
Profiles in Power:
Optimizing Real-Time Systems for Power

Graham R. Hellestrand Mahdi Seddighnezhad James E. Brogan
g.hellestrand@vastsystems.com m.seddighnezhad@vastsystems.com j.brogan@vastsystems.com

VaST Systems Technology Corporation
1250 Oakmead Pkwy, Suite 310

Sunnyvale, CA 94085
+1-408-328-0949

ABSTRACT
High-performance, timing accurate models of complex systems
(called Virtual System Prototypes (VSP)) enable the
computation of relatively accurate power in terms of events that
occur in the model. VSPs are the integrations of models of
electronic hardware, communication and mechanical
subsystems into systems that execute software accurately.
Software has a first order impact on system performance and
has, typically, the major effect on modern system optimization.
The computation of relative power, although fundamental, is not
useful by itself – doubling the talk time of a mobile phone is not
useful if, concomitantly, the speed dwindles so that look-up
functions take 20 seconds rather than the 2 seconds that
competitors take. Power is an exemplar of the complex,
concept-based functions, with many hardware, software and
system parameters, that constitute optimization functions and
will be treated in detail in this paper. The general form of a
power computation function is given in the paper, as well as, a
simple example of the implementation of a power calculator.
The use of power, along with the other components of objective
functions, such as speed (instructions per second), response
latency and cost, must drive algorithm choice and software
development in mobility and other power-performance sensitive
applications. The use of VSPs is mandatory in specifying the
hardware and software architectures of, and then building,
complex optimal systems.

Categories and Subject Descriptors
C3 [Special Purpose and Application Based Systems] Real-
time and embedded system; C4 [Performance of Systems]
Measurement and modeling techniques; G3 [Probability and
Statistics] Experimental design.

General Terms
Design, Experimentation, Measurement, Performance.

Keywords
Power measurement and analysis, quantitative systems
architecture, empirical system design, event-based objective
function, event data-driven optimization.

1. Background and Motivation
An empirical approach to composing optimal architectures for
application specific embedded systems is relatively rare. The
use of empiricism in developing optimal software is even rarer,

and when used often primitive. The complexity of processor
centric, electronic systems that control modern products (such
as, cell phones, automobiles, communication base stations,
consumer products) requires a systematic approach to
developing software in order to deliver an optimal fit for an
intended product. When a company’s engineering process is
being used as a competitive weapon, the luxury of optimality,
especially wrt power and speed and response latency in mobile
systems, becomes a necessity [1].
The bigger architecture picture is more complex. The intuitive
optimization of systems – architecture, software design,
hardware design, and interfaces – has largely been a by-product
of hardware design. Since hardware designers have rarely
understood, or had access to, the software that would run on
their architectures, they produced conservative, often grossly
over-engineered designs that were typically poor fits to a
number of dimensions of the specification - especially in cost
sensitive applications, where over-engineering is the antithesis
of cost sensitivity [2].
The ability to support data-driven decision making early in the
software development process is one of the underlying drivers
of building models of systems that are timing accurate and high
performance. Of course, this advantage also accrues to
architecture development but that is another dialogue. From a
purely software perspective, optimizing across the dimension of
speed, response latency, cost (size) and power consumption is
rarely done and, at a pre-silicon level, it is an undertaking only
possible using high-performance, timing accurate models –
called VSPs in this paper.
It is known that poor software and inefficient algorithms have a
1st order effect on an embedded system’s performance. This is
difficult to reconcile with practice, when next-generation
product planning has prime foci of processor microarchitecture
and hardware (platform) design, regardless of the fact that
iterative processor microarchitecture improvement typically
yields a 2nd or 3rd order effect and hardware (platform) design
has a 1st order effect at the system level. The question is what
happened to software? It is negligent not to employ empirical
methods in the development of software in real-time, embedded
systems.
 For complex, multi-processor and networked real-time systems
running full software loads (i) advances in computer
architecture and software have made it difficult or impossible to
estimate or predict software's execution time [8] and (ii)
experience with proving the correctness of even a well
constructed, small, single processor micro-kernel, L4, indicates

the overwhelming complexity of applying this technology to
more complex systems [9]. This leaves schedulability analysis
in the difficult position of having to use traces from simulation
to determine whether a system will meets its overall real-time
constraints. Deriving best-case, average and worst-case system
performance from simulation using VSPs enables analyses of
system variability leading to the identification of factors having
the most significant impact on variability. These factors are
prognostic as well as diagnostic and they can be used to drive
the structural optimization of systems. On the deficit side, the
number of simulation may require many experiments to be
performed on various configurations of a system. However, here
the design of experiment methodology [5] helps by providing a
statistically valid mechanism for dramatically reducing the
number of experiments needed to be performed.
Since VSPs are used to directly execute software, including hard

real-time code, during development and debugging, trace
information (streamed from non-perturbing probes inserted into
the model) - including response latencies, power consumption,
speed between markers, frequency of function calls, etc. - is
produced alongside the usual debug data and hence is available
to software and systems engineers as a normal part of the edit-
compile-execute-debug software development cycle. This
changes the perspective of where optimization should occur in
the development cycle, and it is not as a post development
exercise.

Figure 1 shows the hardware platform component of a VSP,
called a Virtual Prototype, used in the experiments in this paper.

2. Formulating Power
There are many ways of constructing objective functions
including for power. The classical way is to track event
frequencies and/or latencies and to construct the power function
based on events that contribute significantly to the computation
of power.

2.1 Event-Based Power Functions
In an event driven simulation environment, a general form of the
power function can be expressed as a function whose parameters
are functions each characterizing contributions to the objective
function by one of the components constituting the system, viz.
CPUs, buses, bus bridges, memories and peripheral devices. The
parameter functions themselves have parameters that are
functions of simulation event types sourced from the various

event activities that occur in a VSP during simulation. In
general, a power function will have the form shown in Equation
1 [3].

A simple way to visualize and compute a power function is to
build an interpretation table, as in Table 1. These tables are
large and even though the Event Bindings are simple to
implement, typically a pointer to a function and a history buffer
of events, the extraction of appropriate data from register
transfer (RT) models or representative samples of the silicon to
put into the tables is not automatic and is difficult and time
consuming.

Table 1: Component Event Binding Table

Component Types
Binding

Component
Instance
Binding

Component Event
Binding

1200

1200

1200

......

TCMWrite

BranchTaken

LDD

SC

SC

SC

f
f

f

 ….

Figure 1: A Typical Virtual System Prototype for Mobility

1.. , ,1 ,2 ,((...)) ((...), (...) ,, (...))
k k k k kC P U E vType et C P U k EvType C P U C P U C P U C PU etw here f g f g g g=Θ =o

, , ,

,

0 .. 1 .. s ec ..

0 .. 1

1 : |
(| ((()) ,

(((
cc cc C E vT yp e cc C E vT yp e C E vC n t

b c b c B E vT yp e

P o w er C P U cc cn C P U C E vT yp e ce t C P U C E vC n t c n tcecn C P U

B u s b c b cn B u s B E vT yp e b e t B u s B E vC n t sb ecn tb ecn

E q u a tio n
F f f g E ven t

f f g E ven
= = =

= = =

Θ Θ Θ

Θ Θ Θ

o o o

o o o
, ,

, , ,

,

0 .. 1

0 .. 1 ..

)) ,

((()) ,

((

b c B E vT yp e B E vC n t

b b c b b c B B E vT yp e b c B B E vT yp e B B E vC n t

m c m c M E vT yp

B u s

B u sB rid g e b b c b b cn B B u s B B E vT yp e b b et B B u s B B E vC n t sb b ecn tb b ecn B B u s

M em m c m cn M em M E vT yp e m et M em

t

f f g E ven t

f f g
= = =

= =

Θ Θ Θ

Θ Θ

o o o

o o
, ,

, , ,

. .

0 .. 1 .. d e t ..

()) ,

((()))
e m c M E vT yp e M E vC n t

d c d c D E vT yp e d c D E vT yp e D E vC n t

M E vC n t sm ecn tm ecn M em

D ev d c cn D ev D E vT yp e D ev D E vC n t sd ecn td ecn D ev

E ven t

f f g E ven t
=

= = =

Θ

Θ Θ Θ

o

o o o

StdBus
Bridge

StdBus
Bridge

Memory
Block

Memory
Block

P1
 M

em
or

y

Memory
Block

Memory
Block

StdBus
Bridge

StdBus
Bridge

Arb. Ctrl
DRAM

Arb. Ctrl
DRAM

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

StarCore SC1200
Virtual Processor Model

StarCore SC1200
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

A
H
B

Buses

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

P2
 M

em
or

y

StdBus
Bridge

StdBus
Bridge

Memory
Block

Memory
Block

P1
 M

em
or

y

Memory
Block

Memory
Block

StdBus
Bridge

StdBus
Bridge

Arb. Ctrl
DRAM

Arb. Ctrl
DRAM

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

StarCore SC1200
Virtual Processor Model

StarCore SC1200
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

A
H
B

Buses

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

P2
 M

em
or

y

StdBus
Bridge

StdBus
Bridge

Memory
Block

Memory
Block

P1
 M

em
or

y

Memory
Block

Memory
Block

StdBus
Bridge

StdBus
Bridge

Arb. Ctrl
DRAM

Arb. Ctrl
DRAM

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

StarCore SC1200
Virtual Processor Model

StarCore SC1200
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

D ROM P ROM

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

A
H
B

Buses

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

P2
 M

em
or

y

CPUf FTARMf 21156

1200SCf

3. Computing Power
We instrumented the VSP of Figure 1 and for the purposes of
experiments for this paper put the 2nd ARM926 processor and
the Starcore SC1200 processor in Reset – so they consumed no
cycles and no power.
The basic function computed is Instant Power which calculates
the total energy consumed over some period of time or some
number of events (such as cycles).
The functions computed that are useful for optimization
purposes are:

• Maximum power consumed, over a particular period
(maximum of the instant powers)

• Average power consumed over the whole experiment.
A simplified function used to compute instant power per k-
cycles is given in the Equation 2:

Similar functions occur for fPipe, fCache, fTLB, fRegAcc, fMemAcc,
fPeriphAcc and the weights for the constituent accumulating
functions are given in Table 2, and the weights (Wi) for each of
the classes of functions contributing to fPower have been set to the
constant function 1 in this study. In more complex studies, the
accumulating function might be replaced with individual
functions relevant to computing power in ways not considered
for the simple examples of this paper. Such functions can
include history and implementation dependent technology
functions. Similarly, the weights (Wi) may be more complex
functions – for example, the cache hit weights are functions of
cache structure (size, wayness, policies).

4. Experimentation
The following is an outline of the experimental design process.

i. The goal of the 4 experiments reported here was to
investigate the effects of various arrangements of cache,
buses, memory hierarchy and algorithms on average
power consumption and speed. The VSP used is that
shown in Figure 1, but with only one ARM926E
processor enabled. The target codes selected were
MontaVista Linux v2.6, Viterbi and Sieve programs from
the EEMBC [4] test suite, and a prime number program
downloaded from the web [5]. Access to customer data

was not possible for this study.
ii. To determine the goal, we specified, across the executed

target codes:
• Power in terms of average power per instruction

executed;

• Speed in terms of instructions executed per k-cycle
(IPCk);

• Cost – where cache size was used as a direct indicator
of cost

The contributing factors (independent of target codes) to
the computation of power were identified as events
captured from the VSP. These events are delineated above
in Equation 2 and Table 2. The computation of speed is a
simpler function – the total number of instructions
executed averaged across all cycles executed. This
information is directly available from the simulation.

Table 2: Power: Function Types, Event & Weighting
Functions

Function Types Events Weight Functions
Pipeline ibase 6.0
Instruction Types ijmp 2.0
 iexcept 2.0
 ictrl 0
 icoproc 12.0
 iundefs 0
 imemrd 0
 imemwt 0
 imemrw 0
 iarith 1.0
 iother 1.0
Caches (I&D) Cache_lookup fi-dcache(size, ways)

 icache_hit
iCache-lookup +

ficache(line size,
decode)

 icache_miss Icache_lookup

 dcache_hit
Dcache_lookup +

fdcache(size, ways,
line size,)

 dcache_miss Dcache_lookup
 line_fill 0
TLB tlb_miss 30.0
Register regfile_access 1.0
Memory (incl.
bus transactions) membus_transaction 50.0

Periph Device
(incl.
bus transactions)

periphbus_reg_access 50.0

iii. In a simulation environment, all factors are effectively

controllable. Therefore randomization of experiments will
have no effect. However, sample size and selection – say
the random selection of a number of the EEMBC [4]
communications related programs – are indeed important
parts of the experimental protocol. It is in this way that

1 5

R e R e

, , , ,

2 :
.

.

. 2 2 0 1 2

0

P o w e r P i p e P i p e I n s t r I n s t r C a c h e C a c h e T L B T L B

g A c c g A c c M e m A c c M e m A c c P e r i p h A c c P e r i p h A c c

I n s t r I n s t r j m p I n s t r e x c e p t I n s t r c t r l I n s t r c o p r o c

E q u a t i o n
f W f W f W f W f

W f W f W f
w h e r e
f f f f f

f

= × + × + × + × +

× + × + ×

= × + × + × + × +

×
, , ,

,

.

. ()

I n s t r L d S t I n s t r a r i t h I n s t r o t h e r

I n s t r i i

f f
a n d

f i n s t r u c t i o n s o f t y p e i n k c y c l e s

+ +

= −∑

variability and variability optimization functions – such as
minimization of variability – are addressed as part of the
experimental procedure. In the latter characteristic,
simulated systems and real systems are very similar.

iv. It then remains to determine which factors effect the
power, speed and cost computations and what
combination of factors produces optimal outcomes. In an
industrial engineering set of experiments, we would want
to determine whether the optimum we had achieve was
local or whether a better result could be achieved and
what factors can be adjusted to produce the better
outcome.

The design of experiments methodology relies on the ability to
vary several variables in the system being observed in order to
calculate the effects of the variables and the interactions
between variables in terms of the objective functions. The
prioritization of variables and interactions that cause the greatest
effects gives us a handle by which to choose values of variables

that guarantee an optimal outcome. If there are no interaction
effects between variables, the response of the objective function
will be linear wrt the variables. Interaction effects produce
higher-order polynomial responses.
Table 3 sets out the values of variables that can be set in
experiments. It is impossible to perform but a small subset of the

experiments in a reasonable amount of time given that
simulation runs of 500 million cycles during a Linux boot might
take a few minutes, in full data acquisition and profiling mode.
Fortunately, nor is it necessary, the number of experiments can
be reduced dramatically using fractional factorial designs in
which the number of experiments is determined by the main
effects and their interactions.
In our study, we ran exploratory experiments using Viterbi and
Linux target code on many model variants and assessed the
patterns of results in the light of analysis and expected
behaviours. This preliminary investigation indicated that the
important main effects were: I&D cache enabled/disabled; I&D
cache size – 1k and 32k, cache line size – 16B & 32B, data rate
of memory (DDR – double data rate, SDR – single data rate,
and code), and target code. For simplicity here, we ignored
interaction effects, even though to reach a global optimum they
are likely to have an impact.

5. Experimental Results
We constructed 4 sets of experiments (58 in total) using various
code running on the VaST ARM926E-based VSP subsystem
with instruction and data buses bridged to a shared memory. The
VSP subsystem was extensively parameterized and we used
various configurations of cache and memory. For all
experiments, the speed performance is calculated as instructions
executed per 10 cycles (IPC10) on the VSP (that is it is an index
of VSP speed NOT processor speed) and power consumption is
a relative measure of average power over all instructions
executed.

5.1 Viterbi
The results from 7 Viterbi (calibration) experiments are
expected, see Graphs 1A & 1B. Uncached performance is poor
both in regard to power consumption and speed (IPC10). With
cache enabled, and even minimal cache (1,024 bytes) is
sufficient, a good working set fit of Viterbi to cache was
achieved. If the ARM926E was the selected controller

implementing an acoustic filter then a cache size of 1k bytes
would be adequate. Since there is a better than 99.5% hit rate on
the D-cache and I-cache, cache line size is immaterial as is bus
width and memory type (either DDR or SDR). However, to
minimize cost, SDR memory would be used instead of DDR.

Optimizing Objective Functions:
Generalizing the results – for target code with a working set size
that matches the cache size, cache size is the dominant
determinant in optimizing speed and power consumption in the
single processor VSP subsystem. When the optimum cache is

Table 3: Factors Determining the Number of Experiments to be Peformed

Factors Variants Number of
Variants

Number of
Experiments

I-cache Enabled, disabled 2 2

I-cache size 1k, 4k, 8k, 16k,
32k, 64k, 128k 7 7 * above = 14

I-cache Line
Size

16B, 32B, 64B,
128B 4 4 * above = 56

D-cache All variants – as
for I cache 56 28 * above = 3,136

TLB 32, 64, 128 entries 3 3 * above = 9,408

I & D Bus
Width 4B, 8B, 16B 3 * 3 9 * above = 84,672

I & D Memory

1st R/W = 4, 5, 6,
8

2nd R/W = 1, 2
(DDR, SDR)

2 * 4 8 * above = 677,376

Target code
(programs)

Linux, Viterbi,
Sieve 3 3 * above = 2,032,128

Event Weights
in Table 2 Ibase, ijmp, ….. ∞ ∞

Etc.

Graph 1B: Power Consumption - Viterbi on ARM926E
Subsystem of VSP in Figure 1

5.00

7.00

9.00

11.00

13.00

15.00

17.00

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

A
ve

. P
ow

er
 *

10
^7

 /
 #

 In
st

ru
ct

io
n

Cache Line =
16 bytes
Cache Line =
32 bytes

Graph 1A: VPM Speed - Viterbi on ARM926E
Subsystem of VSP in Figure 1

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

In
st

ru
ct

io
ns

 /
10

-C
yc

le
s

Cache Line =
16 bytes

Cache Line =
32 bytes

the smallest selectable, cost is also minimized with respect to
this factor. Depending on the overall system objective function
fSystem(Power, Speed, Cost) the selection of optimal sets of
settings (the so-called optimal response contour) will be
determined by the tradeoffs inherent in the objective function.

5.2 Linux Boot
The Speed (IPC10) and relative Power Consumption of 9
structural variants of the experimental VSP were computed
while booting Linux. The variants were selected from the full
set of variants determined by - cache size: 1k, 8k, 32k; cache
line: 16B, 32B; Mem configured as DDR (1st word delayed 5-
cycles, 2nd word available per ½ cycle) and SDR (1st word
delayed 5-cycles, 2nd word available per 1 cycle); bus data width

4bytes. The results are shown in the Graphs 2A & 2B.
The boot sequence of Linux spends more than 50% of its time
executing with the ARM926E I&D caches disabled. Linux
performs initialization of the cache after the Initial Program
Load, kernel load and the device driver installations. Once the
operating system has booted and the idle loop is executing, the
behaviour of the ARM926E VSP is much the same as its

behaviour running Viterbi – that is the working-set size is
compatible with any cache size. As is also expected, in an
environment where the working set size of the target code
greatly exceeds the cache size, the impact of the memory
hierarchy on power and speed is considerable. For booting
Linux, the settings of the ARM926E VSP subsystem: cache size
(32 kbytes), cache line size (32bytes), and Memory (DDR) yield
minimum power consumption and maximum VSP speed.

To mimimize cost, as well, a cache size (I&D) of 16 kbytes
would proportionally reduce silicon cost by about 30% and

adversely affect both power and speed by about 1%. To further
optimize for cost, cache sizes of 8 kbytes will yield a further
~25% reduction in silicon with a worsening in power
consumption and speed of 5%-10%..

5.3 Viterbi Executing on Linux
If the target code workload is Viterbi executing instead of the

Idle Loop of Linux then the analysis in Section 6.2 remains
valid. This is far from a representative workload for a general
purpose computer but it may easily be a representative of the
constrained workloads on embedded processors – especially
those executing real-time control code.
For real-time systems, a requirement is to demonstrate the
meeting of service deadlines. A simple experiment to refute the
hypothesis that the VSP will not meet the deadline, is to set
worst case delays for appropriate peripheral devices attached to
the VSP, then run the experiment. For the simple VSP used
here, memory being set as DDR or SDR gives the flavour of the
experiment.

5.4 Alternate Memory Hierarchies
This investigation considered a pure embedded systems
problem, that of finding the best tradeoff between speed, power
consumption and silicon cost for a controller executing a limited
amount of code – a prime number generator using the sieve of
Eratosthenes algorithm [4]. This has the same outcome as the
Viterbi experiment for cache sizes above 1 kbyte. However, we
were interested in this experiment in determining the near
minimum cache size that would still yield within 5% of
optimum speed and power for the VSP .
In this experiment we considered I&D cache characteristics:
size of 0B (uncached), 64B, 128B, 256B, 1 kB, 4 kB and 8kB;
cache line size (16B, 32B), wayness (1, 2, 4), cache power
weighting (3, 4, 5 – depending on size) and memory type (DDR,
SDR). We varied the relative power consumption of the cache
based on size. The results of the experiments are shown in
Graphs 3A & 3B. The speed of the VSP followed expectations
except that the transition between 64 bytes and 128 bytes was
sharp and at 128B the VSP essentially achieved full speed. The
power graph shows another picture. Uncached power consumed
by the VSP was 20% - 35% less than the power consumed by 64
byte caches (variability was due to cache line size, wayness and
memory type) and 200% higher than power consumed with 128
byte caches. What we are observing here is the step-function
effect on power consumption of installing a cache in a

Graph 2A: VPM Speed - Linux Boot on ARM926E
Subsystem of Fig.1 VSP

1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

In
st

ru
ct

io
ns

 /
10

-C
yc

le
s

CL = 16B,
Mem = DDR
CL = 32B,
Mem = DDR
CL = 32B,
Mem = SDR

Graph 2B: Power Consumption - Linux Boot on
ARM926E Subsystem of Fig. 1 VSP

1.00

1.20

1.40

1.60

1.80

2.00

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

A
ve

. P
ow

er
 *

10
^7

 /

In

st
ru

ct
io

ns

CL= 16B,
Mem = DDR

CL = 32B,
Mem = DDR

CL = 32B,
Mem = SDR

Graph 3A: VPM Speed - Sieve of Eratosthenes on ARM926E
Subsystem of Fig.1 VSP

1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00

0 200 400 600 800 1000

Cache Size (Bytes)

In

st
ru

ct
io

ns
 /

10
-c

yc
le

s

CL = 16B,
Mem = DDR
CL = 16B,
Mem = SDR
CL = 32B,
Mem = DDR
CL = 32B,
Mem = SDR

processor. For the sieve program, beyond 512 bytes, the power
consumed was stable and about 20% higher than the minimum
cache configuration at 128 bytes.
The effect on power consumption of installing a small cache in a
processor to achieve a 4-fold increase in performance has a
detrimental effect on power consumption due to the
infrastructure required to support the cache. The cost of a cache
is also high since the infrastructure consumes relatively large
silicon real estate. These considerations led to an investigation

of alternative memory hierarchies that might achieve a better
trade-off between speed, power and cost for a controller running
a limited amount of code in an embedded application.
We varied the cache_hit/miss power weightings of the processor
(see Table 2) to mimic the relative power consumed by a
dedicated external buffer of 128 bytes (essentially a small,
physically addressed, direct-mapped, on-chip cache external to
the processor). This architecture is similar to the buffer
organization found in processors like the Renesas SH2A [6] a
processor popular in automotive control [1] where differences of
cents in the price of a controller translate to several million
dollars in large manufacturing runs. The results were that we
could achieve a further ~40% power saving whilst maintaining
near optimum speed. The cost of the chip is close to the non-
cache cost. To prove that this is a global minimum requires
more sophisticated statistical machinery (see [3]).

5.5 Algorithm Optimization
The final 10 experiments considered the effect of alternate
algorithms on the problem of optimizing a VSP (software +
hardware) for a particular (embedded) application. Since we had
good empirical data already for the sieve prime number
generator, we acquired from the web Kazmierczak’s prime
generation algorithm [7] and used the same experimental set-up
as for the sieve experiments. The Kazmierczak algorithm
required a small external buffer of 512 bytes to achieve
maximum speed (IPC10) ~40% higher than sieve and power
consumption ~15% higher than sieve.
Clearly, algorithms have a 1st order effect on power, speed and
cost – often say the dominant order effect! By just looking at or
mathematically analyzing both the sieve and Kazmierczak
algorithms, it is inconceivable that the optimal VSPs – that is
software-hardware structure, as determined in this paper, would
have been discovered.

6. Discussion and Conclusions
Empirical experimentation is a powerful mechanism with which
to refute hypotheses that, when carefully constructed, drive the
quantitative engineering process. To engage in this engineering
process, prior to the existence of a physical realization, requires
the existence and use of a model. If hypothesis building
concerns speed, power consumption, reaction time, latency,
meeting real-time schedules, etc. the model needs to be timing
accurate (processor, buses, bus bridges and devices). If the
extensive execution of software is an intrinsic part of the
empirical experimentation, then the model needs to have high
performance across all components. This paper assumes the
existence of pre-silicon, high performance (20-100 MIPS),
timing accurate virtual system prototypes.
Optimizing systems with complex objective functions is not
intuitive. Complex tradeoffs between hardware structure and the
software and algorithms that are executed on the hardware
cannot be done by ratiocination or formal analysis alone, the
acquisition of data as part of well-formed experiments refuting
thoughtfully constructed hypotheses (ratiocination) enables
decision making driven by results. Optimization comes from
considering hardware and software together – not separately.

7. Acknowledgement
The capability underlying the empirical experimentation and
data gathered and used to write this paper is due to the vision,
effort and extra-ordinary dedication and execution of the high
caliber VaST R&D team. Primus inter pares are Neville Clark,
James Torossian, Foo Ngok Yong and Patricia Hughes. It is a
pleasure to work with the whole VaST team.

8. References
[1] Winters, F.J., Mielenze, C. and Hellestrand, G.R. Design Process

Changes Enabling Rapid Development. Proc. Convergence 2004
P-387, Oct 2004, 613-624, Society of Automotive Engineers,
Warrendale, PA.

[2] Hellestrand, G.R. The Engineering of Supersystems. IEEE
Computer, 38, 1(Jan 2005), 103-105.

[3] Hellestrand, G.R. Systems Architecture: The Empirical Way –
Abstract Architectures to ‘Optimal’ Systems. ACM Conf. Proc.
EmSoft2005, Sept 2005, Jersey City, NY.

[4] EEMBC: Embedded Microprocessor Benchmark Consortium.
www.eembc.org

[5] Anthony, J. Design of Experiments. 2003, Butterworth-
Heinemann, Oxford, UK.

[6] Renesas SH-2A, SH2A-FPU Software Manual, Rev 2.00,
REJ09B0051-0200O, 13 Sept. 2004, Renesas Technology, Tokyo,
Japan.

[7] Kazmierczak, M. Simple method of finding primes. 2002.
http://www.mkaz.com/math/primes.html

[8] Lee, E. Absolutely Positively on Time: What Would It Take?.
IEEE Computer, 38, 7(Jul 2005)

[9] Heiser, G. Private communication. Sept 2005.
http://ertos.nicta.com.au/Research/L4/

Graph 3B: Power Consumption - Sieve of Eratosthenes on ARM926E
Subsystem of Fig.1 VSP

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 200 400 600 800 1000

Cache Size (Bytes)

A
ve

. P
ow

er
 *

10
^7

 /

In
st

ru
ct

io
ns

CL = 16B,
Mem = DDR

CL = 16B,
Mem = SDR

CL = 32B,
Mem = DDR

CL = 32B,
Mem = SDR

