in this paper. The general form of a 
power computation function is given in the paper, as well as, a 
simple example of the implementation of a power calculator. 
The use of power, along with the other components of objective 
functions, such as speed (instructions per second), response 
latency and cost, must drive algorithm choice and software 
development in mobility and other power-performance sensitive 
applications. The use of VSPs is mandatory in specifying the 
hardware and software architectures of, and then building, 
complex optimal systems.  

Categories and Subject Descriptors 
C3 [Special Purpose and Application Based Systems] Real-
time and embedded system; C4 [Performance of Systems] 
Measurement and modeling techniques; G3 [Probability and 
Statistics] Experimental design. 

General Terms 
Design, Experimentation, Measurement, Performance. 

Keywords 
Power measurement and analysis, quantitative systems 
architecture, empirical system design, event-based objective 
function, event data-driven optimization. 

1. Background and Motivation 
An empirical approach to composing optimal architectures for 
application specific embedded systems is relatively rare. The 
use of empiricism in developing optimal software is even rarer, 

and when used often primitive. The complexity of processor 
centric, electronic systems that control modern products (such 
as, cell phones, automobiles, communication base stations, 
consumer products) requires a systematic approach to 
developing software in order to deliver an optimal fit for an 
intended product. When a company’s engineering process is 
being used as a competitive weapon, the luxury of optimality, 
especially wrt power and speed and response latency in mobile 
systems, becomes a necessity [1].  
The bigger architecture picture is more complex. The intuitive 
optimization of systems – architecture, software design, 
hardware design, and interfaces – has largely been a by-product 
of hardware design. Since hardware designers have rarely 
understood, or had access to, the software that would run on 
their architectures, they produced conservative, often grossly 
over-engineered designs that were typically poor fits to a 
number of dimensions of the specification - especially in cost 
sensitive applications, where over-engineering is the antithesis 
of cost sensitivity [2]. 
The ability to support data-driven decision making early in the 
software development process is one of the underlying drivers 
of building models of systems that are timing accurate and high 
performance. Of course, this advantage also accrues to 
architecture development but that is another dialogue. From a 
purely software perspective, optimizing across the dimension of 
speed, response latency, cost (size) and power consumption is 
rarely done and, at a pre-silicon level, it is an undertaking only 
possible using high-performance, timing accurate models – 
called VSPs in this paper.  
It is known that poor software and inefficient algorithms have a 
1st order effect on an embedded system’s performance. This is 
difficult to reconcile with practice, when next-generation 
product planning has prime foci of processor microarchitecture 
and hardware (platform) design, regardless of the fact that 
iterative processor microarchitecture improvement typically 
yields a 2nd or 3rd order effect and hardware (platform) design 
has a 1st order effect at the system level. The question is what 
happened to software? It is negligent not to employ empirical 
methods in the development of software in real-time, embedded 
systems. 
 For complex, multi-processor and networked real-time systems 
running full software loads (i) advances in computer 
architecture and software have made it difficult or impossible to 
estimate or predict software's execution time [8] and (ii) 
experience with proving the correctness of even a well 
constructed, small, single processor micro-kernel, L4, indicates 



the overwhelming complexity of applying this technology to 
more complex systems [9]. This leaves schedulability analysis 
in the difficult position of having to use traces from simulation 
to determine whether a system will meets its overall real-time 
constraints. Deriving best-case, average and worst-case system 
performance from simulation using VSPs enables analyses of 
system variability leading to the identification of factors having 
the most significant impact on variability. These factors are 
prognostic as well as diagnostic and they can be used to drive 
the structural optimization of systems. On the deficit side, the 
number of simulation may require many experiments to be 
performed on various configurations of a system. However, here 
the design of experiment methodology [5] helps by providing a 
statistically valid mechanism for dramatically reducing the 
number of experiments needed to be performed.  
Since VSPs are used to directly execute software, including hard 

real-time code, during development and debugging, trace 
information (streamed from non-perturbing probes inserted into 
the model) - including response latencies, power consumption, 
speed between markers, frequency of function calls, etc. - is 
produced alongside the usual debug data and hence is available 
to software and systems engineers as a normal part of the edit-
compile-execute-debug software development cycle. This 
changes the perspective of where optimization should occur in 
the development cycle, and it is not as a post development 
exercise.

  
Figure 1 shows the hardware platform component of a VSP, 
called a Virtual Prototype, used in the experiments in this paper.  

2. Formulating Power 
There are many ways of constructing objective functions 
including for power. The classical way is to track event 
frequencies and/or latencies and to construct the power function 
based on events that contribute significantly to the computation 
of power.    

2.1 Event-Based Power Functions 
In an event driven simulation environment, a general form of the 
power function can be expressed as a function whose parameters 
are functions each characterizing contributions to the objective 
function by one of the components constituting the system, viz. 
CPUs, buses, bus bridges, memories and peripheral devices. The 
parameter functions themselves have parameters that are 
functions of simulation event types sourced from the various 

event activities that occur in a VSP during simulation.  In 
general, a power function will have the form shown in Equation 
1 [3]. 

A simple way to visualize and compute a power function is to 
build an interpretation table, as in Table 1. These tables are 
large and even though the Event Bindings are simple to 
implement, typically a pointer to a function and a history buffer 
of events, the extraction of appropriate data from register 
transfer (RT) models or representative samples of the silicon to 
put into the tables is not automatic and is difficult and time 
consuming.  

Table 1: Component Event Binding Table 
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Figure 1: A Typical Virtual System Prototype for Mobility  
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3. Computing Power 
We instrumented the VSP of Figure 1 and for the purposes of 
experiments for this paper put the 2nd ARM926 processor and 
the Starcore SC1200 processor in Reset – so they consumed no 
cycles and no power. 
The basic function computed is Instant Power which calculates 
the total energy consumed over some period of time or some 
number of events (such as cycles).  
The functions computed that are useful for optimization 
purposes are: 

• Maximum power consumed, over a particular period 
(maximum of the instant powers) 

• Average power consumed over the whole experiment. 
A simplified function used to compute instant power per k-
cycles is given in the Equation 2: 

Similar functions occur for fPipe, fCache, fTLB, fRegAcc, fMemAcc, 
fPeriphAcc and the weights for the constituent accumulating 
functions are given in Table 2, and the weights (Wi) for each of 
the classes of functions contributing to fPower have been set to the 
constant function 1 in this study. In more complex studies, the 
accumulating function might be replaced with individual 
functions relevant to computing power in ways not considered 
for the simple examples of this paper. Such functions can 
include history and implementation dependent technology 
functions. Similarly, the weights (Wi) may be more complex 
functions – for example, the cache hit weights are functions of 
cache structure (size, wayness, policies). 

4. Experimentation 
The following is an outline of the experimental design process.  

i. The goal of the 4 experiments reported here was to 
investigate the effects of various arrangements of cache, 
buses, memory hierarchy and algorithms on average 
power consumption and speed. The VSP used is that 
shown in Figure 1, but with only one ARM926E 
processor enabled. The target codes selected were 
MontaVista Linux v2.6,  Viterbi and Sieve programs from 
the EEMBC [4] test suite, and a prime number program 
downloaded from the web [5]. Access to customer data 

was not possible for this study. 
ii. To determine the goal, we specified, across the executed 

target codes: 
• Power in terms of average power per instruction 

executed;  

• Speed in terms of instructions executed per k-cycle 
(IPCk);  

• Cost – where cache size was used as a direct indicator 
of cost 

The contributing factors (independent of target codes) to 
the computation of power were identified as events 
captured from the VSP. These events are delineated above 
in Equation 2 and Table 2. The computation of speed is a 
simpler function – the total number of instructions 
executed averaged across all cycles executed. This 
information is directly available from the simulation.  
 

Table 2: Power: Function Types, Event &  Weighting 
Functions 

Function Types Events Weight Functions 
Pipeline ibase 6.0 
Instruction Types ijmp  2.0 
 iexcept  2.0 
 ictrl  0 
 icoproc  12.0 
 iundefs  0 
 imemrd  0 
 imemwt  0 
 imemrw  0 
 iarith  1.0 
 iother  1.0 
Caches (I&D) Cache_lookup fi-dcache(size, ways) 

 icache_hit 
iCache-lookup + 

ficache(line size, 
decode) 

 icache_miss  Icache_lookup 

 dcache_hit  
Dcache_lookup + 

fdcache(size, ways, 
line size,) 

 dcache_miss  Dcache_lookup 
 line_fill  0 
TLB tlb_miss  30.0 
Register regfile_access  1.0 
Memory (incl. 
bus transactions) membus_transaction  50.0 

Periph Device 
(incl. 
bus transactions) 

periphbus_reg_access  50.0 

 

iii. In a simulation environment, all factors are effectively 

controllable. Therefore randomization of experiments will 
have no effect. However, sample size and selection – say 
the random selection of a number of the EEMBC [4] 
communications related programs – are indeed important 
parts of the experimental protocol. It is in this way that 
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variability and variability optimization functions – such as 
minimization of variability – are addressed as part of the 
experimental procedure. In the latter characteristic, 
simulated systems and real systems are very similar. 

iv. It then remains to determine which factors effect the 
power, speed and cost computations and what 
combination of factors produces optimal outcomes. In an 
industrial engineering set of experiments, we would want 
to determine whether the optimum we had achieve was 
local or whether a better result could be achieved and 
what factors can be adjusted to produce the better 
outcome.  

The design of experiments methodology relies on the ability to 
vary several variables in the system being observed in order to 
calculate the effects of the variables and the interactions 
between variables in terms of the objective functions. The 
prioritization of variables and interactions that cause the greatest 
effects gives us a handle by which to choose values of variables 

that guarantee an optimal outcome. If there are no interaction 
effects between variables, the response of the objective function 
will be linear wrt the variables. Interaction effects produce 
higher-order polynomial responses.  
Table 3 sets out the values of variables that can be set in 
experiments. It is impossible to perform but a small subset of the 

experiments in a reasonable amount of time given that 
simulation runs of 500 million cycles during a Linux boot might 
take a few minutes, in full data acquisition and profiling mode. 
Fortunately, nor is it necessary, the number of experiments can 
be reduced dramatically using fractional factorial designs in 
which the number of experiments is determined by the main 
effects and their interactions.   
In our study, we ran exploratory experiments using Viterbi and 
Linux target code on many model variants and assessed the 
patterns of results in the light of analysis and expected 
behaviours. This preliminary investigation indicated that the 
important main effects were: I&D cache enabled/disabled; I&D 
cache size – 1k and 32k, cache line size – 16B & 32B, data rate 
of memory (DDR – double data rate, SDR – single data rate, 
and code ), and target code. For simplicity here, we ignored 
interaction effects, even though to reach a global optimum they 
are likely to have an impact.  

5. Experimental Results 
We constructed 4 sets of experiments (58 in total) using various 
code running on the VaST ARM926E-based VSP subsystem 
with instruction and data buses bridged to a shared memory. The 
VSP subsystem was extensively parameterized and we used 
various configurations of cache and memory. For all 
experiments, the speed performance is calculated as instructions 
executed per 10 cycles (IPC10) on the VSP (that is it is an index 
of VSP speed NOT processor speed) and power consumption is 
a relative measure of average power over all instructions 
executed.  

5.1 Viterbi  
The results from 7 Viterbi (calibration) experiments are 
expected, see Graphs 1A & 1B. Uncached performance is poor 
both in regard to power consumption and speed (IPC10). With 
cache enabled, and even minimal cache (1,024 bytes) is 
sufficient, a good working set fit of Viterbi to cache was 
achieved. If the ARM926E was the selected controller 

implementing an acoustic filter then a cache size of 1k bytes 
would be adequate. Since there is a better than 99.5% hit rate on 
the D-cache and I-cache, cache line size is immaterial as is bus 
width and memory type (either DDR or SDR). However, to 
minimize cost, SDR memory would be used instead of DDR. 

Optimizing Objective Functions:  
Generalizing the results – for target code with a working set size 
that matches the cache size, cache size is the dominant 
determinant in optimizing speed and power consumption in the 
single processor VSP subsystem. When the optimum cache is 

Table 3:  Factors Determining the Number of Experiments to be Peformed 

Factors Variants Number of 
Variants 

Number of 
Experiments 

I-cache Enabled, disabled 2 2 

I-cache size 1k, 4k, 8k, 16k, 
32k, 64k, 128k 7 7 * above = 14 

I-cache Line 
Size 

16B, 32B, 64B, 
128B 4 4 * above = 56 

D-cache All variants – as 
for I cache 56 28 * above = 3,136 

TLB 32, 64, 128 entries 3 3 * above = 9,408 

I & D Bus 
Width 4B, 8B, 16B 3 * 3 9 * above = 84,672 

I & D Memory 

1st R/W = 4, 5, 6, 
8 

2nd R/W = 1, 2 
(DDR, SDR) 

2 * 4 8 * above = 677,376 

Target code 
(programs) 

Linux, Viterbi, 
Sieve 3 3 * above = 2,032,128 

Event Weights 
in Table 2 Ibase, ijmp, ….. ∞ ∞ 

Etc.    

Graph 1B: Power Consumption - Viterbi on ARM926E 
Subsystem of VSP in Figure 1
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the smallest selectable, cost is also minimized with respect to 
this factor. Depending on the overall system objective function 
fSystem(Power, Speed, Cost) the selection of optimal sets of 
settings (the so-called optimal response contour) will be 
determined by the tradeoffs inherent in the objective function. 

5.2 Linux Boot  
The Speed (IPC10) and relative Power Consumption of 9 
structural variants of the experimental VSP were computed 
while booting Linux. The variants were selected from the full 
set of variants determined by - cache size: 1k, 8k, 32k; cache 
line: 16B, 32B; Mem configured as DDR (1st word delayed 5-
cycles, 2nd word available per ½ cycle) and SDR (1st word 
delayed 5-cycles, 2nd word available per 1 cycle); bus data width 

4bytes. The results are shown in the Graphs 2A & 2B.  
The boot sequence of Linux spends more than 50% of its time 
executing with the ARM926E I&D caches disabled. Linux 
performs initialization of the cache after the Initial Program 
Load, kernel load and the device driver installations. Once the 
operating system has booted and the idle loop is executing, the 
behaviour of the ARM926E VSP is much the same as its 

behaviour running Viterbi – that is the working-set size is 
compatible with any cache size. As is also expected, in an 
environment where the working set size of the target code 
greatly exceeds the cache size, the impact of the memory 
hierarchy on power and speed is considerable. For booting 
Linux, the settings of the ARM926E VSP subsystem: cache size 
(32 kbytes), cache line size (32bytes), and Memory (DDR) yield 
minimum power consumption and maximum VSP speed.  
 
To mimimize cost, as well, a cache size (I&D) of 16 kbytes 
would proportionally reduce silicon cost by about 30% and 

adversely affect both power and speed by about 1%. To further 
optimize for cost, cache sizes of 8 kbytes will yield a further 
~25% reduction in silicon with a worsening in power 
consumption and speed of 5%-10%.. 

5.3 Viterbi Executing on Linux 
If the target code workload is Viterbi executing instead of the 

Idle Loop of Linux then the analysis in Section 6.2 remains 
valid. This is far from a representative workload for a general 
purpose computer but it may easily be a representative of the 
constrained workloads on embedded processors – especially 
those executing real-time control code.  
For real-time systems, a requirement is to demonstrate the 
meeting of service deadlines. A simple experiment to refute the 
hypothesis that the VSP will not meet the deadline, is to set 
worst case delays for appropriate peripheral devices attached to 
the VSP, then run the experiment. For the simple VSP used 
here, memory being set as DDR or SDR gives the flavour of the 
experiment.  

5.4 Alternate Memory Hierarchies 
This investigation considered a pure embedded systems 
problem, that of finding the best tradeoff between speed, power 
consumption and silicon cost for a controller executing a limited 
amount of code – a prime number generator using the sieve of 
Eratosthenes algorithm [4]. This has the same outcome as the 
Viterbi experiment for cache sizes above 1 kbyte. However, we 
were interested in this experiment in determining the near 
minimum cache size that would still yield within 5% of 
optimum speed and power for the VSP .  
In this experiment we considered I&D cache characteristics:  
size of 0B (uncached), 64B, 128B, 256B, 1 kB, 4 kB and 8kB; 
cache line size (16B, 32B), wayness (1, 2, 4), cache power 
weighting (3, 4, 5 – depending on size) and memory type (DDR, 
SDR). We varied the relative power consumption of the cache 
based on size. The results of the experiments are shown in 
Graphs 3A & 3B. The speed of the VSP followed expectations 
except that the transition between 64 bytes and 128 bytes was 
sharp and at 128B the VSP essentially achieved full speed. The 
power graph shows another picture. Uncached power consumed 
by the VSP was 20% - 35% less than the power consumed by 64 
byte caches (variability was due to cache line size, wayness and 
memory type) and 200% higher than power consumed with 128 
byte caches. What we are observing here is the step-function 
effect on power consumption of installing a cache in a 

Graph 2A: VPM Speed - Linux Boot on ARM926E 
Subsystem of Fig.1 VSP
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processor. For the sieve program, beyond 512 bytes, the power 
consumed was stable and about 20% higher than the minimum 
cache configuration at 128 bytes.  
The effect on power consumption of installing a small cache in a 
processor to achieve a 4-fold increase in performance has a 
detrimental effect on power consumption due to the 
infrastructure required to support the cache. The cost of a cache 
is also high since the infrastructure consumes relatively large 
silicon real estate. These considerations led to an investigation 

of alternative memory hierarchies that might achieve a better 
trade-off between speed, power and cost for a controller running 
a limited amount of code in an embedded application.  
We varied the cache_hit/miss power weightings of the processor 
(see Table 2) to mimic the relative power consumed by a 
dedicated external buffer of 128 bytes (essentially a small, 
physically addressed, direct-mapped, on-chip cache external to 
the processor). This architecture is similar to the buffer 
organization found in processors like the Renesas SH2A [6] a 
processor popular in automotive control [1] where differences of 
cents in the price of a controller translate to several million 
dollars in large manufacturing runs. The results were that we 
could achieve a further ~40% power saving whilst maintaining 
near optimum speed. The cost of the chip is close to the non-
cache cost. To prove that this is a global minimum requires 
more sophisticated statistical machinery (see [3]). 

5.5 Algorithm Optimization 
The final 10 experiments considered the effect of alternate 
algorithms on the problem of optimizing a VSP (software + 
hardware) for a particular (embedded) application. Since we had 
good empirical data already for the sieve prime number 
generator, we acquired from the web Kazmierczak’s prime 
generation algorithm [7] and used the same experimental set-up 
as for the sieve experiments. The Kazmierczak algorithm 
required a small external buffer of 512 bytes to achieve 
maximum speed (IPC10) ~40% higher than sieve and power 
consumption ~15% higher than sieve.  
Clearly, algorithms have a 1st order effect on power, speed and 
cost – often say the dominant order effect! By just looking at or 
mathematically analyzing both the sieve and Kazmierczak 
algorithms, it is inconceivable that the optimal VSPs – that is 
software-hardware structure, as determined in this paper, would 
have been discovered. 

6.  Discussion and Conclusions 
Empirical experimentation is a powerful mechanism with which 
to refute hypotheses that, when carefully constructed, drive the 
quantitative engineering process. To engage in this engineering 
process, prior to the existence of a physical realization, requires 
the existence and use of a model. If hypothesis building 
concerns speed, power consumption, reaction time, latency, 
meeting real-time schedules, etc. the model needs to be timing 
accurate (processor, buses, bus bridges and devices). If the 
extensive execution of software is an intrinsic part of the 
empirical experimentation, then the model needs to have high 
performance across all components. This paper assumes the 
existence of pre-silicon, high performance (20-100 MIPS), 
timing accurate virtual system prototypes. 
Optimizing systems with complex objective functions is not 
intuitive. Complex tradeoffs between hardware structure and the 
software and algorithms that are executed on the hardware 
cannot be done by ratiocination or formal analysis alone, the 
acquisition of data as part of well-formed experiments refuting 
thoughtfully constructed hypotheses (ratiocination) enables 
decision making driven by results. Optimization comes from 
considering hardware and software together – not separately. 
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