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Evaluating a DVS Scheme for Real-Time Embedded Systems ∗

Ruibin Xu, Daniel Mossé, Rami Melhem
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{xruibin,mosse,melhem}@cs.pitt.edu

Abstract

Dynamic voltage scaling (DVS) has become a
well-known and effective technique to exploit energy-
performance trade-off in real-time embedded systems
where energy imposes a major constraint. We focus
on frame-based real-time systems that execute variable
workloads with the goal of minimizing expected energy
consumption in the system while still meeting the deadlines.
In our separate publication, we proposed a new DVS
scheme that incorporates the dynamic behavior of the tasks
into the speed schedule and aims to minimize the expected
energy consumption in the system. The new DVS scheme
was derived based on the assumption of unrestricted
continuous frequency. However, it remains unknown how
the new DVS scheme performs in practical situations. In
this paper, we first give a simple example through which we
demonstrate the new DVS scheme and compare it with the
existing DVS schemes. Then we present evaluation results
to show that the new DVS scheme achieves significant
energy savings over the existing schemes.

1 Introduction

Energy conservation is critically important for many
real-time systems such as battery-operated embedded sys-
tems which have a restricted energy budget . Dynamic volt-
age scaling (DVS), which involves dynamically adjusting
the voltage and frequency of the CPU, has become a well-
known technique in power management for real-time em-
bedded systems. Through DVS, quadratic energy savings
can be achieved at the expense of just linear performance
loss [14, 4]. Thus, the execution of tasks can be slowed
down in order to save energy, as long as the deadline con-
straints are not violated. A natural problem that rises from
this context is how to minimize the energy consumption in
the system while still meeting the deadlines. The problem is
often reduced to determining a task’s speed (or equivalently,

∗This work has been supported by NSF grant ANI-0125704 and ANI-
0325353.

determining the amount of time allotted to a task) before it
is scheduled to execute in the system.

The systems under our consideration are frame-based
hard real-time embedded systems that execute variable
workloads. The tasks in these systems exhibits dynamic be-
havior in the sense that they usually run for less than their
worst-case execution times (WCET) and the execution time
of the tasks is unpredictable before their execution. There-
fore, the design goal of DVS schemes becomesminimizing
the expected (total) energy consumptionin the system.

In [12], we proposed a new DVS scheme that incorpo-
rates the dynamic behavior of the tasks into the speed sched-
ule and aims to minimize the expected energy consump-
tion in the system. To our knowledge, this is the first DVS
scheme that is designed explicitly to Minimize the Expected
Energy Consumption for frame-based real-time systems.
Therefore, we call the new DVS scheme MEEC throughout
this paper. The MEEC scheme was derived based on the
assumption of unrestricted continuous frequency. We also
extended it to take into consideration the practical issues,
such as minimum and maximum frequency restriction, and
provided solutions to the problems. However, it remains un-
known how the MEEC scheme performs under all the prac-
tical considerations. In this paper, we first give a simple
example through which we demonstrate the MEEC scheme
and compare it with the existing DVS schemes. We show
that failure to capture the dynamic behavior of the tasks by
the existing DVS schemes and naive use of dynamic be-
havior information will lead to suboptimal power manage-
ment. Then we present extensive evaluation results, both on
synthetic and real-life workloads, to show that the MEEC
scheme can achieve significant energy savings over the ex-
isting schemes.

This paper is organized in the following way. We first
present the related work in Section 2. The system and
task model are described in Section 3. We demonstrate the
MEEC scheme and compare it with the existing schemes in
Section 4. Evaluation results are presented in Section 5. We
end the paper in Section 6 with concluding remarks.
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2 Related Work
Although much work has been done on exploring DVS

in real-time environments, we will focus on the related work
that takes into consideration actual (not worst-case) execu-
tion time of tasks. This is because real-time applications
usually exhibit a large variation in actual execution times
(e.g., [3] reported that the ratio of the worst-case execution
time to the best-case execution time can be as high as 10
in typical applications; our measurements in [10] show that
this ratio can be as high as 100), and thus the DVS schemes
that use exclusively worst-case execution time lack the ad-
vantage of unused computation time. Besides frame-based
real-time systems, we will also focus on the related work
that applies to periodic real-time systems because frame-
based real-time system is a special case of periodic real-time
system.

DVS in real-time applications is categorized asinter-task
or intra-taskvoltage scaling [5]. Inter-task schedules speed
changes at each task boundary, while intra-task schedules
speed changes within a single task. For inter-task voltage
scaling, Mossé et al. [8] introduced the concept ofspecula-
tive speed reductionand proposed three DVS schemes with
different speed reduction aggressiveness for frame-based
real-time systems. Aydin et al. [2] and Pillai et al. [9]
independently proposed DVS schemes for achieving high
energy savings for periodic real-time systems. They both
precompute a static optimal schedule assuming that each
task runs for WCEC and when a task runs for less than its
WCEC, the scheduler uses the slack to create a new sched-
ule for the remaining tasks. However, the exclusive use of
static information in computing speed schedules by [8, 2, 9]
leads to suboptimal power management for the system. The
MEEC scheme makes use of both static and dynamic in-
formation to design the speed schedule. To be able to nav-
igate the full spectrum of speculative speed reduction, in
[2] system designers can set a parameter to control the de-
gree of speed reduction aggressiveness. The MEEC scheme
chooses the degree of speed reduction aggressiveness auto-
matically, based the probability distribution of the workload
of the tasks, to minimize the expected energy consumption.

For intra-task voltage scaling, Lorch et al. [6] have
shown that if a task’s computational requirement is only
known probabilistically, there is no constant optimal speed
for the task and the expected energy consumption is mini-
mized by gradually increasing speed as the task progresses,
which is an approach named asProcessor Acceleration to
Conserve Energy(PACE). Practical PACE (PPACE) [13]
takes into consideration a number of practical issues and
improves the performance of PACE. However, PACE and
PPACE have only been studied for single task when consid-
ering hard real-time guarantee. In [7], PACE is used for soft
real-time systems when the system has only one task but
the maximum speed is used when the system has multiple

tasks. In [12], we presented the theoretical results of using
PACE for multiple tasks with a single hard deadline (frame
length). We also show that a naive extension of PACE for
multiple tasks is not recommended in Section 4.

AbouGhazaleh et al. [1] proposed a hybrid compiler-
operating system intra-task DVS scheme for energy con-
sumption of time-sensitive embedded applications. The
MEEC scheme is implemented at the operating system level
and assumes no access to application source codes.

3 Task and System Model

We consider a frame-based task model withN peri-
odic tasks in the system, all ready at time zero. The task
set is denoted byT = {T1, T2, . . . , TN}. Each taskTi

(1 ≤ i ≤ N ) is characterized by its worst-case execution
cycles (WCEC)Wi and the probability density function of
its execution cyclesPi(x), which denotes the probability
that taskTi executes forx (1 ≤ x ≤ Wi) cycles. Obvi-
ously, we have

∑Wi

x=1 Pi(x) = 1 andPi(Wi) 6= 0. The
average-case execution cycles (ACEC) ofTi can be com-
puted as

∑Wi

x=1 Pi(x)x. All task periods are identical and
all task deadlines are equal to their period. The common
deadline/period (also known as frame length) is denoted by
D. The execution of the frame is to be repeated and all
tasks must be executed during each frame in the order of
T1, T2, . . . , TN . Thus, the tasks can be treated as sequential
sections of a single application. If the execution order of
the tasks is flexible, the ordering strategies can be found in
[12].

The tasks are to be executed on a variable voltage pro-
cessor with the ability to dynamically adjust its frequency
and voltage on application requests. Because processor is
the major power consumer for many embedded systems, re-
ducing processor energy consumption has a significant im-
pact on the overall system energy consumption. In deriving
the MEEC scheme [12], we assume that the processor fre-
quency can be adjusted continuously from 0 to infinity. We
also discuss the more realistic cases, such as the proces-
sor has minimum and maximum frequencies, in [12]. The
processor power consumption when running at frequency
f is c0 + c1f

α (α is a constant that is at least 2) where
c0 andc1 denote the power consumption of the processor
when idle and the maximum dynamic power respectively.
The dynamic power is determined by the processor operat-
ing frequency and the maximum dynamic power is the dy-
namic power consumed when the processor is operating at
the maximum frequency.

4 The DVS Schemes

In this section, we give a simple example through which
we demonstrate the MEEC scheme and compare it with the
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Table 1. The parameters for the 3 tasks in the
simple example

Task W P(x) ACEC

T1 2 .9, .1 1.1
T2 4 .9, 0, 0, .1 1.3
T3 2 .5, .5 1.5
T̂ 8 0, 0, .405, .45, .045, .045, 0.05, .005 3.9

existing schemes.

Example Suppose that there are 3 tasks in the frame-
based real-time system with a frame length of 14 time units.
The workload of a task in expressed insuper cycles. A su-
per cycle consists of a certain number of CPU cycles, which
can be computed in order to keep the overhead of DVS low
[1]. The tasks are required to be executed in the order of
T1, T2, andT3. The parameters for the 3 tasks are shown in
Table 1. We also treat the three tasks as the three sequential
sections of a single task̂T and its parameters are computed
from those of the 3 tasks.̂T is used for the naive extension
of PACE shown at the end of this section. For the proces-
sor, we suppose thatc0 = 0 andc1 = 1. The maximum
speed of the processor is 1 super cycle per time unit and the
minimum speed of the processor is 0.

We start by reviewing the existing DVS schemes, which
can be categorized into 3 schemes: proportional scheme,
greedy scheme, and statistical scheme. The proportional
scheme and greedy scheme only make use of WCEC and
deadline information. The proportional scheme distributes
the slack proportionally among all unexecuted tasks. Thus,
in the example, the proportional scheme will start execut-
ing T1 using speed2+4+2

14
= 0.5714. The greedy scheme

is more aggressive, because it gives all the slack to the next
ready-to-run task. Therefore, the greedy scheme will start
executingT1 using speed 2

14−(4+2)/1 = 0.25. Note that
the greedy scheme is using the lowest possible speed to
execute the next task. The statistical scheme tries to take
advantage of the average-case execution cycles (ACEC)
of the tasks, to distribute the reclaimed slack, the natu-
ral slack, and the slack that would appear in the system if
other tasks were to finish early. To guarantee that the dead-
line is not missed, the statistical scheme chooses the max-
imum of the speed obtained from the greedy scheme and
the speed computed based the ACEC of the tasks. Thus,
the statistical scheme will start executingT1 using speed
max(0.25, 1.1+1.3+1.5

14 ) = 0.2786.
After a task finishes, the system reclaims the slack cre-

ated by the task if it runs for less than its WCEC, and com-
pute the speed of the next task recursively. This is also
a common part of all dynamic-claiming DVS schemes, as
follows. Let us see how they compute the speed forT2

after T1 finishes. Suppose thatT1 only runs for 1 super

cycle. Then the time left for executingT2 andT3 in the
proportional scheme is14 − 1

0.5714
= 12.2499, and speed

4+2
12.2499 = 0.4898 will be used to executeT2. Similarly,
the greedy scheme will use speed 4

14−1/0.25−2/1 = 0.5

to executeT2, and the statistical scheme will use speed
max( 4

14−1/0.2786−2/1,
1.3+1.5

14−1/0.2786) = 0.4756 to execute
T2.

Intuitively, when tasks tend to run close to their WCECs,
the proportional scheme would perform well; when tasks
tend to run much less than their WCECs, the greedy scheme
would have good performance. The statistical scheme tries
to strike a balance between proportional scheme and greedy
scheme. However, none of them is optimal in terms of min-
imizing the expected energy consumption in the system.

The MEEC scheme incorporates the dynamic behavior
of the tasks into the speed schedule. The dynamic behavior
of the tasks is captured by the probability density function
of the workload of the tasks, which is represented by his-
tograms in practice. When using profiling to obtain WCEC
and ACEC, the probability density function of the workload
of the tasks can be also learned at the same time, only re-
quiring certain amount of additional storage.

DVS Algorithm The MEEC scheme is divided into two
phases: (a) the offline phase precomputes the speed sched-
ule, which consists of the percentage factorβi for each task
Ti. The percentage factorβi determines the speed to ex-
ecuteTi: whenTi is ready to execute and the time left in
the frame to executeTi, Ti+1, . . . , TN is d, then timeβid

is allocated to executeTi. The algorithm computes the per-
centage factors in the reverse order, that is, first compute
βN , thenβN−1 , . . ., and lastβ1. The value ofβN is al-
ways100% and the other percentage factors can be com-
puted recursively and efficiently thanks to the nice property
of energy function of the tasks. More details can be found
in [12]; (b) the online phase is invoked before the execu-
tion of each task, obtaining the time left in the frame and
computing the execution speed for the task: when starting
executing taskTi and having timed left, set the speed toWi

βid
(the actual speed value needs to be adjusted according to the
available discrete speeds of the processor). Both phases are
efficient: the offline phase runs in polynomial time and the
online phase only takes constant time.

In the example, the percentage factors forT1, T2, T3 can
be computed to be equal to39.38%, 76.19%, 100%, respec-
tively. Thus, the MEEC scheme will use speed 2

39.38%×14 =
0.3628 to executeT1. If T1 runs for 1 super cycle, then the
time left for executingT2 andT3 is 14− 1

0.3628 = 11.2737.
Then the MEEC scheme will use speed 4

76.19%×11.2737
=

0.4657 to executeT2. Table 3 shows the expected energy
consumption per frame for all DVS schemes and the sav-
ings of the MEEC scheme over the other schemes. In [12],
we prove that the MEEC scheme minimizes the expected
energy consumption in the system under the assumption of
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Table 2. The comparison of all DVS schemes
for the simple example

Scheme Expected energy Saving
consumption per frame

naive PACE 0.7953 23%
proportional 0.7733 21%
greedy 0.7388 17%
statistical 0.6771 10%
MEEC 0.6097 −

unrestricted continuous frequency.
Finally, we show through the simple example that a naive

extension of PACE (or, naive PACE for short) cannot obtain
energy savings over the DVS schemes that do not use intra-
task voltage scaling. Since PACE has only been studied for
a single task, the naive PACE treats all the tasks as a single
super task and derives its parameters (WCEC and probabil-
ity distribution of the workload) from those of the original
tasks. For the example, the parameters for the super task
T̂ are shown in Table 1. For this super task, using PACE
[6] will result in expected energy consumption per frame of
0.7953, which is the worst of all DVS schemes discussed
so far. The reason why the naive PACE fails is that treating
all tasks as a single super task results in loss of information
(e.g., the naive PACE cannot determine when tasks termi-
nate), losing the opportunity for dynamic slack reclamation.
For instance, if taskT1 runs only for 1 super cycle, we can
be sure that the rest of workload in the current frame is at
most 6 super cycles. However, the naive PACE still assumes
that the rest of workload is 7 super cycles in the worst case.
In [12], we show that PACE must be used for executing in-
dividual tasks in order to obtain further energy savings over
the DVS schemes that do not use intra-task voltage scaling.

5 Evaluation

The optimality of the MEEC scheme [12] only holds if
we assume unrestricted continuous frequency which does
not hold in practice. Therefore, we also discuss the is-
sues that arise when our DVS scheme is used in practice
and provide solutions to the problems in [12]. However, it
remains unknown how the MEEC scheme performs under
those practical considerations. To answer this question, we
conducted extensive simulations for different power models
and different workloads.

5.1 Power Models

We used two power models in our simulation. The first
power model is a synthetic processor that strictly conforms
to thep(f) = f3 power-frequency relation and has 10 dis-
crete frequencies ranging from 100MHz to 1000MHz with

Table 3. XScale speed settings and power
consumptions

Speed (MHz) 150 400 600 800 1000
Voltage (V) 0.75 1.0 1.3 1.6 1.8
Power (mW) 80 170 400 900 1600

100MHz step; its idle power is zero. The second power
model is the Intel XScale (Table 3) [11]. For the idle power
of Intel XScale, we assume that the CPU operates at the
lowest frequency (i.e., 150 MHz) when idle. This is equiva-
lent to say that the idle power is 80 mW. The power function
for XScale used in derivingβi’s is

p(f) = 80 + 1520(
f

1000
)3 (1)

wheref is the frequency. Figure 1 shows that Equation
(1) is a good approximation of the actual power function of
Intel XScale.
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Figure 1. Approximate power function for Intel
XScale

5.2 Synthetic Workloads

A frame-based real-time systems is characterized by the
number of tasks, the WCEC of each task, the probability
distribution of the workload of each task, the frame length.
We simulated system that have 5, 10, 15, 20 tasks, respec-
tively. We only show the results for the systems with 5 tasks
because the results for systems with different number of
tasks are similar. The WCEC of each task is randomly gen-
erated from 10,000,000 cycles to 1,000,000,000 cycles. The
probability density function of each task’s actual execution
cycles is randomly chosen from 6 representative distribu-
tions shown in Figure 2. The bin width of the histograms
denoting the probability density functions is 1,000,000 cy-
cles. For each combination of the tasks, we computed the
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worst-case finishing time (t) for a frame running at the high-
est speed. Then we varied the frame length from1.2t to
4t. For each simulated system (i.e., for each run with a
set of tasks), we evaluated 8 DVS schemes: proportional
without PACE (P), proportional with PACE1 (PP), greedy
without PACE (G), greedy with PACE (GP), statistical with-
out PACE (S), statistical with PACE (SP), MEEC without
PACE (M), MEEC with PACE (MP). For each experiment,
we generated 100,000 frames and computed the average en-
ergy consumption per frame for each scheme. Under this
experimental setup, we conducted over one million runs and
averaged the results (which are shown here).
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Figure 2. Candidate probability density func-
tions

For all the simulations using the synthetic CPU, the best
scheme is always scheme M or MP, but scheme MP is only
better than scheme M for 13.6% of the time with an average
saving of 1.2% over scheme M. For all the simulations using
XScale, the best scheme is always scheme M. Note that, in
the simulations, we ignore the speed change overhead and
online scheduling overhead, and thus we favor schemes us-
ing PACE. For the other schemes, scheme PP outperforms
scheme P most of the time, but scheme G (S) outperforms
scheme GP (SP) most of the time. The simulation results
support our conjectures about using PACE in frame-based
real-time systems in [12]. Therefore, PACE is not recom-
mended in the MEEC scheme.

Next, we compare the MEEC scheme with other
schemes, all without using PACE. Figure 3 shows the max-
imum and average energy savings of our scheme over other
schemes for both the synthetic CPU and XScale. From the
figure we can see that the MEEC scheme achieves an av-

1When the time allocated to execute a task is determined, use PACE
technique to execute this task within the allocated time. The same holds
for using PACE for other schemes.

erage of20.45% (up to 33.45%) energy savings over the
next best scheme (proportional) for the synthetic CPU, and
an average of6.52% (up to 20.85%) energy savings over
the next best scheme (statistical) for XScale. The energy
savings are significant. The two key factors that affect the
energy savings are the minimum speed of the CPU and
the number of speeds available from the CPU. In comput-
ing the speed schedules, the MEEC scheme assumes unre-
stricted continuous frequency. Because of the convexity of
the power function, high speed is not usually obtained by
the MEEC scheme. But low speed is desired because the
MEEC scheme can navigate the full spectrum of available
speeds and can find the best speed that minimizes the ex-
pected energy consumption. The importance of the number
of speeds available from the CPU is obvious given that we
need to convert the continuous speeds to discrete speeds.
Therefore, because the minimum speed of the synthetic
CPU is less than that of XScale and the number of speeds of
the synthetic CPU is greater than that of XScale, the energy
saving for XScale is less than the synthetic CPU.
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Figure 3. Energy savings of the MEEC scheme
over other schemes for the synthetic work-
load

5.3 Automatic Target Recognition (ATR)

The ATR application2 does pattern matching of targets in
images. In ATR, the regions of interest (ROI) in one image
are detected and each ROI is compared with all the tem-
plates. The number of target detections in each frame varies
from 0 to 8 detections. Image processing time is propor-
tional to the number of detections within an image.

In our system model, a front-end is responsible for col-
lecting images and sending the images periodically to a
back-end equipped with an Intel XScale CPU for target
recognition. The back-end is required to finish process-
ing all the images that it receives by the end of the pe-
riod (frame) in order to process the next batch of images

2The original code and data for this application were provided by our
industrial research partners
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in a timely fashion. The period is 100 ms and the front-end
sends 1 to 6 images to the back-end for one period.

Each task processes an image with 1 to 8 ROIs. We ob-
tained the probability distribution of the workload of the
task by profiling on a training image set, then precomputed
the speed schedule (that is, computed theβi values, see Sec-
tion 4) for having1, 2, 3, 4, 5, 6 images to be processed in
one period (frame), respectively. The six speed schedules
are stored in the back-end. When a period begins, the back-
end counts the number of images received and applies the
corresponding speed schedule. Figure 4 shows the energy
savings of the MEEC scheme over other schemes when the
back-end has1, 2, 3, 4, 5, 6 images to process. From the fig-
ure we can see that the MEEC scheme can achieve an av-
erage of 11.04% energy savings (not counting the case for
1 image because all schemes achieve the same performance
in this case) over the next best scheme (statistical).
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6 Conclusions

In this paper, we demonstrate and present extensive eval-
uations of the MEEC scheme proposed in [12]. We first re-
view the existing DVS schemes and demonstrate the MEEC
scheme through a simple example. Then we evaluate the
existing DVS schemes and the MEEC scheme through dif-
ferent power models and different workloads. Evaluation
results show that the MEEC scheme can achieve significant
energy savings over the existing schemes. Another impor-
tant conclusion from this work is the demonstration that us-
ing only static information or aggregating dynamic informa-
tion, even with probabilistic techniques, will not produceas
good results as when dynamic information for each task is
considered separately.

Future work will investigate the case of the problem
where different tasks have different deadlines.
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[12] R. Xu, D. Mossé, and R. Melhem. Minimizing Ex-
pected Energy in Real-Time Embedded Systems. In
EMSOFT, Jersey City, New Jersey, September 2005.

[13] R. Xu, C. Xi, R. Melhem, and D. Mossé. Practi-
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Abstract 
We present a new policy to improve power saving in 

hard real time systems guarantying all tasks deadlines 
based on a moving average frequency reduction. Our 
study focus on the improvement obtained using this policy 
on the low power dual priority scheduling algorithm [3]. 
The resulting modified algorithm uses the total workload, 
the task execution history and the breakdown utilization to 
estimate the average minimum frequency of the processor 
to accomplish maximal energy reduction while meeting 
deadlines. The moving average strategy has been 
proposed to estimate the empirical execution time beyond 
the WCET, then updating the processor frequency for 
every task accordingly. We have performed extensive 
simulations that show a considerable enhancement in 
energy saving compared to original low power dual 
priority scheduling algorithm. 
Keywords: Static priorities, power aware scheduling, Dynamic 
Voltage Scaling, Worst Case Execution Time. 

1. Introduction 
The energy consumption in portable and hard real time 

systems is a fundamental problem in the design of modern 
computational devices [1]. A lot of efforts have been made 
during the last decade to minimize this drawback, but the 
high performance of modern microprocessors and micro-
controllers jointly with the increasing functionality of 
them obtained via software still require improvements in 
the power-efficiency context.  

The dynamic power consumption in CMOS circuits is 
given by the equation P ≅ pt CL VDD

2 f, where P is the 
power consumption, pt is the probability of switching in 
power transition, CL is the load capacitance, VDD is the 
voltage supply and f is the operating clock frequency. 
Since the power has a quadratic dependency on the supply 
voltage, it is always energetically favorable scaling the 
voltage supply down. If the processor uses the voltage 
scaling technique to scale frequency, the relation between 
power and frequency is given by P(f) ∝ CL VDD

2 f ≈ k f 3  
[2-4]. The main techniques that take advantage of this 

non-linear dependence are: Clustering Voltage Scaling and 
Dynamic Voltage Scaling (CVS and DVS) [5-6] Its 
functioning is based on the reduction of the voltage supply 
along with the processor frequency, and have been 
successfully used in many applications. 

In hard real time systems these techniques could affect 
adversely the system performance, because time 
restrictions are critical. Nevertheless, the DVS technique is 
used in hard real time systems via power aware scheduling 
algorithms that determine the operating frequency of the 
processor that guarantees all real-time constraints while 
minimizing the energy consumption. Generally speaking, 
the scheduling algorithms reduce the voltage supply along 
with the processor operating frequency whenever the full 
system performance is not necessary and the tasks 
deadlines are not going to be compromised. Basically, 
these power aware schedulers use the idle time intervals to 
slow down the processor, executing tasks at reduced 
operating frequency.  

To calculate the abovementioned reduction of the 
operating frequency, there are mainly two different 
approaches: static and dynamic [4,6-10]. In the static 
approach, the frequency is calculated off-line, before 
runtime, for each task independently. Once the execution 
starts the frequency could be readjusted on-line depending 
on the dynamic slack that has been generated – i.e. part of 
the worst case execution time not consumed. In the 
dynamic approach, the operating frequency is calculated 
on-line, just before running each task, once the scheduler 
knows exactly what the history about the previous 
executed tasks have been and when the rest of tasks will 
arrive [4,8,10].  

We will focus our attention on the dynamic approach. 
In this approach, whenever it exist more than one task in 
the system, the operating frequency reduction could be 
performed following at least three general policies:  
 Executing ready tasks at the maximum processor 

operating frequency, and reducing the operating 
frequency only to execute the last task in the system. 
This conservative approach cannot use the idle time 



 

that could appear if the last task does not consume all 
its WCET because there is no task ready to be 
executed. The Cycle-conservative RT-DVS [8], the 
dynamic Reclaiming algorithm [10] and the Low 
Power Fixed Priority algorithm [11] uses a similar 
policy. See the sketch a) in Figure 1. 

 Executing the first task at reduced speed and the 
following tasks at maximum operating frequency, this 
is a greedy approach. The first task executed uses the 
maximum possible idle time to reduce the clock 
operating frequency while the rest of tasks have to be 
executed necessarily at the maximum operating 
frequency. The advantage of this policy is that if a 
task does not consume all its WCET, the following 
task can use this time and then its operating frequency 
can be reduced. The Look-Ahead RT-DVS [8], the 
Aggressive Speed Reduction [10] and the Power Low 
Modified Scheduling Algorithm [3,12] uses a similar 
policy. See the sketch b) in Figure 1. 

 Executing all ready tasks at some reduced operating 
frequencies whenever is possible. This scheme is 
similar to the static calculation of the operating 
frequency. Within this scheme all tasks execute at 
reduced operating frequency, trying to avoid any task 
execution at maximum operating frequency. In this 
case if the tasks finishes earlier, the slack generated 
can be used to reduce the operating frequency of the 
next task. See the sketch c) in Figure 1. 

In this paper, we expose how to implement a dynamic 
approximation to the last policy in a dual priority scheme.  

To motivate our work, based on the execution of tasks 
at a certain average frequency, let us compare the 
differences in energy saving obtained using the three 
aforementioned policies in a toy model. Let us assume a 
task set formed by two tasks, task1 and task2, with a period 
and deadline of 100 time units, and a WCET of 30 time 
units each. Their execution is sketched in Figure 1. 

Depending on the different operating frequencies at 
which the tasks represented in Figure 1 are executed, the 
total energy consumption values are: a) E=3.52, b) E=3.52 
and finally in c) E=2.16. Note that, in the latest policy, 
both tasks execute at a certain average operating frequency 
that shows to be clearly energetically favorable. This 
efficiency relies on the fact that the maximum operating 
frequency has been avoided, and because the relation 
between energy consumption and operating frequency is 
quadratic. 

Note that the value for the average frequency used in 
Figure 1c corresponds exactly to the processor utilization 
percentage, in our case 60%, and this indicates a strong 
relationship between them. A similar approach considering 
the frequency reduction as a function of the processor 
utilization has been used in [9,10] for the Earliest Deadline 
First scheduling (EDF).  

The rest of the paper is structured as follows: in section 
2 we set the framework of the system, in section 3 we 
present a simple example of efficient reduction for Rate 
Monotonic scheduling. In section 4, we expose the 
modifications in the low power dual priority algorithm. In 
section 5, we compare the efficiency of the described 
policy with two energy aware scheduling algorithms. 
Finally in section 6 we present the conclusions of the 
current work. 
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Figure 1: Three possible policies for tasks execution at different 
operating frequencies: a) task1 is executed at the maximum operating 
frequency, and task2 is executed at 0.42 of the maximum operating 
frequency; b) task1 is executed at 0.42 and task2 executes at the 
maximum operating frequency; c) the execution of both tasks is at 0.6 
of the maximum operating frequency. 

2. Framework 
We consider task sets consisting on n independent 

periodic tasks, τ1…τn, each task τi characterized by a 3-
tuple (Ci,Ti,Di), where Ci is the worst case execution time 
of τi. For each task instance the execution time varies from 
0.1*Ci to Ci. Ti stands for its period (or minimum inter-
arrival time), and Di is its relative deadline. The tasks sets 
are scheduled using a fixed priority pre-emptive algorithm 
in a multi-operating frequency processor.  

The computation time overhead for context switching 
and for the scheduler are assumed to be negligible. The 
extent to which these assumptions are realistic is discussed 
in the analysis of the algorithm given in [13] and it turns 
out to be practical if the switch is subsumed to the worst-
case execution times of the different tasks. We also 
assume that the voltage scaling overhead is negligible; the 
safeness of the system under these conditions is proved on 
theorem 1 of the work by Shin and Choi [11]. When the 
processor is powered down we consider zero energy 
consumption. Note that we also are assuming that the 
energy consumption is minimized whenever the supply 
voltage is scaled down. A recent work of Miyoshi et al. 
[14] has pointed out that there exists some practical 
processors with energy-inefficient operating frequencies 
for which this hypothesis does not hold, in these cases the 
current approach should be correctly to avoid entering the 
range of non-operative frequencies. 



 

The whole system will be characterized by the 
processor utilization (U) and the breakdown utilization 
(BU) [15,16]. The Processor Utilization (U) is defined as  
 

∑
=

=
n

i i

i
D
C

U
1

 (1) 

and the BU is defined as the fraction of the utilization 
factor that marks the border for a system to be 
schedulable. To calculate BU, each execution time Ci in a 
given task set is multiplied by a constant scaling factor α, 
while the periods remain fixed. The task set is scaled to the 
point at which it is just schedulable, such that any 
increment of α would cause at least one task to miss its 
deadline. The utilization of the task set at that point, Σi 
(αCi/Ti) is the BU [16]. This scaling factor affects 
schedulability the same way the operating frequency 
reduction affects, then the BU should be considered as a 
lower bound to the static operating frequency reduction. 

3. Average frequency reduction policy 
Suppose that we have a system with only one task 

whose period and deadline is set to 100 time units and 
whose WCET is set to 60 time units. The processor 
utilization is 60%, the hyper-period is 100 and the 
Breakdown Utilization is 100 %, that is, we can scale the 
task set up to a real utilization of 100% (i.e. no idle time). 
In this simple situation, the execution frequency should be 
set exactly to 0.6 of the maximum processor frequency 
corresponding to 60(workload)/100(time units). Note that 
in this case the frequency reduction is optimal, i.e. a 
reduction below 0.6 makes the system not to meet the 
deadlines and a reduction over 0.6 will imply larger 
energy consumption. 

Let us now consider an heterogeneous task set (see 
Table 1). The system is characterized by U=80% and 
BU=88%. If the scheduler extrapolates the average 
frequency policy presented before, the estimated 
frequency turns out to be 0.8. Using this frequency, the 
WCRTs (Worst Case Response Time) of tasks are 3.75, 
26.25 and 63.75 respectively, and therefore Task3 misses 
its deadline. This simple example shows that this 
frequency reduction is not feasible due to the real time 
constraints. A more accurate estimation of the average 
frequency in this case should take into account that the 
spanning time of tasks in a Fixed Priority system is 
constrained by the BU to 88%, then the appropriate 
frequency should be represented by the ratio U/BU. Using 
this ratio, the frequency reduction is 0.91 and the WCRTs 
of tasks are 3.34, 23.36 and 59.4 respectively, 
consequently all deadlines are meet. 

 Period Deadline WCET WCRT 
Task1 10 10 3 3 
Task2 40 40 12 18 
Task3 60 60 12 33 

Table 1: Characteristics of the task set. 

The determination of the average frequency reduction 
in a more general situation where there are N tasks in the 
system competing for real time execution is far more 
complicated. In this scenario, the tasks priorities as well as 
the constraints imposed by the deadlines increase the 
complexity of the optimization problem. An off-line 
optimization algorithm will not provide the correct values 
due to the dynamic interferences that take place on-line, 
and on the other hand an optimization algorithm on-line 
will require as much computational resources as the real 
time system itself.  

Our idea in this general case is to use the ratio U/BU  
as an estimation of the average frequency. To show the 
reliability of this estimation, we analyze the behavior of 
Rate Monotonic scheduling using an average frequency 
reduction policy. 

In Figure 2, we present the results of the average 
operating frequency for different Us and BUs. Symbols 
represent the empirical frequency we found via simulation 
(we simulate the execution of all tasks sets reducing 
progressively the processor operating frequency from the 
maximum to the minimum, to all tasks in each task set. We 
stop when one deadline is missed), while the lines 
represent the theoretical estimation of this frequency using 
the ratio U/BU. 
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Figure 2: Lowest feasible frequency vs breakdown utilization for 
4000 random task-sets with 8 independents task characterized by 
non-harmonics periods. Different symbols correspond to processor 
utilizations ranging from 60% to 95%. Lines represent the 
theoretical estimation based on the ration U/BU. 

We also checked the effect of variability in number of 
periodic tasks, the harmonicity of the periods and the 
processor utilizations. In particular we have simulated a 
number of independent periodic tasks varying from 8 to 16 
for both harmonic and non-harmonic periods. The results 
do not differ from those presented in Figure 2. 

4. The Enhanced Power Low Dual Priority 
The benefits in energy saving obtained in the Rate 

Monotonic Algorithm by applying the average operating 
frequency policy can be generalized to other fixed priority 
pre-emptive scheduling algorithms.  

In particular, we are interested into extend these results 
to the Power Low Modified Dual Priority Scheduling 
algorithm (based on the Dual Priority scheduling [13]) 
because its adequacy to manage power saving in more 



 

complex scenarios that could include aperiodic requests 
and because its performance has been contrasted against 
other fixed priority algorithms [11]. The original Power 
Low Dual Priority Scheduling algorithm (PLMDP) [12] 
guarantees to meet the temporal constraints and a 
significant energy consumption reduction. 

Based on the results obtained for the RMA we propose 
the use of a balanced operating frequency reduction policy 
that gives to all ready tasks the opportunity to reduce its 
execution operating frequency. The balance is intended to 
provide an average operating frequency according to 
U/BU and it is controlled dynamically. Qualitatively the 
idea work as follows: If a task should execute at a certain 
operating frequency higher than the estimated average to 
meet its deadline, then the following tasks try to execute at 
an operating frequency lower than the estimated average 
to compensate the global effect in the system. Then our 
algorithm is designed to achieve an average operating 
frequency according to the ratio U/BU while meeting 
deadlines. BU is statically calculated off-line. 

The PLMDP defines three levels of priorities that are 
organized as follows, the highest level, or upper run queue 
(URQ) is for tasks that can no longer be delayed by less 
priority tasks otherwise they cold miss their deadlines. The 
lowest level, or lower run queue (LRQ) occupied by those 
periodic tasks whose execution time can still be delayed 
without compromising their deadlines. At the beginning of 
each hyper-period the remaining processor utilization 
(Wrem) is set to the total workload of the task set = U. 

The scheduling algorithm is driven by the following 
events: 
1. Promotion time instant (Tpi) [12] The moment at 

which the task is promoted from the LRQ to the URQ. 
At this moment the task can pre-empt a lower priority 
task currently in execution. At this time instant, Wrem 
is updated according to its real use, it is decremented 
by the consumed time of the pre-empted task. 

2. Activation time (Tai). The task is queued in the LRQ 
sorted by its promotion time instant. At this moment 
this task can pre-empt a lower priority periodic task 
currently in execution, and Wrem is updated. 

3. Task finalization time. At this time instant, Wrem is 
decremented by the consumed time plus the spare 
time of this task. After that, the highest priority task 
from the highest non-empty priority level (i.e. URQ or 
LRQ, in this order) is selected for execution. 

In the new algorithm Enhanced Power Low Dual-
Priority EPLDP, the processor operating frequency is 
individually calculated for each task, once the scheduler 
decides which task must be executed (Figure 3). The 
algorithm reduces the operating frequency at the maximum 
value between the frequency estimated by the original 
PLMDP, and the ratio between the processor utilization 
and the breakdown utilization: Urem/BU. This operating 
frequency is the lowest frequency that assures that no 

deadline will be missed1. Before calculating the operating 
frequency Urem is updated to the ratio between the 
workload that remains to be executed and the remaining 
time to arrive to the end of the hyperperiod. 
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Summarizing, the resulting algorithm (EPLDP) works 
as follows: 
// Tp is the promoted time; Td is the deadline time; tc is the current time 
// τi  is the active task; τk  is the next promoted task 
// Urem is the remaining utilization = U –  executed workload 
L1 if not empty (URQ) then     
L2  Active Task (τi)= URQ.head;  
L3  if URQ.head.next = NIL   
L4   ( )
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L5  else   
L6   Frequency = MAX_FREQ;  
L7  endif 
L8 else   
L9  if not empty (LRQ) then 
L10   Active task (τi)= LRQ.head; 
L11   if Tpk < Tpi then   
L12    
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L15   endif 
L16  else   
L17   Set timer to (next Tai - wake up delay);  
L18   Enter power-down mode; 
L19  endif  
L20  endif 
L21 endif 
L22 execute Active Task (τi) at calculated operating frequency; 

Figure 3: Enhanced Power Low Dual-Priority (EPLDP) Scheduling. 

1. If there is not any ready task in the system we set the 
timer to the next arriving task minus the wake up 
delay, and power down the processor. 

2. If there is more than one task in the URQ then it must 
be executed at the maximum operating frequency. 

3. If there is only one task in the URQ then it can be 
executed at low frequency: 

 ( )
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where Tpk is the promotion time instant of any task in 
the system excluding the current executing task, 
remainingi is the non-executed worst execution time 
of the current task, Tdi is the deadline of the current 

                                                 
1 The feasibility of our algorithm is achieved whenever the Dual 
Priority Algorithm is feasible [13] because our algorithm always 
uses the Dual Priority schedule as a lower bound for feasibility. 



 

task, and finally tc is the current time. The desired 
operating frequency is based on the remaining 
workload, the remaining time to the hyper-period, and 
the BU. 

4. If there is not any task in the URQ but there are some 
tasks in the LRQ then we can execute at the average 
operating frequency Urem/BU. 

At practice only certain discrete values of the 
frequency of the clock, and then speed, are attainable 
depending on the accuracy of the tuning, in this case the 
frequency selected should be a frequency equal or larger 
than the frequency obtained by the calculations to ensure 
time constraints.  

The algorithm is designed to achieve an average 
operating frequency equal to the ratio Urem/BU. This 
average is achieved whenever all tasks consume the 100% 
of its WCET. When the WCET is not totally consumed 
then this average is overestimated (in the next section we 
will discuss how to take advantage of this fact). The 
performance of the PLMDP is flexible to different WCET 
consumptions adapting is behavior when needed. At a 
certain critical value of the WCET consumption we expect 
PLMDP to overcome the performance of the EPLDP 
because this overestimation. In figure 4 we show the 
experimental critical curve for the WCET consumption 
delimiting the area of efficiency of both algorithms. 
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Figure 4: Critical line showing the transition performance between 
EPLDP and PLMDP. Above the line EPLDP is energetically 
favorable, below the line the PLMDP is energetically favorable. The 
line is obtained by simulation of 100 tasks sets (formed by 8 tasks 
each one) for each value of the processor utilization, varying the 
processor utilization in 5% each step. Harmonic periods from 1024 to 
65536 are considered. The maximum task workload is set to 20%.  

5. Moving average estimation of the 
empirical utilization of the processor 

The WCET of a task depends on both the program 
flow and architectural factors like pipelines and caches. It 
must guarantee and not underestimate the real execution 
time, but often provides an overestimation of it. To reach 
maximum effectiveness of the use of the processor, the 

overestimation of the empirical execution time should be 
as small as possible. But note that as the processors have 
more complex features like for example out-of-order 
execution, the overestimation becomes usually large. 

We want to point out that a dynamic estimation of the 
real utilization (EU) is possible by using the history of past 
executions (Um) where m refers to different hyper-periods. 
 Here we present a moving average process that takes 
advantage of this information to determine the correct 
average frequency reduction that adapts to the real 
calculation consumption of tasks (Ui).  

We modified our algorithm introducing a moving 
average of the utilization that reduces the overestimation 
of the WCET of tasks in the following manner (Figure 5): 
1. Initially the estimated utilization (EU) is set to the 

total workload with the WCET provided by the 
application designers (U0). 

2. The hyper-period is executed using the current EU. At 
the same time the real workload of each task is 
updated after its real execution. 

3. At the end of the hyper-period the EU is updated 
according to the available history (Ū ) and the recent 
hyper-period execution (Ui), using a moving average. 
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L2  i=1; 
L3  while real_time_application_not_finished do 
L3    execute hyper-period i with EU and update Ui; 
L4    
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L5   enddo 

Figure 5: Moving average estimation of the empirical utilization of 
the processor. 

In Figure 6 we present the evolution of the EPLDP 
using this estimation over different hyper-periods 
(EPLDP-m). The maximum utilization of the system is set 
to 80 % with a maximum workload for tasks of 20%. All 
tasks consumption is obtained from a Gaussian 
distribution with an average of 50% of its WCET and with 
a standard deviation of 10%. The results are obtained 
averaging over 100 different task sets. Note that a lower 
bound for the frequency reduction is provided by this 
estimation while the low power algorithm fixes the upper 
bound (Figure 3). The energy consumption obtained by 
EPLDP-m tends to be the same as the energy consumption 
obtained by the theoretical EPLDP-f, which is the EPLDP 
behavior assuming that the real utilization is known and 
fixed to 50% of the WCET (note that this information is 
unknown in real applications). The small divergence 
between EPLDP-m and EPLDP-f are consequence of the 
variations of the real use of the WCET that has been set to 
10%. 

It is important to note that this moving average strategy 
does not interfere with the hard real time because the 

a) 

b) 

PLMDP 

EPLDP 

PLMDP 

EPLDP 



 

determination of the operating frequency is conservative 
with respect to deadlines i.e. we use the highest frequency 
between the calculated EU and the operating frequency 
calculated by the PLMDP algorithm. (see equation 3), to 
do not compromise any deadline. 
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Figure 6: Evolution of EPLDP-m compared with EPLDP and with 

EPLDP-f. 

The improvement in energy consumption provided by 
EPLDP-m is contrastable, and it should be more evident as 
the overestimation of the WCET is larger. In figure 7, we 
show this improvement as a function of the percentage of 
the WCET really consumed for a harmonic task sets 
(Figure 7a), and for a non-harmonic task sets (Figure 7b). 
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Figure 7: Performance of EPLDP and EPLDP-m with different 
percentage of WCET consumption. The total utilization of the system 
is U=80% and the maximum task workload is set to 20. The results 
are obtained averaging over 100 task sets. In a) the task sets are 
harmonic, and in b) there are non-harmonic task sets. 

6. Results and discussion 
In this section we test the energy saving efficiency of 

the proposed EPLDP-m algorithm versus the original 
Power Low Modified Dual Priority (PLMDP) [3,12] for 
real and synthetic task sets. 

The first test (Figure 8) corresponds to the energy 
consumption for different fixed workloads of the system 
(U=60%, 75% and 95%) (Figure 8). We observe that the 
average energy consumption is energetically favorable to 
EPLDP. The average energy consumption is 59%, 61% 
and 68% for PLMDP and 17%, 28% and 49% for EPLDP-
m (U=60%, 75% and 95% respectively) compared to the 
execution at maximum operating frequency. 

We have also checked the dependence of energy 
consumption on the workload of the system (U). We 

calculate the average energy consumption of schedulable 
tasks sets composed by 100 synthetic task sets. The 
workloads range from 60% to 95%, in steps of 5%. The 
maximum task workload was fixed to 20%. There are 8 
tasks in each task set. The periods range from 1024 to 
65536 (harmonic task sets). (Figure 9). The experiment 
represents the results of the normalized average energy 
obtained with respect to the execution at maximum 
operating frequency. We run the simulation over 200 
hyper-periods. 
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Figure 8: Normalized average energy consumption for different 
values of WCET consumption. We simulate 100 task sets, of 8 tasks 
each one, with a maximum task workload of 20%, in a) U=75%, and 
in b) U=95%. 
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Figure 9 Normalized energy consumption versus processor utilization 
(U). Each dot corresponds to the average energy consumption of 100 
different harmonic task sets. The consumed WCET is in a) 20% and 
in b) 90% . 

To conclude the present analysis, we have also 
collected some real time applications: the avionics task set 
reported in [17], an Inertial Navigation System (INS) [18] 
and a Computerized Numerical Control Machine (CNC) 
[19]. The two first sets represent critical mission 
applications and the last one is an automatic control for 
specific machinery.  

The results of energy consumption for each application 
varying the percentage of WCET consumed are drawn in 

a) 

b) 

b) 
a) 

b) 

a) 



 

Figures 10 to 12. The average energy consumption 
referred to the execution at maximum frequency are 76% 
for PLMDP and 35% for the EPLDP-m in the avionics 
task set; 36% for PLMDP and 9% for the EPLDP-m in the 
INS task set; and 56% for PLMDP and 26% for the 
EPLDP-m in the CNC task set. 

We have also performed simulations considering 
variations of the task sets specifications: doubling the 
number of tasks to 16 instead of 8, varying the maximum 
workload per task from 20% to 10%, and considering non-
harmonic periods ranging from 1000 to 70000. The results 
obtained in these different experiments do not differ 
qualitatively from the results presented, although the 
precise values vary. In particular, non-harmonic periods 
introduce a shift on the energy consumption performance 
of all the algorithms we have studied. The main reason is 
that schedulability becomes more complex, and the 
breakdown utilization decreases. 
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Figure 10:Comparison of the algorithms for the Avionics set [17] 
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Figure 11: Comparison of the algorithms for the INS set [18] 
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Figure 12:Comparison of the algorithms for the CNC set [19] 

7. Conclusions 
We have proposed a new version of the PLMDP 

algorithm that enhances energy saving based on the 
dynamic calculation of an average operating frequency 
EPLDP-m. The advantage of this energy reduction policy, 
consisting on giving the opportunity to the processor to 
reduce the operating frequency of every task, has been 
demonstrated to improve energy saving substantially 
without missing any deadline. The current performance 
could be extended to other dynamic power aware 
scheduling algorithms. 
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Abstract

The problem of reducing energy consumption is domi-
nating the design and the implementation of embedded real-
time systems. For this reason, a new generation of proces-
sors allow to vary the voltage and the operating frequency
to balance computational speed versus energy consump-
tion. The policies that can exploit this feature are called
Dynamic Voltage Scheduling (DVS).

In real-time systems, the DVS technique must also pro-
vide the worst-case computational requirement. However, it
is well known that the probability of a task executing for the
longest possible time is very low. Hence, DVS policies can
exploit probabilistic information about the execution times
of tasks to reduce the energy consumed by the processor.

In this paper we provide the foundations to integrate
probabilistic timing analysis with energy minimization tech-
niques, starting from the simple case of one task.

1 Introduction

The number of embedded systems operated by batteries
is increasing in different application domains, from PDAs
(Personal Digital Assistants) to autonomous robots, smart
phones and sensor networks. Reducing the energy con-
sumed by these systems has become a key design issue, as
they can only operate on the limited battery supply. For this
reason, a new generation of processors [9, 13, 19] allow to
dynamically vary the voltage and the operating frequency to
balance computational speed versus energy consumption.

In recent years, as the demand for computing resources
has rapidly increased, even normal workstation PCs and
servers face energy constraints. Not surprisingly, a signif-
icant portion of the consumed energy is due to the cooling
devices, which may consume up to the 50% of the total en-
ergy [11]. In addition, researchers at IBM showed that av-
erage processor use of servers is between 10% and 50% of
their peak capacity because the load depends on the time
of the day or the day of the week [4]. This suggests that a
striking energy reduction can be achieved by enriching DVS
policies with a more detailed information on the required
workload.

Recently, many DVS algorithms have been proposed
in the literature. These algorithms can be divided in two
classes: static and dynamic. Static techniques [21, 14, 17,
12, 3] are typically applied to periodic tasks, and make use
of off-line parameters, such as periods and worst-case exe-
cution cycles (WCECs), to select the appropriate processor
speed. Since the worst-case parameters may differ signif-
icantly from the actual values, these techniques save less
energy than the dynamic ones.

On the other hand, much recent research has focused on
dynamic techniques [14, 1, 22, 17, 16, 18], which take ad-
vantage of early job completion. Some studies have ob-
served that the actual execution cycles of real-world em-
bedded tasks may vary up to 80% with respect to their mea-
sured WCECs [20]. Thus, dynamic methods can exploit
information about the run-time behaviour of tasks, which
may be very far from the pessimistic assumptions required
during the design of static techniques. Dynamic algorithms
may take decisions — change the processor speed — at two
different instants:

After task completion The algorithm does not make any
assumption on task duration, and waits for task com-
pletion to know the exact execution time. Then, the
processor speed is changed based on this informa-
tion. The algorithms GRUB-PA [18], DVSST [16]
and RTDVS-Cycle Conserving [14] belong to this cat-
egory.

Before task completion The algorithm tries to foresee the
duration of the current task instance, and takes the de-
cision in advance, based on some task’s characteristics
such as the average execution time. This decision typ-
ically depends on the behaviour of previous instances
of the task. Obviously, a right prediction allows to re-
duce considerably the energy consumption. However,
when the predicted behaviour is distant from the real-
ity, some undesired side effect, such as a deadline miss
in soft real-time systems or an increase of the energy
consumed, may occur. The algorithms RTDVS-Look
Ahead [14], DVS-EDF [22] and DRA-Aggressive [1]
are based on this mechanism.

The success of the second class of methods relies on pre-
dicting correctly the task behaviour. For this reason, the use
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of a richer task information may enhance the effectiveness
of the DVS. This increased information can be provided by
the probability density function (p.d.f.) of the task execu-
tion time. Recently, the discipline of probabilistic timing
analysis has significantly advanced [5, 7], and today there
exist some tools which can provide the p.d.f. of task execu-
tion times [2].

An attempt to consider stochastic information in energy
reduction problems has been done by Gruian [8]. However,
it only addresses the case with no transition overheads and
with a specific power function.

In this paper we integrate the concept of probabilistic ex-
ecution time within the framework of energy minimization,
providing the basis of a new challenging approach. We pre-
liminary consider the case of only one task, since we believe
that it can be extended to the general case of n tasks.

2 System model

2.1 Processor model

We assume that the processor has a continuous spectrum
of operating modes. This means that the speed can continu-
ously vary between zero and some speed upper bound. We
know that in real-world architectures this hypothesis does
not ever hold. However, many significant contributions in
the literature [1, 14, 22] still assume a continuous speed be-
cause if the processor speed levels are very close each other
then this approximation is very close to reality. Obviously,
if the optimal speed is not available, it has to be approxi-
mated with the closest discrete level higher than the optimal
one. In this case, there is an increase of energy consump-
tion, called energy quantization error, that has been studied
by Saewong and Rajkumar [17].

The processor model is formalized as follows:

– the speed α can vary within [0, αmax], where αmax is
the maximum speed allowed by the processor;

– the power consumption at speed α is modelled by the
function p(α). Typically, the power function p(α)
is a polynomial [6]. However, due to the advances
of semiconductor technology, it is expected that the
power/speed relationship may change in the next fu-
ture [8]. For this reason we model this relationship by
a generic function p(α);

– the cost of mode switching is considered in terms of
both time and energy. We call o the time overhead
needed to switch between any two modes, and e the
energy required. Notice that o and e do not depend on
the modes before and after the switch.

2.2 Energy management scheme

We focus on the problem of reducing the energy con-
sumed by a task τ on a variable speed processor. Some ex-

isting power-aware algorithms have been deployed starting
from this simple scheme, since it constitutes a good starting
point for more complex analysis [22].

The task τ has period and deadline both equal to T . The
number of processor cycles required in the interval [0, T ]
is modelled by a random variable whose p.d.f. is fC(c).
The maximum possible number of cycles needed by τ is
Cmax. Since the task is hard real-time, Cmax cycles must be
available in [0, T ].

If the number of required cycles in [0, T ] was known in
advance, the best way to reduce energy consumption would
be to keep a constant speed [10, 15]. In fact, the convexity
of the power/speed curve implies that maintaining a con-
stant speed α is better than switching between two different
speeds. Unfortunately, this number of cycles is unknown in
advance, hence we cannot determine the optimal speed α.

A common technique adopted in the literature [1, 22, 14]
is based upon the idea of deferring some work, since we ex-
pect that the current instance of τ will request much less
than its WCEC Cmax. This technique splits the task execu-
tion into two parts, as shown in Figure 1. In the first part, the
task runs at a lower processor speed αL in order to reduce
the energy consumed in the average case. In the second part,
instead, a higher processor speed αH is used, so that we can
provide up to Cmax cycles even in the worst case. The idea
is that, if a task tends to use much less than its WCEC, the
second part, which consumes more power, may never be
needed. When the worst-case condition occurs, instead, the
speed increase guarantees the completion of all the deferred
work within [0, T ].

Processor
Speed

PSfrag replacements

αH

αL

pH

pL

Cx

oo
Q

T

f

Figure 1. The energy management scheme.

The idea of deferring work has been widely used in the
literature to create efficient power-aware algorithms. For
instance, Pillai and Shin [14] proposed the RTDVS-Look
Ahead algorithm, which tries to defer as much work as
possible, and sets the operating frequency to the minimum
value to ensure that all future deadlines will be met. This
technique has also been used by Aydin et al. in the “aggres-
sive” version of their DRA algorithm [1]. This algorithm
speculatively assumes that current and future instances of
the task will most probably present a computational demand
lower than the worst case. Hence, it tries to reduce the speed
of the running task by deferring all the work above a certain
threshold, set according to the average workload. A similar
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approach has been applied to EDF by Zhu and Mueller [22].
Each task’s instance is divided into two portions. The objec-
tive is to provide the average number of cycles Cavg within
the first portion. The second part at speed αH ensures that
the deadline is met even when the task requires Cmax cycles.

Even if these techniques have been widely used in the
literature, a probabilistic study of this model has not been
proposed, yet. For instance, all previous algorithms set the
speed αH equal to the maximum possible value, even if this
may not be optimal from the point of view of energy con-
sumption. Even worse, some technique [22] is based on the
intuitive idea that the optimal energy reduction is obtained
by providing exactly the average execution cycles in the first
part. In Section 3.1 we will prove that this intuition is not
correct.

We decide to deeply study this model, extending it to
the case in which probabilistic information about task exe-
cution time is known. Moreover, we use a general model
for the processor, accounting for both the time and energy
overheads of voltage transition.

3 Optimal speed assignment

Let αL and αH be the lower and the higher processor
speeds, respectively. The period of the scheme is T . The
number of processor cycles required by the task τ in each
period is modelled by a random variable whose p.d.f. is
fC(c), and the maximum number of cycles is Cmax. This
amount of cycles must be guaranteed in each period because
the task is subject to a hard real-time constraint.

Our goal is to find the two speed levels αL and αH and
the instant Q when to switch, in order to achieve the mini-
mum energy consumption. Let Cx be the number of cycles
provided while running at αL, as shown in Figure 1. We
can express (αL, αH ) as a function of Cx and Q as follows

αL =
Cx

Q − o
αH =

Cmax − Cx

T − Q − o
, (1)

due to the constraint of providing Cmax cycles within each
period T .

Let also be c the number of cycles that actually occur and
f the finishing time . We distinguish two different cases:

1. if c ≤ Cx then the task terminates before we could
actually switch to αH , and we expect f ≤ Q;

2. otherwise, if c > Cx then we need to run at speed
αH to provide the required cycles and we expect f >
Q + o.

We consider the two cases separately. In order to have a
more compact notation we set pH = p(αH) and pL =
p(αL).

In the first case (c ≤ Cx), the finishing time is

f = o +
c

αL

and the energy consumed in one period T is

E = e + pL (f − o) = e +
pL

αL

c. (2)

On the other hand, when Cx < c ≤ Cmax, we have

f = Q + o +
c − Cx

αH

and the energy is

E = 2 e +
pL

αL

Cx +
pH

αH

(c − Cx). (3)

Equations (2) and (3) provide the energy E consumed
when the number of cycles is c. Since the number of cycles
is a random variable with p.d.f. fC(c), then the energy con-
sumed is a random variable too. Our target then becomes
to minimize the expectation Eavg of the random variable E.
Let us compute this value.

Eavg =

∫ Cx

0

E fC(c) dc +

∫ Cmax

Cx

E fC(c) dc

=

∫ Cx

0

(

e +
pL

αL

c

)

fC(c) dc

+

∫ Cmax

Cx

(

2 e +
pL

αL

Cx +
pH

αH

(c − Cx)

)

fC(c) dc

= 2 e +
pH

αH

Cavg −
(

pH

αH

− pL

αL

)

Cx

+

∫ Cx

0

((

pL

αL

− pH

αH

)

(c − Cx) − e

)

fC(c) dc

= e (2− FC(Cx)) +
pH

αH

Cavg

−
(

pH

αH

− pL

αL

)

(GC(Cx) + Cx(1 − FC(Cx)))

where

FC(x) =

∫ x

0

fC(c) dc GC(x) =

∫ x

0

c fC(c) dc.

For compactness we also set

γ(x) = GC(x) + x(1 − FC(x)), (4)

so that the average energy consumed in a period is

Eavg = e (2−FC(Cx)) +
pH

αH

(Cavg − γ(Cx)) +
pL

αL

γ(Cx)

(5)
Notice that GC(Cmax) is equal to Cavg. For this reason we
always have 0 ≤ γ(x) ≤ Cavg for all x.

Equation (5) is a new result in the literature because it
expresses the average energy consumed as function of the
probability density of the task execution cycles fC(c).

It is very insightful to plot the quantity Eavg on a plane
(Cx, Q). Figure 2 shows the level curves of the quantity
Eavg as function of Cx and of Q. In the plot we assumed
an exponential p.d.f. with average value Cavg = 0.2929, the
period T equal to 1 and the power function p(α) = k α3.
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Figure 2. Eavg for uniform execution times.

region occurs for a value of Cx greater than Cavg. In order to
find it analytically, we need to compute the partial deriva-
tive of Eavg with respect to the variables (Cx, Q). After
opportune simplifications, we find that:

∂Eavg

∂Cx

= −e fC(Cx) −
(

p′H − pH

αH

)

Cavg − γ(Cx)

Cmax − Cx

+

(

p′L − pL

αL

)

γ(Cx)

Cx

−
(

pH

αH

− pL

αL

)

γ′(Cx) (6)

where p′L and p′H denote p′(αL) and p′(αH), respectively.

Now, we complete the analysis of the function Eavg by

computing also ∂Eavg

∂Q
, which is

∂Eavg

∂Q
= (p′HαH−pH)

Cavg − γ(Cx)

Cmax − Cx

−(p′LαL−pL)
γ(Cx)

Cx

(7)

Equations (6) and (7) are the components of the gradient
∇Eavg. From functional analysis, we know that the mini-
mum satisfies the condition ∇Eavg = 0. Once the optimal
(Cx, Q) is found, then the constraint αH ≤ αmax must be
checked. In fact, if it is violated, it means that the global
minimum would result in a too high value of αH . It this
case we know from the Kuhn-Tucker conditions that the
minimum occurs when αH = αmax, which means that

Cmax − Cx

T − Q − o
= αmax ⇒ αL =

Cx αmax

αmax(T − 2o) − Cmax + Cx

(8)
From Eq. (5), substituting αH with αmax and αL with the
expression of Equation (8), we find Eavg as function of the
unique variable Cx. The minimal energy solution is found
by applying classical techniques of functional analysis of
one-variable functions.

3.1 Polynomial power function

Once the main equations for the general case have been
found, we show how they can be applied to find the optimal
(Cx, Q) in some significant examples. Due to lack of space,
we assume the time and energy overheads equal to zero (i.e.
o = 0 and e = 0).

When considering continuous speed levels, a common
assumption is that the relationship between the power con-
sumption p and speed α is

p(α) = k αn (10)

for some k, n. The typical value of n is 3, however we keep
the general form as long as the math is tractable.

In these hypothesis, the gradient can be greatly simpli-
fied. In order to find the point of minimal energy we have to
set both the gradient components equal to zero. By setting
∇Eavg = 0, we finally find that the pair (Cx, Q) minimizing
the average energy Eavg must satisfy Equations (9) reported
in Table 1. Due to lack of space we don’t include all the
calculations. For their importance we call the Equations (9)
the minimum stochastic energy equations. Once we know
n and the probability density fC(c), Equations (9) can be
solved and produce the pair (Cx, Q) which minimizes the
energy.

Uniform Density Let us now assume a uniform density
between Cmin and Cmax. It means that

fC(c) =

{

1

Cmax−Cmin
if Cmin ≤ c ≤ Cmax

0 otherwise
(11)

and also, when Cmin ≤ c ≤ Cmax,

FC(c) =
c − Cmin

Cmax − Cmin
GC(c) =

c2 − Cmin
2

2(Cmax − Cmin)
.

(12)
The function γ(c), defined in Eq. (4), is

γ(c) =
−c2 + 2c Cmax − Cmin

2

2(Cmax − Cmin)
(13)

and its derivative is

γ′(c) =
Cmax − c

Cmax − Cmin
(14)

In this case the minimum energy can be simply found
by properly substituting γ(Cx) and γ′(Cx) in the minimum
stochastic energy equations (9).

To simplify and compact them, it is very convenient to
normalize the cycles Cx and Cmin with respect to Cmax.
Hence, we set x = Cx

Cmax
and a = Cmin

Cmax
. Due to lack of

space here we do not report all the simplifications, which
can be accomplished by any symbolic manipulation tool.

When n = 2 the optimal number of normalized cycles
x, which provides the minimal energy, is

xopt =
1 +

√
1 + 3 a2

3
. (15)
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

















(n − 1) γ(Cx) + Cxγ′(Cx)

(n − 1) (Cavg − γ(Cx)) + (Cmax − Cx)γ′(Cx)

(

Cmax

Cx

− 1

)(

Cavg

γ(Cx)
− 1

)

=
T

Q
− 1

(

Cmax

Cx

− 1

)n−1 (

Cavg

γ(Cx)
− 1

)

=

(

T

Q
− 1

)n (9)

Table 1. Minimum stochastic energy equations.

Instead, when n = 3, the solution is

xopt =
5 −

√
5 +

√
2
√

5(3−
√

5) − 8(1 −
√

5) a2

8
(16)

Interestingly, this result proves that the approach pro-
posed by Zhu and Mueller [22] is sub-optimal, as stated by
themselves. In fact, they suggested to set Cx equal to Cavg.
From both Equations (15) and (16) we see that the opti-
mal value is always greater than Cavg (see also Figure 3).
Providing Cavg cycles at speed αL would lead to increase
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Figure 3. The optimal number of cycles.

the average energy consumed in a period.

Exponential Density The probability density considered
previously is very simple and it allows to exactly find the
pair (Cx, Q) which minimizes the average energy con-
sumed. We consider now a more complex density fC(c)
which better captures the characteristics of real execution
times. Without loss of generality, we normalize the number
of cycles toward Cmax so that the possible values of cycles
are in [0, 1]. As done before we set a = Cmin

Cmax
.

We consider the following exponential p.d.f.:

fC(c) =

{

1

K
eβc(1 − c)(c − a) if c ∈ [a, 1]

0 otherwise
(17)

where K is a proper constant such that
∫ 1

a
fC(c)dc = 1.

The presence of β allows to alter the symmetry of the
density. In fact, for negative β the density shifts to the left,

meaning that values close to Cmin are more likely to happen.
On the other hand, positive values of β means that execution
cycles close to Cmax occur more frequently. Figure 4 shows
some possible functions.
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Figure 4. Exponential probability density
functions.

For exponential densities, the minimal energy (Cx, Q)
pair can only be found by numerical approximation. We
investigated the effect of the p.d.f. asymmetry onto the so-
lution. The result is quite interesting. In Figure 5 we plot
the ratios Cx

Cavg
and Q

T
, assuming a = Cmin

Cmax
= 0.2. A first

result, also noticed for uniform density, is that the optimal
Cx is always greater than Cavg, differently than what sug-
gested in a previous paper [22]. This fact is evidenced by
the black curve which is always above 1. We also highlight
that for big positive values of β (meaning that values close
to Cmax are more likely to occur), Cx tends to Cavg.

4 Conclusions and future work

Deferring the work is an effective technique already pro-
posed in the literature to reduce the energy consumed by the
processor. However, often this technique has been blindly
applied, without a a systemic search of the minimal.

In this paper we have provided the foundations to in-
tegrate the probabilistic timing analysis with energy mini-
mization techniques, starting from the simple case of one
task. This problem has been studied using a general model
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Figure 5. The optimal (Cx, Q) pair as function
of the symmetry.

for the processor, taking into account both time and energy
overheads. Thanks to this research, the design of effec-
tive energy minimization schemes using information about
probabilistic execution times is now possible.

Finally, we refuted the idea that providing the average
number of cycles at the lower speed is the best possible
strategy.
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Abstract

The challenge in conserving energy in embedded real-time
systems is to reduce power consumption while preserving
temporal correctness. Previous research has focused on
power conservation for either the processor or I/O devices
alone. The system-wide energy conservation has received
little attention. In this paper, we analyze the problem of
system-wide energy-efficient scheduling for hard real-time
systems based on the preemptive periodic task model with
non-preemptive shared resources. We propose an online
system-wide energy-efficient scheduling algorithm System-
wide Energy-Aware EDF (SYS-EDF), which integrates Dy-
namic Power Management (DPM) for I/O devices and Dy-
namic Voltage Scaling (DVS) for the processor. An evalua-
tion of SYS-EDF shows that it yields significant energy sav-
ings with respect to DVS alone or DPM alone techniques.

1 Introduction

Embedded real-time systems often consist of a battery-
operated microprocessor system with Input/Output (I/O) de-
vices and a limited battery life. Energy conservation tech-
niques are thus needed to extend their lifetimes. The need to
prolong system lifetime has resulted in much work done in
energy-efficient task scheduling for real-time systems.

In the last decade, much work has been done on
processor-based power management techniques. Dynamic
Voltage Scaling (DVS) is one of the most popular techniques
to reduce the processor energy consumption. DVS-based
real-time scheduling algorithms can effectively reduce the
processor energy consumption by lowering the processor
speed, while still guarantee that all jobs meet their deadlines.
However, DVS-based algorithms reduce the dynamic power
consumption of the processor at the cost of increased execu-
tion time, which in turn increases the I/O device standby en-
ergy consumption. It has been observed [4, 11] that aggres-
sively lowering the processor speed may increase the overall

system energy consumption rather than decreasing it.
The energy consumption of I/O devices can be reduced

by shutting down devices under certain conditions. This
method is commonly known as Dynamic Power Manage-
ment (DPM). There have been some efforts [8, 9] in de-
veloping energy-efficient device scheduling algorithms that
minimize the I/O device energy consumption for real-time
systems. However, none of them considered the energy con-
sumption of processors. As with the DVS alone scheduling
algorithms, DPM alone cannot guarantee the overall system
energy consumption is minimized.

In this paper, we analyze the problem of system-wide en-
ergy conservation for hard real-time systems based on the
preemptive periodic task model with non-preemptive shared
resources. Here we define the system-wide energy consump-
tion as the sum of the processor energy consumption and the
I/O device (including memory 1) energy consumption. We
propose an online system-wide energy-efficient scheduling
algorithm, System-wide Energy-Aware EDF (SYS-EDF),
which integrates device scheduling and processor voltage
scaling to reduce the overall system energy consumption.

The rest of this paper is organized as follows. Section 2
discusses related work. The problem of energy-aware I/O
device scheduling is analyzed in Section 3. Section 4 de-
scribes the SYS-EDF algorithm. Section 5 describes how
we evaluated our system and presents the results. Section 6
presents our conclusions and describes future work.

2 Related Work
Compared to the research of processor-based energy con-

servation techniques or I/O-based energy conservation tech-
niques, the research on system-wide energy conservation has
received little attention. Only a few papers [4, 11] address
this issue. In these papers, the negative effect of lowering
processor speed is considered. Optimal slowdown factors of

1Some modern DRAM chips can be put in a power down state in which
only the self-refresh circuitry is active to prevent data loss.
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the processor speed to minimize the overall system energy
consumption are computed and used as the lower-bound of
the processor speed. They both achieve significant energy
savings compared to DVS alone algorithms. Our work dif-
fers from the previous work in following aspects:

1. Our work supports periodic task sets with non-
preemptive shared resources. In the previous work, all
tasks were assumed to be fully preemptive. In prac-
tice, non-preemptive shared resources are pervasive in
real-world applications. For example, a job that per-
forms an uninterruptible I/O operation can block the
execution of all jobs with higher priorities. Thus the
time for the uninterruptible I/O operation needs to be
treated as a non-preemptive resource access. Other re-
sources besides I/O devices include critical sections of
code, reader/writer buffers, etc.

2. Our work considers the problem of energy-efficient de-
vice scheduling and proposes a device scheduling al-
gorithm, i.e., Conservative Energy-Aware EDF (CEA-
EDF). [4] and [11] made simplified assumption for the
device scheduling. For example, [4] assumed that there
is no delay for device state transition. Therefore, an
aggressive device scheduling algorithm which turns off
devices whenever they are not in use was implied in
this work. However, this aggressive device scheduling
is not applicable to hard real-time systems if devices
that have non-zero transition delays are used. Similarly,
[11] did not propose DPM for I/O devices.

The method proposed in this paper provides a energy-
efficient device scheduling algorithm, CEA-EDF, for peri-
odic task sets with non-preemptive shared resources. The
optimal processor speed is then analyzed based on the pro-
posed device scheduling algorithm. Finally, the SYS-EDF
algorithm is proposed to reduce the overall system energy
consumption by integrating CEA-EDF and the processor
voltage scaling. To the best of our knowledge, no previous
publication has addressed the same problem.

3. Energy-aware device scheduling
I/O devices usually have fewer power states than proces-

sors. Throughout this paper, we assume that a device has
two states: active and idle. In a real-time system, in order to
guarantee that jobs will meet their deadlines, a device cannot
be made idle without knowing when it will be requested by
a job, but, the precise time at which an application requests
the operating system for a device is usually not known. Even
without knowing the exact time at which requests are made,
we can safely assume that devices are requested within the
time of execution of the job making the request. Therefore,
our method is based on inter-task device scheduling rather
than intra-task scheduling. That is, the scheduler does not
put devices in sleep while tasks that require them are being
executed, even though there is no I/O requests at that time.

As discussed before, the energy-aware device schedul-
ing algorithm needs to support the preemptive scheduling
of periodic tasks with non-preemptive shared resources.
However, the only known published energy-aware device
scheduling algorithm for preemptive schedules, Maximum
Device Overlap (MDO) [9], does not address the issue of
resource blocking. As an offline method, it is difficult to in-
tegrate a resource accessing policy into MDO because it is
hard to predict exact points that jobs access resources at the
offline phase. It is possible that a seemingly feasible offline
job schedule causes jobs to miss their deadlines at runtime.

An obvious online approach is to aggressively shut down
devices whenever they are not needed; and start them as
soon as they are needed, which is called the Aggressive Shut
Down (ASD) algorithm [2]. Unfortunately, ASD cannot
be directly applied to hard real-time systems, because the
power consumption and the delay of the device state transi-
tion is usually too large to be neglected.

In our previous study [2], some online device scheduling
algorithms that support preemptive schedules with shared re-
sources are proposed. Among them, CEA-EDF can be used
together with a DVS-based scheduler without any modifica-
tion. As we will see shortly, CEA-EDF is independent of
processor speed change, which makes it ideal for easy inte-
gration with DVS.

3.1 Device energy model

Associated with each device λi are the following parame-
ters: the transition time from the idle state to the active state
represented by twu(λi); the transition time from the active
state to the idle state represented by tsd(λi); the energy con-
sumed per unit time in the active and idle states represented
by Pa(λi) and Pi(λi) respectively; the energy consumed per
transition from the active state to the idle state represented
by Esd(λi); and the energy consumed per transition from
the idle state to the active state represented by Ewu(λi). We
assume that for any device, the state switch can only be per-
formed when the device is in a stable state, i.e., the idle state
or the active state. Therefore, the total energy consumed by
a device λi is given by,
Eλi

= Pa × Ta(λi) +Pi × Ti +Esd ×Nsd +Ewu ×Nsw (1)

where, Ta is the time that λi is in the active state; Ti is the
time that λi is in the idle state; Nsd is the number of the
transition of the device from active to idle; and Nwu is the
number of the transition of the device from idle to active.

3.2. Energy-aware device scheduling
CEA-EDF is a simple, online energy-aware device

scheduling algorithm for hard real-time systems. All de-
vices that a job needs are active at or before the job is re-
leased. Thus devices are safely shut down without affecting
the schedulability of tasks.
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1 Device scheduling at time t:
2 If (t: instance when job Ji,j is completed)
3 If (∃λk , λk = active and Treq(λk, t)− t > BE(λk))
4 λk → idle;
5 Up(λk)← Treq(λk, t)− twu(λk);
6 End
7 End
8 If (t: ∃λk, λk = idle and Up(λk) = t)
9 λk → active;

10 Up(λk)← −1; // Clear the power up timer for λk
11 End

Figure 1. The CEA-EDF algorithm. Up(λk) is
the power up time set to λk, at when the device
will be powered up.

Because of the energy consumption associated with the
device power state transition, it is not energy-efficient to fre-
quently perform the power state transition. A break-even
time is used to represent the minimum inactivity time re-
quired to compensate for the cost of entering and exiting the
idle state. We let BE(λi) denote the break-even time of
device λi hereafter. The computation of BE(λi) using our
device energy model can be found in [2]. It is clear that if a
device is idle for less than the break-even time, it is not worth
performing the state switch. Therefore, CEA-EDF makes
decisions of device state transition based on the break-even
time rather than device state transition delay.

Next, we define the next device request time that is used
in keeping track of the earliest time that a device is required.

Definition 3.1. Next Device Request Time. The next device
request time is denoted by Treq(λk, t) and is the earliest time
that a device λk is requested by any uncompleted job. Since
a job can only use a device after the job is released, the next
device request time of a device λk is given by

Treq(λk, t) =Min(R(Ji,j)) (2)

where Ji,j is any uncompleted job that requires device λk

and R(Ji,j) is the release time of job Ji,j .

With CEA-EDF, a device λi is switched to the low power
state at time t when Treq(λi, t) − t > BE(λi). CEA-
EDF sets a power up time, Up(λi), for device λi when
λi is switched to the idle state. For any idle device, it is
switched back to the active state if the power up time Up(λi)
is equal to the current time t. The CEA-EDF scheduling al-
gorithm then can be described as in Figure 1, and is invoked
at scheduling points and when a power up time is reached.
We define scheduling points as time instances at which jobs
are released, completed, or exit critical sections. An exam-
ple of CEA-EDF scheduling is illustrated in Figure 2.

4. System-wide energy-efficient scheduling
In this section, we first provide a power model for a typi-

cal DVS processor. Then we present a system-wide energy-
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Figure 2. CEA-EDF scheduling example; (a)
J1,1 is released at 6 and uses device λ1. J2,1

is released at 2 and uses device λ2. J1,1 has
a higher priority than J2,1. (b) the device state
transition with the CEA-EDF algorithm.

efficient task scheduling algorithm, SYS-EDF, which inte-
grates CEA-EDF and processor voltage scaling.

4.1 DVS processor energy model

In a CMOS circuit, the overall power consumption con-
sists of dynamic power consumption and static power con-
sumption. For a DVS processor, the dynamic power con-
sumption can be given by,

PAC = CeffVdd
2
f (3)

where Ceff is the switched capacitance, Vdd is the supply
voltage and f is the operating frequency. The relationship of
f and Vdd is given by [6]

f = (LdK6)
−1((1 +K1)Vdd +K2Vbs − Vth1)

α (4)

where Vbs is the body bias voltage and K1, K2, K6, Ld, Vth1

and α are technology constant parameters.
Several leakage sources contribute to the total static

power consumption. According to [6], the leakage power
dissipation is given by,

PDC = Lg(VddIsubn + |Vbs|Ij) (5)

where Lg is the number of devices in the circuit, Isubn is
the subthreshold current, and Ij is the reverse bias junction
current. The formal mathematical formulation and detailed
explanations of related technical parameters can be found in
[6]. The total power consumption of a processor is given by,

Pcpu =

{

PAC + PDC + Pon CPU is active
0 CPU is not active (6)

where Pon is an inherent power cost in keeping the processor
on [3]. We assume that a processor does not consume energy
when it is not in the active state.

Since the voltage transition delay of a processor is very
short, we assume that the overhead incurred in changing the
processor speed is negligible. The same assumption is made
in previous works [7, 10, 11].
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4.2. System-wide optimal processor speed

We let ν denote the normalized processor speed. That is,
the ratio of the current processor speed to the maximal pro-
cessor speed. As with previous work [7, 10, 11], we assume
that the processor speed is approximately proportional to the
current operating frequency f . Thus ν can be represented by
f/fhigh, where fhigh is the maximum operating frequency.
We assume that a DVS processor can provide m discrete op-
erating frequency represented by {f1, f2, . . . , fm = fhigh}.

Because of the standby energy dissipation of I/O de-
vices, the lowest processor speed is not necessarily the most
energy-efficient speed as assumed in previous DVS-alone
scheduling algorithms. The leakage power dissipation of the
processor and the standby energy dissipation of I/O devices
increase with the extended task lifetime. Let Λ(t) be the ac-
tive device set that contains all devices that are in the active
state at time t. Note that with the CEA-EDF device schedul-
ing algorithm, devices not required by the current execut-
ing job may be kept in the active state to ensure the system
schedulability. As shown in Figure 2, all devices in Λ(t) are
kept in the active state until the current job is completed.

Suppose that a processor can complete 1 unit workload
in 1 unit time with the highest operating frequency, then the
processor will take 1/ν time units to complete 1 unit work-
load with a processor speed of ν. Next, we introduce energy
efficiency scale to compare the overall system energy effi-
ciency to complete 1 unit workload with different processor
speeds. The energy efficiency scale is denoted by ES(ν,Λ)
and is modelled by,

ES(ν,Λ(t)) =
Pcpu(ν)

ν
+
1

ν

∑

λk∈Λ(t)

(Pa(λk)− Pi(λk)) (7)

where Pcpu(ν) is the processor energy consumption rate
with a given processor speed ν, which can be acquired
from the processor energy model presented in Section 4.1.
Pa(λk) − Pi(λk) is the difference of the energy consump-
tion rate of device λk in the active state and the idle state. We
use this difference rather than Pa(λk) alone to evaluate how
much energy can be saved by putting λk in the idle state.

The processor speed that can minimize the energy ef-
ficiency scale is the system-wide optimal processor speed.
We let νopt(Λ(t)) denote the optimal processor speed for a
given active device set Λ(t). Figure 3 shows the energy effi-
ciency scale for three different active device sets. The CPU
is based on Transmeta Crusoe processor with 70nm tech-
nology 2 [3, 6]. The technical parameters for these devices
can be found in Table 1. It can be seen from Figure 3 that
the energy efficiency scale varies with different active device
sets, and so does the optimal processor speed. For example,
the most energy efficient processor speed is 0.4 when only
the Mobile RAM is in the active state, while the optimal
processor speed is 0.9 when both the Mobile RAM and the
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Figure 3. ES(ν,Λ(t)) of different normalized
processor speeds for three active device sets.

MaxStream wireless module are in the active state.
The system-wide optimal processor speed νopt is com-

puted offline and retrieved at runtime. For a given active
device set Λ(t), νopt(Λ(t)) can be acquired by computing
ES(ν,Λ(t)) for all possible ν values. The speed that mini-
mizes ES(ν,Λ(t)) is selected to be νopt(Λ(t)). Since mod-
ern DVS processors provide finite discrete operating fre-
quencies, this computation can be done in O(m) time com-
plexity for each given Λ(t), where m is the number of op-
erating frequencies that the processor can provide. Let K
denote the number of devices in the system, then there are
at most 2K possible sets for Λ(t). Therefore, the compu-
tational complexity of computing νopt for all possible Λ(t)
is O(m × 2K). With all pre-computed νopt(Λ(t)) stored in
memory, retrieving νopt for any Λ(t) at runtime can be done
in O(1) time.

4.3. SYS-EDF

The processor voltage scaling in SYS-EDF is based on
the Dual Speed (DS) and the Dual Speed Dynamic Reclaim-
ing (DSDR) algorithms proposed by Zhang et.al, [10]. The
DS algorithm aims to minimize the dynamic energy con-
sumption of the processor for real-time periodic tasks with
non-preemptive blocking sections. The DSDR algorithm ex-
tends the DS algorithm by dynamically collecting unused
run time for further slow down.

However, DS and DSDR considered only the dynamic
energy dissipation of the processor. Based on the previous
analysis, we develop the SYS-EDF algorithm, which im-
proves DS and DSDR to reduce the overall system energy
consumption. For the space limitation, we only discuss the
basic improvement done to the DS algorithm in this paper.
The basic idea is : the SYS-EDF algorithm keeps track of
the active device set and computes the corresponding opti-
mal processor speed. SYS-EDF uses the DS algorithm to

2This is a processor model based on the technology trends [6].
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1 Initialize:
2 ν ← max(L, νopt(Λ(t)); END H ← −1;
3 H and L are pre-computed processor speeds [10];
4 Scheduling at time t:
5 If (t: instance when job Ji,j is completed)
6 update Λ(t);
7 If (there is no pending job) ν ← 0;
8 Else ν ← max(ν, νopt(Λ(t)));
9 End

10 End
11 If (t: instance when job Ji,j is released)
12 update Λ(t);
13 ν ← max(ν, νopt(Λ(t)));
14 If (Prio(Ji,j) > Prio(Jcurr) and Ji,j is blocked by Jcurr)
15 ν ← max(H, νopt(Λ(t)));
16 End H ← max(End H,Deadline(Jcurr));
17 End
18 End
19 If (t: instance when t = End H)
20 End H ← −1;
21 ν ← max(L, νopt(Λ(t));
22 End
23 Schedule devices by CEA-EDF ;
24 Schedule jobs by EDF(SRP);

Figure 4. The simplified SYS-EDF algorithm.

adjust the processor speed with only one limitation: the pro-
cessor speed is never set below the optimal processor speed.
The improvement to the DSDR algorithm follows a similar
approach, but uses a different dynamic reclaiming algorithm
because more than two processor speeds are utilized in SYS-
EDF.

The SYS-EDF algorithm is presented in Figure 4. With
the proposed device scheduling algorithm, i.e., CEA-EDF,
the active device set changes only at the time instances when
a job is completed or a new job is released (line 6,12). As
with [10], a pre-computed high speed H and a pre-computed
low speed L are used in SYS-EDF. Because of the space
limitation, we do not present the computation of H and L
in this paper. We refer the reader to [10] for the detailed
explanation and computation. Since H , L and νopt(Λ(t))
are pre-computed, the overhead of performing SYS-EDF is
very low.

4.4. Schedulability
Theorem 4.1. Suppose n periodic tasks are sorted by their
periods. They are schedulable by SYS-EDF if

∀k, 1 ≤ k ≤ n,

k
∑

i=1

E(Ti)

P (Ti)
+

B(Tk)

P (Tk)
≤ 1, (8)

where E(Tk) and P (Tk) are the execution time and period
of task Tk respectively; and B(Tk) is the maximal length
that a job in Tk can be blocked.

Proof: The SYS-EDF algorithm consists of a energy-
efficient device scheduling algorithm (CEA-EDF) and a pro-
cessor voltage scaling algorithm. With the CEA-EDF algo-
rithm, a device λk is guaranteed to be in the active state when

Device Pa (W) Pi (W) Ewu, Esd (mJ) 3

Realtek Ethernet Chip 0.187 0.085 1.25
MaxStream Wireless module 0.75 0.005 4

IBM Microdrive 1.3 0.1 6
Fujitsu MHL2300AT Hard disk 2.3 1.0 3

SimpleTech Flash Card 0.225 0.02 0.2
Mobile-RAM 0.075 0.00175 ≈ 0

Table 1. Device Specifications.

any jobs requiring λk are released. Therefore, CEA-EDF
does not affect the schedulability of any systems.

With the processor voltage scaling algorithm presented
in Figure 4, the processor speed is set to the higher speed
of the optimal processor speed and the speed when sched-
uled with the DS scheduling algorithm (line 2,8,15,21). In
other words, the SYS-EDF algorithm keeps the processor at
a speed no less than the speed when scheduled with the DS
algorithm. Since Theorem 4.1 has been proved true for the
DS scheduling algorithm in [10], Theorem 4.1 is also true
for the SYS-EDF algorithm.

5 Evaluation
This section presents evaluation results for the SYS-EDF

algorithm. Section 5.1 describes the evaluation methodology
used in this study. Section 5.2 describes the evaluation of
SYS-EDF with various system utilizations.

5.1. Methodology
We evaluated the SYS-EDF algorithm using an event-

driven simulator. This approach is consistent with evaluation
approaches adopted by other researches for energy-aware
scheduling [8, 4, 11].

The power requirements and state switching times for de-
vices were obtained from data sheets provided by the man-
ufacturer. The devices used in experiments are listed in Ta-
ble 1. The DVS processor we simulated is based on Trans-
meta Crusoe processor with 70nm technology [3, 6]. We as-
sume that the processor supports discrete voltage from 0.5V
to 1.0V in steps of 0.05V . The normalized energy saving is
used to evaluate the energy savings of the algorithms. The
normalized energy saving is the ratio of energy saving under
a energy-conservation algorithm to the energy consumption
when no energy-conservation technique is used, wherein all
devices remain in the active state over the entire simulation.

In all experiments, we used randomly generated task sets
to evaluate the performance of all algorithms. All task sets
are pretested to satisfy the schedulability condition shown
in Equation (8). Each generated task set contained 1 ∼ 10
tasks. Periods of tasks are chosen from [100, 1000]. Each

3Most vendors report only a single switching energy consumption. Thus
we used this data for both Ewu and Esd. The sources of these data can be
found in [2].
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Figure 5. Mean normalized energy savings of
different system utilization settings.

task in a task set required the RAM module and additional
0 ∼ 2 other devices from Table 1. Critical sections of all
jobs were randomly generated. We repeated each exper-
iment 500 times and present the mean value. During the
whole experiment, we assume that the actual execution time
of a task is equal to the WCET.

We did not measure scheduling overhead in a real system
since all algorithms were evaluated with simulations. In-
stead, we compared the scheduling overhead of SYS-EDF
with respect to EDF(SRP) in our simulations. We used rel-
ative scheduling overhead to evaluate the scheduling over-
head of SYS-EDF. Let ρ denote the relative scheduling over-
head, which is given by

ρ =
scheduling overhead with SYS-EDF

scheduling overhead with EDF( SRP)
− 1

The mean relative scheduling overhead of SYS-EDF is
3.2%, verifying that the overhead of SYS-EDF is low.

5.2. Average energy savings
To better evaluate the SYS-EDF algorithm, we compare

SYS-EDF with three other algorithms for each simulation:
(1) CEA-EDF is the algorithm that only performs DPM for
devices; (2) DS is the DVS-alone algorithm proposed in
[10], which considers only the dynamic energy conserva-
tion for processors; and (3) DS +CEA-EDF is the straight-
forward integration of (1) and (2), without considering the
system-wide energy-efficient speed. Since [4] and [11] do
not address the problem of resource blocking and the nega-
tive effect of device transition delays on system schedulabil-
ity, we did not compare with them in this evaluation.

Figure 5 shows simulation results of the mean normalized
energy saving for the SYS-EDF and other algorithms under
different system utilizations. It can be seen that SYS-EDF
saves more energy than the other algorithms. SYS-EDF can
reduce the system energy consumption by up to 10% over
DS +CEA-EDF. In most cases, as the system utilization in-
creases, the normalized energy savings decreases. The ra-

tionale for this is that as tasks execute more, the amount
of time devices can be kept in idle mode decreases and the
processor voltage needs to be kept at a high value. As the
system utilization approaches 100%, SYS-EDF, CEA-EDF
and DVS+DPM perform comparable to each other, because
there is not much space for processor energy saving and all
of them merely perform DPM for devices.

6 Conclusion
This paper presents a system-wide energy-efficient

scheduling algorithm, SYS-EDF, which supports the pre-
emptive scheduling of periodic tasks with non-preemptive
shared resources. SYS-EDF consists of a practical DPM al-
gorithm for I/O devices and a corresponding processor volt-
age scheduling algorithm. The SYS-EDF algorithm pro-
vides remarkable power savings by wisely setting the pro-
cessor speed to balance the energy consumption of all com-
ponents in the system. The evaluation of SYS-EDF shows
that it yields significant energy savings with respect to DVS
alone or DPM alone techniques or the straightforward inte-
gration of DVS and DPM.
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Abstract

Different from many previous energy-efficient schedul-
ing studies, this paper explores energy-efficient multipro-
cessor scheduling of periodic real-time tasks with differ-
ent power consumption functions. When the goal is on the
minimization of energy consumption, we propose a1.412-
approximation algorithm in the derivation of a feasible
schedule. A series of simulation experiments was done for
the performance evaluation of the proposed algorithm.

1 Introduction

With the advance technology of VLSI circuit designs,
many modern processors, such as the Intel StrongARM
SA1100 processor [19] and the Intel XScale [20], could
now operate at various supply voltages and have different
processor speeds. The power consumption of processors
is usually a convex and increasing function of processor
speeds, which is highly dependent on the hardware designs.
The lower the speed, the less the power consumption is,
where a lower processor speed usually means longer exe-
cution time for tasks.

In the past decades, energy-efficient task scheduling with
various deadline constraints has received a lot of attention.
Although many studies have been done for uniprocessor
scheduling, such as [4, 6, 10, 11, 17, 25], not much work has
been done for multiprocessor scheduling. As pointed out
in [2], implementations of real-time systems with multiple
processors could be often much more energy-efficient than
those with a single processor, because of the convexity of
power consumption functions. Due to theNP-hardness of
many multiprocessor energy-efficient scheduling problems,
various heuristics were proposed in the derivation of sched-
ules for different task models with an objective in the min-
imization of energy consumption, e.g., [1, 5, 8, 9, 12, 13, 18,
24, 26, 27]. In particular, several energy-efficient schedul-

ing algorithms based on list heuristics were proposed [12,
13, 26]. Heuristic algorithms for periodic tasks in multi-
processor environments were proposed in [1, 5]. Zhu, et
al. [27] explored on-line task scheduling with reclamation
of slacks resulted from early completion of tasks during
the run time. Mishra, et al. [18] explored energy-efficient
scheduling issues with the considerations of the communi-
cation delay of tasks. In addition to the considerations of
energy-efficient scheduling, Anderson and Sanjoy [2] ex-
plored the tradeoff between the total energy consumption
of task executions and the number of required processors,
where tasks in the proposed solutions run at the same speed.
So far, not much work is done with approximation ratios
in energy-efficient multiprocessor real-time scheduling.An
example result is the approximation algorithms proposed
for the scheduling of frame-based tasks in [8], where tasks
share the same power consumption function, and [9], where
tasks might have different power consumption functions.
Energy-efficient multiprocessor scheduling of frame-based
task sets was also explored in [24] for chip-multiprocessor
(CMP) architectures, in which cores, i.e., processors, on a
chip must share the same processor speed at any given time
moment.

This paper considers energy-efficient scheduling of pe-
riodic real-time tasks over multiple processors. Different
from previous energy-efficient scheduling studies, this re-
search explores energy-efficient multiprocessor scheduling
for periodic real-time tasks, in which each task might have
different periods, initial arrival times, CPU execution cy-
cles, and power consumption functions. The power con-
sumption functions of tasks are modeled ash·sα [6, 14, 25],
whereα is a hardware-dependent factor, andh is a param-
eter related to the task under executions (Please see the dis-
cussions of power consumption functions in the next sec-
tion). When the goal is on the minimization of energy con-
sumption, we propose an approximation algorithm with an

approximation ratio(α−1)α−1(2α−1)α

αα(2α−2)α−1 , which is bounded by
1.412 since the value ofα is at most3 [6, 14, 25], in the



derivation of a feasible schedule. Simulation results show
that our proposed algorithm not only guarantees the approx-
imation factors but also derives solutions close to optimal
solutions.

The rest of this paper is organized as follows: In Sec-
tion 2, we define the system models and the multiproces-
sor energy-efficient scheduling problem. Section 3 presents
an approximation algorithm for the multiprocessor energy-
efficient scheduling problem. Section 4 presents evaluation
results. Section 5 is the conclusion.

2 Models and Problem Definitions

2.1 Processor Models

We are interested in energy-efficient scheduling over ho-
mogeneous multiprocessors, where the power consumption
function of each task remains the same for every processor.
The power consumption functionP () in the dynamic volt-
age circuits is defined as a function of the adopted processor
speeds [7, 23]:

P (s) = CefV 2
dds, (1)

wheres = k (Vdd−Vt)
2

Vdd
, andCef , Vt, Vdd, andk denote the

effective switch capacitance, the threshold voltage, the sup-
ply voltage, and a hardware-design-specific constant, re-
spectively (Vdd ≥ Vt ≥ 0, k > 0, andCef > 0). The
value of the effective switch capacitance is highly related
to the software implementation and the execution path of
a task (usually derived by profiling). Note that the power
consumption function is a convex and increasing function
of processor speeds. WhenVt is 0, the power consump-
tion functionP (s) could be rephrased as a cubic function
of the processor speeds. As reported in the literature, e.g.,
[6, 14, 25], the power consumption function can be phrased
ash · sα, whereα is a hardware-dependent factor, andh is
a parameter related to the task under executions.

In this study, we assume that each processor could op-
erate at any speed in[0,∞], and the speed of each proces-
sor could be adjusted independently from each another. We
assume that the number of CPU cycles executed in a time
interval is linearly proportional to the processor speed, and
that the energy consumed for a processor in the execution of
a task at the processor speeds for t time units is the multipli-
cation oft and its corresponding power consumptionP (s)
at the speeds. Let the amount of CPU cycles completed for
a task running at a speeds for t time units be the multiplica-
tion of s andt. Suppose that the time and energy overheads
required on speed/voltage switching be negligible.

2.2 Task Models

Tasks under discussions in this paper are periodic and
independent in executions. A periodic task is an infinite

sequence of task instances, referred to asjobs, where each
job of a task comes in a regular period [15, 16]. Each task
τi is associated with its initial arrival time (denoted byai),
its execution CPU cycles (denoted byci), its period (de-
noted bypi), and its power consumption function (denoted
by Pi()). Note thatci denotes the maximum number of
CPU cycles required to complete the execution of any job
of τi. The power consumption functionPi() of each taskτi

is rephrased as a convex and increasing function of the pro-
cessor speeds, i.e.,Pi(s) = hi · sα, whereα is a hardware-
dependent constant between2 and3 [17, 21], andhi is a
positive parameter characterizing the average switch capac-
itance and the hardware factor. It is clear that eachPi(s)
is second-order differentiable. Given a setT of tasks, the
hyper-periodof T, denoted byL, is defined as the least
common multiple (LCM) of the periods of tasks inT. Let
the relative deadline of each taskτi be equal to its period
pi in this paper. That is, the arrival time and deadline of
thej-th job of taskτi areai + (j − 1) · pi andai + j · pi,
respectively.

2.3 Problem Definitions

A scheduleof a task setT is a mapping of the executions
of tasks inT to processors in the system with an assignment
of a processor speed for each corresponding task execution,
where the job arrivals of each taskτi ∈ T satisfy its tim-
ing constraintsai andpi. A schedule isfeasibleif no job
misses its deadline, and all jobs of the same task execute on
the same processor. The energy consumption of a schedule
S, denoted asΦ(S), is the sum of the energy consumption
of the executions of jobs inS. We are interested in real-
time energy-efficient scheduling of independent tasks over
multiple processors, where no task migration is allowed:

Definition 1 The Minimization Problem of the Energy Con-
sumption for Multiprocessor Scheduling

Given a setT of independent tasks executing overM
identical processors, the objective is to find a feasible sched-
uleS for T in its hyper-period such thatΦ(S) is minimized.

Suppose that jobs of each taskτi in a given scheduleS
execute at a speedsi. Φ(S) is equal to

∑
τi∈T

L
pi

Pi(si)
ci

si
,

whereT is a given set of tasks under considerations, andL
is the hyper-period ofT.

Theorem 1 The Minimization Problem of the Energy Con-
sumption for Multiprocessor Scheduling isNP-hard.

Proof. The correctness of this theorem follows from the
fact that the corresponding problems, whenPi(s) = s3,
ai = 0, andpi = D, areNP-hard (A similar argument to
the proof in [8, Theorem 1]).

With theNP-hardness of the above problems, the objec-
tive of this research is to propose approximated solutions



with approximation bounds. Formally, aγ-approximation
algorithm for the Minimization Problem of the Energy Con-
sumption for Multiprocessor Scheduling is an algorithm
that derives a feasible schedule with an amount of energy
consumption no more thanγ times of an optimal solution
(based on the definition ofγ approximation in [22,§1]).

3 On the Minimization Problem of the En-
ergy Consumption

In this section, we propose an approximation algorithm
for the Minimization Problem of the Energy Consumption
for Multiprocessor Scheduling. If the number of tasks in
T is no more thanM , an optimal schedule would execute
each taskτi on a different processor at the speedci/pi, for
i = 1, . . . , |T|. For the rest of this section, we will focus
our discussions on cases, where the number of tasks inT is
more thanM .

Let S be a feasible schedule ofT for the Minimiza-
tion Problem of the Energy Consumption for Multiproces-
sor Scheduling. LetSm denote the partial schedule ofS on
the m-th processor by removing the tasks running on the
other processors, andTm denote the set of tasks assigned
to execute on them-th processor. Note that∪M

m=1Tm = T

andTm ∩ Tn = ∅ for any m 6= n. We claim that there
must exist an optimal scheduleS∗ that satisfies the follow-
ing two properties for any partial scheduleS∗

m of S∗, where
1 ≤ m ≤ M : (1) For every taskτi in T ∗

m, all jobs ofτi exe-
cute at a common processor speed. (2) The total utilization
tasks inS∗

m, which is defined as the sum of the utilization
of each task (i.e., its execution time divided by its period)in
S∗

m, is equal to100%. This claim could be proved based on
the convexity of power consumption functions by a similar
argument to that for optimal energy-efficient scheduling in
a uniprocessor system [4].

Let xim be a binary variable to indicate whetherτi is as-
signed to execute on them-th processor, andti be a variable
denoting the execution time of taskτi. We can re-formulate
the Minimization Problem of the Energy Consumption for
Multiprocessor Scheduling as a convex programming as fol-
lows:

minimize
∑

τi∈T
Ei(ti)

subject to
∑

τi∈T
xim · ti/pi = 1, for m = 1, . . . , M

ti > 0, ∀τi ∈ T,∑M

m=1 xim = 1, ∀τi ∈ T, and
xim ∈ {0, 1} , ∀m = 1, . . . , M, andτi ∈ T,

whereEi(ti) is defined as theenergy consumptionto exe-
cute all of the jobs ofτi in the hyper-periodL at the speed
ci

ti
, i.e.,Ei(ti) = L

pi
Pi(

ci

ti
)ti = Lhi

pi

cα
i

t
α−1

i

. The reason why

ti > 0 comes from the assumption that the available speeds
are continuous in[0,∞].

Our proposed algorithm for the Minimization Problem
of the Energy Consumption for Multiprocessor Scheduling

consists of two phases: the relaxation phase and the round-
ing phase. In the relaxation phase, we relax the integral con-
straints on the variablesxim and derive an optimal solution
for the relaxed problem (which is a lower bound on the en-
ergy consumption of an optimal schedule). In the rounding
phase, we derive a feasible schedule based on the solution
derived in the first phase.

3.1 Relaxation Phase

With the integral constraints onxim being relaxed, we
could first rewrite the above convex programming problem
as follows:

minimize
∑

τi∈T
Ei(ti),

subject to
∑

τi∈T
ti/pi = M, and

0 < ti ≤ pi.
(2)

An optimal solution for Equation (2) is a lower bound on
the energy consumption for optimal schedules forT in the
Minimization Problem of the Energy Consumption for Mul-
tiprocessor Scheduling. Equation (2) can be resolved by
applying the Karush-Kuhn-Tucker optimality condition in
O(|T| log |T|). (Detail procedures to derive an optimal
solution of Equation (2) can be found in [3, 4, 9].) Let
(t∗1, t

∗
2, . . . , t

∗
|T|) be an optimal solution for Equation (2).

Lemma 1 When t∗i < pi and t∗j < pj , piE
′
i(t

∗
i ) =

pjE
′
j(t

∗
j ), whereE′

i() andE′
j() are the derivatives ofEi()

andEj(), respectively.

Proof. This Lemma is based on the Karush-Kuhn-
Tucker condition for the optimal solution(t∗1, t

∗
2, . . . , t

∗
|T|),

in which E′
i(t

∗
i ) −

λ
pi

= 0, andE′
j(t

∗
j ) −

λ
pj

= 0 for some
constantλ whent∗i < pi andt∗j < pj.

3.2 Rounding Phase

Let the utilizationu∗
i = t∗i /pi of task τi in T derived

in the first phase be called theestimated utilizationof τi.
In this phase, we derive a feasible schedule based on the
estimated utilizations of the tasks derived in the first phase,
i.e., (u∗

1, u
∗
2, . . . , u

∗
|T|), by adopting theLargest-Estimated-

Utilization-First strategy. The proposed algorithm is shown
in Algorithm 1 and denoted as AlgorithmLEUF:

Let Tm denote the set of the tasks assigned to execute on
them-th processor, which is an empty set initially.Um de-
notes thetotal estimated utilizationon them-th processor,
which is defined as the sum of the estimated utilizations of
tasks inTm. Tasks are considered to execute on a selected
processor in a non-increasing order of their estimated uti-
lizations. A task under consideration is assigned to execute
on them-th processor with the smallest total estimated uti-
lizationUm (Tie-breaking is done by choosing the smallest
indexm). After all of the tasks inT are assigned to execute



on a specific processor, the utilization ofτi is set asu∗

i

Um
for

every taskτi in Tm. That is, the execution time of every job
of taskτi is set as t∗i

Um
. The transformation of job execu-

tion times would result in a situation in which the total uti-
lization of tasks assigned on a processor is exactly equal to
100%. The scheduling of tasks on each processor could be
done successfully by the earliest-deadline-first scheduling
algorithm because the earliest-deadline-first schedulingal-
gorithm could always schedule periodic real-time indepen-
dent tasks with a total utilization no more than one [15].
The time complexity of AlgorithmLEUF is O(|T| log |T|).
For the simplicity of representation, any schedule derived
by Algorithm LEUF is denoted asSLEUF.

Algorithm 1 : LEUF

Input: (T,M);
Output: A feasible schedule;

1: if |T| ≤M then
2: return the schedule by executing each taskτi in T at the

speedci

pi
on thei-th processor;

3: let u∗
i be the estimated utilization forτi ∈ T;

4: sort T in a non-increasing order of their estimated utiliza-
tions;

5: U1 ← U2 ← · · · ← UM ← 0, andT1 ← T2 ← · · · ←
TM ← ∅;

6: for i = 1 to |T| do
7: find the smallestUm; (break ties by choosing the smallest

indexm)
8: Tm ← Tm ∪ {τi} andUm ← Um + u∗

i ;
9: for m = 1 to M do

10: for each taskτi ∈ Tm do
11: t′i ← t∗i ×

1

Um
;

12: return the scheduleSLEUF which executes taskτi in Tm

(1 ≤ m ≤ M ) at the speedci/t′i on them-th processor
in an earliest-deadline-first order;

3.3 Analysis of the Approximation Ratio

For notational brevity, lete∗i be theestimated energy con-
sumptionof the jobs of taskτi in the hyper-period, i.e.,
e∗i = Ei(t

∗
i ). Let T′ be the subset ofT, whereT′ consists

of tasks whose estimated utilizations are all strictly lessthan
1. That is,T′ = {τi | t∗i /pi < 1, ∀τi ∈ T}. For notational
brevity, letT̂ beT \ T

′. Note that we only focus our dis-
cussions on the case thatT

′ is not empty, since Algorithm
LEUT guarantees to derive an optimal schedule for the other
case.

Lemma 2 For any two tasksτi, τj ∈ T
′, e∗

i

u∗

i

=
e∗

j

u∗

j

.

Proof. By the equality ofhi
L
pi

cα
i

(t∗
i
)α · pi = L

pj
hj

cα
j

(t∗
j
)α · pj

in Lemma 1, we know thatu
∗

i

u∗

j

=
e∗

i

e∗

j

.

Lemma 3 Suppose thatUm∗ andUm̂ are the maximum and
the minimum total utilizations, respectively, thenUm̂ ≤ 1 ≤
Um∗ ≤ 2Um̂.

Proof. By definition, we know thatUm̂ ≤ 1 ≤ Um∗ . If
Um∗ is equal to1, we know thatUm̂ is also equal to1 by
applying the pigeon-hole principle. For the rest of this dis-
cussion, we only focus on the other case thatUm∗ is greater
than1. Since the estimated utilization of a task is no greater
than1, Tm∗ consists of at least two tasks. Letτv be the last
one inserted intoTm∗ . Since the tasks are assigned in a non-
increasing order of their estimated utilization to executeon
the processor whose current total estimated utilization isthe
smallest, we knowu∗

v ≤ Um∗ − u∗
v ≤ Um̂. Therefore, we

haveUm∗ ≤ 2Um̂.

Lemma 4 Supposef(x) = k · (2x)α + (H − k)xα for
a positive numberH and a non-negative numberk, where
0 ≤ k ≤ H and2k · x + (H − k) · x = H , then

f(x) ≤
(α − 1)α−1(2α − 1)α

αα(2α − 2)α−1
H.

Proof. Since2k·x+(H−k)·x = H , we knowk = H−Hx
x

.
Therefore,

f(x) = H(xα−1(2α − 1) + xα(2 − 2α)),

and the derivative off(x) is

f ′(x) = H((α − 1)xα−2(2α − 1) + αxα−1(2 − 2α)).

f(x) is maximized atx∗ when f ′(x∗) = 0. By solving
f ′(x∗) = 0, we havex∗ = (α−1)(2α−1)

α(2α−2) . As a result, we

conclude thatf(x) ≤ f(x∗) = (α−1)α−1(2α−1)α

αα(2α−2)α−1 H.

Based on Lemmas 2, 4, and 3, the approximation ratio of
the algorithm could be proved as follows:

Theorem 2 AlgorithmLEUT is a polynomial-time
(α−1)α−1(2α−1)α

αα(2α−2)α−1 -approximation algorithm for the Mini-
mization Problem of the Energy Consumption for Multipro-
cessor Scheduling.

Proof. Let τr be a task inT′. Based on Lemma 2 and the
optimality of

∑
τi∈T

e∗i , we haveΦ(S∗) ≥
∑

τi∈T
e∗i =∑

τi∈T̂
e∗i + e∗r/u∗

r

∑
τi∈T′ u∗

i =
∑

τi∈T̂
e∗i + e∗r/u∗

r(M −

|T̂|), whereS∗ is an optimal schedule forT.
Sinceu∗

i is equal to1 for 1 ≤ i ≤ |T̂|, thei-th processor
is assigned only a task inSLEUF . Based on Lemma 2, we
have

Φ(SLEUF) =
∑

τi∈T̂

e∗i +

M∑

m=|T̂|+1

e∗r
u∗

r

(Um)α. (3)

The approximation ratioA of Algorithm LEUF is

A =
Φ(SLEUF)

Φ(S∗)
≤

∑M

m=|T̂|+1(Um)α

M − |T̂|
. (4)
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Figure 1. The approximation ratio of Algo-
rithm LEUF for different values of α.

Based on Lemma 3, we have2Um̂ ≥ Um∗ ≥ Um ≥ Um̂,
for all |T̂| < m ≤ M . Because of the convexity of the
functionUα

m of Um and the fact2Um̂ − Um ≥ 0, we have

M
X

m=|T̂|+1

Uα
m ≤ k · (2Um̂)α + (M − |T̂| − k)(Um̂)α,

where2k · Um̂ + (M − |T̂| − k)Um̂ = (M − |T̂|). Let
f(x) be defined ask · (2x)α + (H − k)xα for a positive
numberH and a non-negative numberk, wherek ≤ H
and2k · x + (H − k) · x = H . By Lemma 4,f(x) ≤
(α−1)α−1(2α−1)α

αα(2α−2)α−1 H by solvingf ′(x) = 0. By settingH

as (M − |T̂|) and considering Equation (4), this theorem is
proved.

Corollary 1 The approximation ratio of AlgorithmLEUF is
1.412.

Proof. The proof is done by settingα as3.
For different values ofα, the approximation ratio of Al-

gorithmLEUF is illustrated in Figure 1.

4 Performance Evaluation

In this section, we provide performance evaluation on the
energy consumption of AlgorithmLEUF. We also imple-
mented algorithms in [1, 5], and revised the algorithm [8]
by sorting tasks in a non-increasing order ofci/pi. How-
ever, the performace of these algorithms was much worse
than AlgorithmLEUF since they were proposed for tasks
with the same power consumption function. Hence, another
algorithm, denoted as AlgorithmRAND, which is very sim-
ilar to AlgorithmLEUF, was simulated for comparison. The
only difference between AlgorithmRAND and Algorithm
LEUF is that tasks are not sorted before the assignment pro-
cedure in AlgorithmRAND.

4.1 Workload Parameters and Performance Met-
rics

Each periodic real-time task was generated based on
three parameters: the numberbi of jobs within the time in-

tervalL, the required CPU cyclesci, and the coefficienthi

of the power consumption function. The value ofbi was
an integral variable uniformly distributed in the range of
[1, 16]. ci was an integral variable uniformly distributed in
the range of[1, 100], while hi was uniformly distributed in
the range of[2, 10]. The exponent of the power consump-
tion functions of the processor speeds was set as3, i.e.,
Pi(s) = his

3, provided that the threshold voltageVt is 0.
To evaluate the effect of the exponent of the power con-
sumption function, we also perform simulations by setting
α as a random variable between2.5 and3 used for a set of
tasks under simulations. The period of taskτi was set asL

bi
.

We simulated the algorithms for the effects on the ratio
of the number of tasks to the number of processors. For a
given ratioη of the number of tasks to the number of proces-
sors, the number of processorsM was an integral random
variable between10 and30, and the number of tasks was set
as the floor of the multiplication ofη andM , i.e.,⌊η · M⌋.
The relative energy consumption ratiowas adopted as the
performance metric in our experiments. The relative energy
consumption ratio for an input instance was defined as the
energy consumption of the schedule derived by the algo-
rithm to the optimal solution of Equation (2).

4.2 Experimental Results

For the Minimization Problem of the Energy Consump-
tion for Multiprocessor Scheduling, Figures 2(a) and 2(b)
present the average relative energy consumption ratios for
the simulated algorithms whenα is in the range of[2.5, 3]
and is3, respectively. The performance of AlgorithmLEUF

was very close to that of the optimal solutions. The aver-
age relative energy consumption ratios for AlgorithmLEUF

were less than1.01. The average relative energy consump-
tion ratios for AlgorithmRAND were less than1.46. When
the ratio of the number of tasks to the number of processors
was small, both of AlgorithmLEUF and AlgorithmRAND

might assign a task along with improper tasks on a proces-
sor. Such an assignment might result in a significant in-
crease on the energy consumption of these tasks when the
energy consumption for the other tasks were almost as the
same as that in the optimal schedule. When the ratio of the
number of tasks to the number of processors was small, in
most cases, most processors were assigned with only one
task, and the assignment was almost as the same as that of
an optimal schedule. Therefore, the average energy con-
sumption ratio was relatively small when the ratio of the
number of tasks to the number of processors was less than
1.6.

5 Conclusion

In this paper, we explore approximation algorithms for
energy-efficient scheduling of periodic real-time tasks over
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Figure 2. (a) and (b): average relative energy consumption r atios for different settings on α.

multiple processors, where the scheduling problem isNP-
hard. The task model explored in this work is more general
than many previous studies in energy-efficient multiproces-
sor real-time scheduling, where tasks under considerations
might have different periods, initial arrival times, CPU exe-
cution cycles, and power consumption functions. When the
goal is on the minimization of energy consumption, we pro-
pose a1.412-approximation algorithm in the derivation of a
feasible schedule.
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Abstract

Energy efficiency has become a primary design criterion
for mobile multimedia devices. Prior work has proposed
saving energy through coordinated adaptation in multiple
system layers, in response to changing application demands
and system resources. The scope and frequency of adapta-
tion pose a fundamental conflict in such systems. The Illi-
nois GRACE project addresses this conflict through a hier-
archical solution which combines (1) infrequent (expensive)
global adaptation that optimizes energy for all applications
in the system and (2) frequent (cheap) per-application (or
per-app) adaptation that optimizes for a single application
at a time. This paper demonstrates the benefits of the hi-
erarchical adaptation through a second-generation proto-
type, GRACE-2. Specifically, it shows that in a network
bandwidth constrained environment, per-app application
adaptation yields significant energy benefits over and above
global adaptation.

1 Introduction

Mobile devices primarily running soft real-time multi-
media applications are becoming an increasingly important
computing platform. Such systems are often limited by their
battery life, and saving energy is a primary design goal. A
widely used energy saving technique is to adapt the system
in response to changing application demands and system
resources. Researchers have proposed such adaptations in
all layers of the system; e.g., hardware, application, oper-
ating system, and network. Recent work has demonstrated
significant energy benefits in systems that employ coordi-
nated multiple adaptive system layers or cross-layer adap-
tation [30, 31].

Such systems must employ intelligent control algorithms
�

This work is supported in part by the National Science Foundation
under Grant No. CCR-0205638 and a gift from Texas Instruments.

that determine when and what adaptations to invoke, to ex-
ploit the full potential of the underlying adaptations. These
algorithms must balance the conflicting demands of adapta-
tion scope and frequency. On one hand, an algorithm that
considers all applications and adaptive system layers, re-
ferred to as global, is likely to save more energy than a more
limited scope algorithm (e.g., considering only one applica-
tion at a time). On the other hand, global algorithms are
also likely to be more expensive since they must optimize
across the cross-product of all configurations of all adaptive
layers, considering the demands of all (possibly adaptive)
applications on these configurations.

Previous cross-layer adaptation work, therefore, per-
forms global adaptation relatively infrequently (e.g., when
an application enters or leaves the system [30, 31]). This
infrequent invocation in turn reduces the system’s respon-
siveness to change, potentially sacrificing energy benefits.
Other work performs adaptations more frequently, but as-
sumes only one application in the system [25] or only a sin-
gle adaptive layer [8].

To balance the conflict of frequency vs. scope, the Illi-
nois GRACE project (Global Resource Adaptation through
CoopEration) takes a hierarchical approach that invokes
expensive global adaptation occasionally, and inexpensive
limited-scope adaptations frequently [24, 30, 31]. GRACE
uses three adaptation levels, exploiting the natural frame
boundaries in periodic real-time multimedia applications
(Figure 1 [24]). Global adaptation considers all applications
and system layers together, but only occurs at large system
changes (e.g., application entry or exit). Per-application
adaptation (or per-app) considers one application at a time
and is invoked every frame, adapting all system layers
to that application’s current demands. Internal adaptation
adapts only a single system layer (possibly considering sev-
eral applications) and may be invoked several times per ap-
plication frame. All adaptation levels are tightly coupled by
ensuring that the limited-scope adaptations respect the re-
source allocations made by global adaptation. The different
adaptation levels may or may not consider the same adap-

1



(a) Global 
cross-layer adaptation

(b) Per-app 
cross-layer 
adaptation

(c) Internal 
per-layer adaptation

time

la
ye

r

ap
p

coarse
granularity

hardware

network

OS

app 1
…
app n la

ye
r

hardware

network

OS

medium
granularity

fine
granularity

time

app i

ap
p

app i

h/w

n/w

OS

Figure 1. GRACE adaptation hierarchy. (We
do not yet adapt the network.)

tations; they are distinguished by the granularity at which
they consider an adaptation (e.g., both global and per-app
levels may consider dynamic voltage and frequency scaling
or DVFS for CPU adaptation).

We previously reported on the first GRACE prototype,
GRACE-1, with adaptations in the CPU (DVFS), applica-
tion (frame rate and dithering), and soft real-time scheduler
(CPU time allocation) [30, 31]. GRACE-1’s focus was on
cross-layer global adaptation, for which it showed signifi-
cant energy benefits. It reported a few experiments with hi-
erarchical adaptation in the CPU and scheduler, but showed
only modest benefits over global adaptation

This work focuses on the benefits of hierarchical adap-
tation in a mobile multimedia system, and reports results
from the second generation prototype, GRACE-2. Our main
contribution is to show that per-app application adaptation
provides significant benefits over and above global adapta-
tion when network bandwidth is constrained. These ben-
efits occur with and without per-app CPU adaptation. No-
tably, the benefits with both per-app application and per-app
CPU adaptation are often more than additive. In contrast,
GRACE-1 neither provided per-app application adaptation
nor implemented a network constraint, and is thus unable to
obtain GRACE-2’s benefits. Further, GRACE-1’s hierarchi-
cal adaptation had to be redesigned to incorporate per-app
application adaptation because it implicitly assumed a fixed
application configuration between global adaptations.

GRACE-2 is implemented on a Pentium M based laptop
running Linux 2.6.8-1. As illustrated in Table 1, GRACE-2
implements global adaptations in the CPU, application, and
soft real-time scheduler; per-app adaptation in the CPU and
application; and internal adaptation in the scheduler. It re-
spects the constraints of CPU utilization and network band-
width, while minimizing CPU and network transmission en-
ergy. All aspects of the system are fully implemented except
for network communication. We report both the measured
energy savings for the entire system and modeled energy

Objective: Minimize CPU and network transmission energy
Constraints: CPU time, network bandwidth

Layer Adaptation Hierarchy level
Global Per-app Int.

CPU Dynamic voltage
and frequency
scaling (DVFS)

yes yes no

Application Drop DCT and
motion estimation
computations
based on adaptive
thresholds

yes yes no

Scheduler Change CPU
time, network
bandwidth budget

yes no yes

Table 1. Adaptations supported in GRACE-2

savings for just the CPU and network (we could not isolate
the CPU energy through measurements).

We emphasize that the individual adaptations in
GRACE-2 are not our focus, and have been previously pro-
posed. Our focus is on their hierarchical control, and specif-
ically on per-app application adaptation.

To our knowledge, this work is the first to demonstrate
the benefits (energy savings) from per-app application adap-
tation over and above global adaptation. It is also the first
to demonstrate significant benefits from hierarchical adap-
tation on a real multimedia system implementing multiple
applications, adaptations, and constraints. Section 6 further
discusses related work.

2 Layer Adaptations and Models

2.1 CPU

Adaptations: We study dynamic voltage and frequency
scaling (DVFS). Our Pentium M CPU supports five fre-
quencies

�
600, 800, 1000, 1200, 1300 MHz � and corre-

sponding voltages
�
956, 1260, 1292, 1356, 1388 mV � [13].

To partially alleviate the limitations of the small number
of discrete DVFS points supported, we emulate a continu-
ous set of DVFS points as follows [14]. If we need to run
at an unsupported frequency, � , we run at the supported fre-
quency just below � (say ��� ) for some number of cycles (say� � ) and the supported frequency just above � (say ��� ) for the
remaining cycles (say � � ). If � cycles need to be executed,
then � �	� � ��
 � and �
 
 ���
 � � ���
 �Energy model: We report energy measurements from
the actual system. However, we could not isolate the CPU
energy from the rest of the measured system energy. To
better understand the impact of our adaptations on the CPU
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Bandwidth (Mbps) 2 5.5 11
Energy per byte ( ���

�
J) 4 2 .08

Table 2. Network bandwidth and energy/byte.

energy and to provide a CPU energy model to the adap-
tation control algorithms, we use the following: Energy =
Power � Execution Time, where we approximate power at
frequency � and voltage

�
by dynamic power �

���
� � .

We derive the proportionality constant using published
numbers for the maximum Pentium M power. The above
model does not incorporate leakage (static) power or the ef-
fect of application-specific clock gating (as is the case in
much of the DVFS literature). These are difficult to incor-
porate analytically and do not affect the overall trends in the
impact of per-app adaptation. This is substantiated by our
measured (entire system) energy numbers which do include
all effects.

It is noteworthy that CMOS technology is currently in
the realm where frequency reductions result in sub-linear
voltage reductions. Thus, while previously frequency re-
ductions resulted in quadratic energy reductions (due to lin-
ear voltage reductions), this is no longer the case.

2.2 Network (non-adaptive)

We assume a non-adaptive (simulated) network layer
with fixed available bandwidth. We model network trans-
mission energy using a fixed energy/byte cost: Network
Energy = EnergyPerByte � BytesTransmitted [4]. Table 2
summarizes energy per byte for different bandwidth values
in an IEEE 802.11b wireless network, based on the energy
consumption of a Cisco Aironet 350 series PC card [4].

We use different bandwidth values to model different
constraints in the system. If the value selected is between
two values in Table 2 (possible since not all the bandwidth
of the channel is available to one node), we assume trans-
mission cost of the higher bandwidth. We believe our net-
work configurations represent reasonable scenarios seen in
practice. Responding to variations in network bandwidth
with an adaptive network layer is part of our ongoing work.

2.3 Applications

We consider periodic soft real-time applications or tasks.
An application releases a job or a frame at the end of each
period. We study workloads consisting of various combi-
nations of speech and video encoders and decoders (Sec-
tion 4). Our H.263 video encoder is adaptive while the other
applications are non-adaptive.

Adaptations in the H.263 video encoder: We use the
adaptations proposed in [25] (in the context of a system with
a single application, and without global adaptation). Since

these are not our focus, we only summarize them next and
refer to [25] for details.

The adaptations trade off CPU computation (i.e., CPU
energy) for the number of bytes transmitted (i.e., network
transmission energy), to minimize the total CPU+network
transmission energy. The appropriate trade off varies dy-
namically, depending on the video stream, the system load,
and the ratio of network energy per byte to CPU energy per
cycle (which depends on the chosen CPU frequency).

The adaptations work at the granularity of a single video
frame. They enable dropping certain DCT (discrete cosine
transform) computations and motion searches based on a
threshold (set by the adaptation control algorithm) for the
corresponding frame. The net effect is that, by changing the
thresholds, the control algorithm can vary the bit rate and
the computation cycles for a frame by about a factor of two.
These adaptations can potentially reduce the PSNR (pseudo
signal to noise ratio) of the stream, but this is compensated
for by adjusting the quantizer step size. Thus, the adaptive
encoder can be scaled between a highly compute-intensive
but lower bit rate configuration to a less compute-intensive
higher bit rate configuration, without affecting the quality of
the decoded video.

We study four DCT and four motion-search thresholds,
resulting in a configuration space of sixteen different en-
coder configurations.

Deadline misses and frame drops: A frame that does
not complete computation or transmission of all its bytes
by the end of the ensuing period is said to miss its dead-
line, with one exception. For video encoders, if a frame
finishes its computation within 1ms of its period, we do not
count it as a miss. We find these delays do not accumulate
(the misses are not clustered). If the video encoder misses
its deadline for one frame, the encoding/transmission for
that frame continues in the next period, borrowing from the
budget of the next frame. If it misses the deadline for two
frames in a row, then the next frame is entirely dropped
(i.e., incurs no computation or network transmission), en-
abling the encoder to catch up on its previous frame over-
runs. We have not (yet) modified the other applications to
drop frames.

Since we use soft real-time applications, we assume that
we may miss the deadline for or drop a total of up to 5%
of all frames, without affecting quality. Although strictly
speaking, missing a deadline by a small interval and drop-
ping an entire frame have different effects on quality, we do
not distinguish between the two and seek to limit both of
these effects to a total of 5%.

2.4 OS Scheduler

We assume an earliest-deadline-first (EDF) soft real-time
scheduler for CPU time and network bandwidth. The sched-
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uler is responsible for enforcing budget allocations for both
CPU time and network bandwidth. To reduce deadline
misses due to imperfect predictions of resource demands,
the scheduler performs an internal adaptation called budget
sharing [2]. Briefly, this allows an application to reclaim
unused budget from previous applications’ underruns. The
EDF CPU scheduler maintains a record of all unused bud-
gets and their expiration times (i.e., the deadline for the job
that released the budget). When an application is scheduled,
the scheduler first tries to exhaust any unused budget before
charging the elapsed cycles to the application. The unused
budget can be given to an application only if the expiration
time of the budget is less than the deadline for the appli-
cation [2]. We similarly exploit network bandwidth sharing
between applications. Unless stated otherwise, budget shar-
ing is used in all systems studied here.

3 Adaptation Control Algorithms

3.1 Global Control

Overview: We use a global control algorithm similar
to that in [31], but extended to incorporate a network band-
width constraint. The algorithm is invoked on large changes
in the system; e.g., when an application enters or exits.
As input, the algorithm receives the resource requirements
(CPU utilization, network bandwidth, CPU+network en-
ergy) for each combination of application and CPU config-
uration. The algorithm must then choose, for each applica-
tion, the combination of the application and CPU configu-
ration such that (i) the total CPU+network energy is mini-
mized, and (ii) the resource requirements for all the appli-
cations (running with the chosen configurations) are met.

More formally, for application � , let Period � be its period
and ��� be a chosen CPU and application configuration com-
bination. Let Energy ��� ��� be the energy consumed, Time ��� ���
be the CPU time taken, and Bytes ��� ��� be the network bytes
required by a frame of application � with configuration � � .
Let there be a total of 	�

�
��� applications in the system and
let � be the total network bandwidth (assumed to be fixed).
Then the global algorithm must choose the CPU and appli-
cation configuration � � for each application � to:

minimize ���������������� Energy ��� � �
subject to EDF scheduling and bandwidth constraints:

� ��������
�����

Time ��� � �
Period �! #" and

� ���$�
��
�����

Bytes �%� � �
Period �& �

Solving the optimization: The above optimization
problem is a multi-dimensional multiple-choice knapsack
problem (MMKP) [17] and is known to be NP-hard. For the

purpose of determining energy savings, we solve this prob-
lem using a brute force exhaustive search approach (with
one modification below), to give global control the best
showing. This approach is impractically expensive for a
real system. When reporting the overhead for global, we
use a more practical, but possibly sub-optimal heuristic ap-
proach based on Lagrangian techniques [17]. (We found the
energy savings of both approaches to be comparable for the
scenarios studied here.)

To reduce the complexity of both solution approaches,
we choose the same frequency (CPU configuration) for all
applications. We justify this heuristic by Jensen’s inequal-
ity [15]: if the CPU energy per unit time is a convex func-
tion of frequency, then the best frequency setting is a single
point for all applications (if the CPU does not support this
single point, then a combination of adjacent supported fre-
quencies is best). This optimization enables us to solve the
MMKP problem separately for each supported frequency.
We then pick the frequency that provides the minimum en-
ergy with the chosen application configurations at that fre-
quency.

After the above process, it is possible that the chosen
application configurations and frequency do not exhaust all
the CPU utilization and network bandwidth. In that case,
the leftover resources are divided among the applications
in proportion to their current allocation. This leftover CPU
utilization allows a further reduction in frequency. If the
resulting frequency is not directly supported, the continuous
DVFS emulation discussed in Section 2.1 is used.

Predicting resource requirements: The global al-
gorithm requires predicted resource usage of a frame
(Energy��� ��� , Time ��� ��� , and Bytes �%� �'� in the optimization
equations). These predictions must be representative of all
frames until the next global adaptation is invoked. Follow-
ing previous work on resource allocation and scheduling for
soft real-time multimedia applications [3, 31], we use pro-
filing of several frames to determine the resource usage. (In
our experiments, since our streams are relatively short and
since we would like to give global the best showing, we
profiled the entire stream off-line.)

To reduce the amount of profiling, we leverage findings
from [12]. Specifically, for our applications, the number
of execution cycles for a given frame for a given appli-
cation configuration is roughly independent of frequency;
therefore, execution time scales roughly linearly with fre-
quency.1 Thus, by profiling each application configuration
at a single CPU frequency, we are able to estimate the ex-
ecution time (and the number of bytes) at all frequencies.
These estimates also allow estimation of energy using the
models in Section 2.

Since we assume a 5% deadline miss rate is acceptable,

1This is because these applications generally hit in the cache and do not
see much memory stall time [12].
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we use the execution time (and bytes) from the frame that
falls in the 95th percentile of all profiled frames. For en-
ergy, we are concerned with minimization and not meeting
a constraint. We therefore use the average time and bytes
from the profiled frames as input to the energy models.

In practice, we expect to use on-line profiling of a few
hundred frames [29]. For long streams, this poses a negli-
gible overhead. In our experiments, since our streams are
short and since we would like to give global the best show-
ing, we profiled the entire stream off-line to determine the
95th percentile and average values.

3.2 Per-App Control

The per-app control algorithm (derived from [25]) is in-
voked at the start of a frame with the following inputs: (1)
the resource allocation for the frame and (2) the resource
requirements for the frame for each application configura-
tion. The algorithm then simply chooses the application and
CPU configuration combination that has the least energy,
and whose CPU time and network bandwidth requirement
is within its allocation. If such a combination is not found,
then we use the application and CPU configuration of the
last frame (likely leading to a deadline miss). The complex-
ity of this algorithm is of the order of the product of the
number of application and CPU configurations.

Predicting resource requirements: As for the global
algorithm, estimating the execution cycles and bytes for a
frame enables estimating all its resource requirements (exe-
cution time, bandwidth, and energy). Unlike global control,
per-application control requires predicting resource usage
for only the next frame.

For non-adaptive applications, we use a common
history-based technique, where the average of the execu-
tion cycles and bytes in the last five frames is used to predict
these quantities for the next frame. For the adaptive appli-
cation, the history of the past frames may be for different
application configurations, and cannot be used directly to
predict the behavior of the next frame for yet other configu-
rations. We therefore use an off-line profiling based predic-
tion technique proposed by Sachs et al. as follows [25].

The technique generates an execution cycle predictor
off-line by repeatedly encoding one or more sequences (for
a fixed hardware frequency), randomly changing the en-
coder configuration at each frame. This off-line run gen-
erates several points for every pair of (previous, next) en-
coder configurations, mapping the number of cycles in the
previous frame to the those in the next frame. The predictor
is generated by fitting a function in the least-squared sense,
for every pair of (previous, next) configurations. A byte
count predictor is similarly generated. To avoid deadline
misses, we conservatively add an adaptive leeway into the
predicted values for both execution cycles and bytes. Im-
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Figure 2. Integrated global and per-
application control.

proving the predictors for adaptive applications is part of
our future work.

When the per-app adaptation is invoked, it determines
the cycle count and byte count for each application config-
uration for the next frame by using the appropriate predic-
tor, given the knowledge of the previous frame’s application
configuration, actual cycle count, and actual byte count.

3.3 Integrating Global and Per-App Control

A system that runs with only global control uses the
frequency and application configurations as chosen by the
global algorithm. In a system that additionally incorporates
per-app control, the global algorithm’s choice of configu-
ration is only used to determine the resource allocation for
each application. This resource allocation is fed as input to
the per-app control algorithm. The latter then determines
the appropriate configurations for the next frame based on
its predictions of the resource usage of that frame and its al-
location. Since the per-app controller makes a prediction
only for the next frame, based on knowledge of all past
frames, it is likely that its prediction is better than that of
the global algorithm. Therefore, the per-app controller is
likely to better utilize the resources that were allocated to
its application by the global algorithm. Figure 2 summa-
rizes the integrated system. As shown, the only interaction
between the global and per-app controller is that the former
gives the resource allocation to the latter.

4 Experimental Methodology

Implementation: We have implemented all aspects of
the system studied except for the network communication
(which is replaced with file I/O). Our implementation is
on an IBM ThinkPad R40 laptop running the Linux kernel
2.6.8-1, and is described in detail in [27].

Energy measurement: We use an Agilent 66319D sam-
pling power supply to measure the energy consumed by the
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# Applications Inputs Fps Mbps
1 video (enc, enc) foreman, buggy 30 2
2 video (enc, enc) foreman, buggy 20 3.3
3 video (enc, dec) carphone, paris 30 2
4 video (enc, dec) carphone, paris 30 2.1

audio (enc, dec) clinton, lpcqutfe 50
5 video (enc, dec, dec) foreman, carphone, 30 6.7

football
audio (enc, dec, dec) female, clinton, male 50

Table 3. Workloads evaluated.

entire system. The measurements were done with the dis-
play brightness set to level 3 (0 is minimum). The wireless
card was turned off, the laptop battery was removed, and
the only applications running were from the experimental
workload. All other parts of the system (e.g., hard drive)
were on. The network energy used was calculated using the
model in Section 2.2, and was added to the above measured
energy to give the total system energy in Section 5.3.

Since we cannot isolate the CPU energy in our measure-
ments and since the CPU and the network are the targets of
our energy adaptations, our first set of results (Section 5.2)
are based on modeled CPU (+network) energy, using the
model in Section 2.1.

Workloads: We study various combinations of an H.263
video encoder and decoder and a speech encoder and de-
coder [28], representing workloads such as remote sensing
and teleconferencing [27]. The video encoder is adaptive
(Section 2.3) while the other applications are non-adaptive.
We use standard video and audio input streams available on
the Internet (QCIF size frames for the video encoder and
CIF for the video decoder). To study the effect of differ-
ent types of resource constraints (CPU load, network band-
width), we run the workloads with different periods (frame
rates) for the constituent applications and different values
of the available network bandwidth. We studied 16 differ-
ent workloads covering four resource constraint scenarios:
unconstrained, only CPU constrained, only network con-
strained, and both CPU and network constrained [27]. For
space, here we report detailed results from the (most sig-
nificant) last two scenarios (i.e., those with a network con-
straint), and summarize the rest. We choose five representa-
tive workloads for the network constrained scenarios, sum-
marized in Table 3. Each run includes between 150 to 500
frames for each application.

5 Results

5.1 Overheads

A detailed discussion of experiments showing the over-
heads of global and per-app adaptation appears in [27],
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Figure 3. CPU+network energy benefits from
per-app application adaptation. For each
workload, the leftmost bar shows energy for
a system with global adaptation in the CPU,
application, and scheduler. The next three
bars include this global adaptation as well
as per-app CPU adaptation, per-app applica-
tion adaptation, and both per-app CPU and
per-app application adaptation (i.e., GRACE-
2) respectively. The energy for each system
is normalized to the system with only global
adaptation (leftmost bar).

here we briefly summarize our observations. As expected,
global adaptation is significantly more expensive than per-
app adaptation. For example, in one case, global adaptation
took about 4% of a video encoder’s average frame com-
putation time, without including the overhead for on-line
profiling for predicting the application’s resource usage. In
contrast, the per-app adaptation overhead was 8X lower.
Further, as the number of possible adaptive layers, adap-
tive components within each layer, and the number of adap-
tive states within each component increases, the overhead
of global will increase much faster than per-app.

5.2 CPU and Network Energy Savings

Figure 3 illustrates the energy benefits in the CPU-
network subsystem of per-app application adaptation. For
each workload, the leftmost bar shows a system with global
adaptation in the application, CPU, and scheduler. The next
three bars shows systems that incorporate this global adap-
tation and additionally have per-app CPU adaptation (sec-
ond bar), per-app application adaptation (third bar), and
both per-app application and per-app CPU adaptation (the
last bar, which represents GRACE-2). The energy of all
systems is normalized to that consumed by the system with
only global adaptation (the first bar).
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Figure 3 shows that adding per-app application adapta-
tion to a system with global adaptation can result in sig-
nificant energy benefits. The benefits remain significant re-
gardless of whether the base global system contains per-app
CPU adaptation (second bar) or not. Relative to a system
with only global adaptation, the energy savings from adding
per-app application adaptation range from 9% to 18% with
an average of 14% for the cases shown here. Relative to a
system with both global and per-app CPU adaptation, the
energy savings from adding per-app application adaptation
range from 12% to 31% with an average of 21%.

It is noteworthy that adding only per-app CPU adapta-
tion to global adaptation gives modest benefits.2 In con-
trast, combining CPU and application adaptation at the per-
app level gives more than additive benefits in some cases,
resulting in quite significant overall savings of hierarchical
adaptation relative to a system with only global adaptation.

Experiments from scenarios without a network con-
straint showed no benefit from per-app application adapta-
tion and modest benefit (6% average) from per-app CPU
adaptation, relative to global adaptation [27]. For reference,
we also note that global adaptation gave significant benefits
(41% average) relative to the non-adaptive system [27].

Analysis: A detailed analysis and supporting data to
explain why per-app application adaptation shows signifi-
cant benefits for the network constrained case and not for
other cases appears in [27]. Briefly, for the specific case of
our laptop based system, CPU energy dominates over the
network energy. Therefore, the application configuration
with the least computation is typically the most energy ef-
ficient. However, in a network bandwidth constrained sce-
nario, there may be some frames for which this configura-
tion produces too many bytes. Since the global-only system
must pick a configuration safe for most frames, it cannot
pick this configuration. GRACE-2’s frame by frame adap-
tation, however, is able to pick this configuration for all the
frames that produce bytes within the bandwidth constraint,
thereby resulting in energy savings.

5.3 System-Wide Energy Savings

We next discuss (measured) system-wide energy savings
of GRACE-2 over a system with only global adaptation.3

Across all workloads in the scenarios with a network con-
straint reported in [27], we found that GRACE-2’s per-app
adaptation provides a system-wide energy benefit of 7% to
14% with an average of 10% (relative to only global adap-
tation). These savings are significant, considering that they

2The benefits from CPU adaptation are modest relative to those seen
for DVFS in much prior work due to the sub-linear relationship between
frequency and voltage reductions in recent processors (Section 2.1).

3As explained, the network energy is realistically modeled, but is a very
small part of the system energy [27].

are for the entire system including the display, disk, power-
supply loss, and memory system; they are actual measured
values; and they come from only adaptation of the CPU and
application. (As reference, the one workload with multiple
applications reported for GRACE-1 showed system-wide
savings from hierarchical adaptation of only 3.8%, relative
to global adaptation [30].)

5.4 Deadline Misses and Budget Sharing

The main benefit of budget sharing (i.e., the internal
scheduler adaptation described in Section 2.4) is in re-
ducing the number of deadline misses (including frame
drops). Budget sharing has negligible ( � 1%) effect on en-
ergy. GRACE-2 shows acceptable deadline misses (within
5%) for each application in each scenario/workload stud-
ied. Without budget sharing, the deadline miss ratios are
high (up to 23%) for several cases. Thus, budget sharing is
effective and critical for our system.

6 Related Work

There has been a large amount of work on energy and
bandwidth driven adaptations and resource allocation that
is relevant to this work. This includes CPU adaptation
with and without coordination with a real-time scheduler
(e.g., [1, 8, 19, 20, 22, 26, 32]), adaptation of one or
more applications with and without OS/middleware support
(e.g., [6, 7, 9, 10, 16, 18, 21]), and single-layer or cross-
layer adaptation or resource allocation with only global
control supporting multiple applications (e.g., [11, 33, 23])
or only per-app control supporting a single application
(e.g., [25]). The focus of this work, however, is on hier-
archical adaptation control in a cross-layer adaptive system,
and more specifically on fine-grained (per-app) application
adaptation. None of the above systems exhibit this property.

The systems most closely related to the hierarchical
adaptation of GRACE-2 are GRACE-1 [30, 31] which has
already been discussed and Fugue [5]. Fugue proposed
adaptation at multiple time scales for wireless video [5].
This is one of the key features of GRACE-2’s hierarchi-
cal control. However, Fugue differs from GRACE-2 in the
following important ways. First, it considers only one ap-
plication running. Second, it is based on the insight that
different types of adaptations work on different time scales;
e.g., application quality control must occur at a coarser time
scale than network transmission power control. GRACE-
2’s global and per-app controllers consider the same set of
adaptations, but for different purposes – the former uses
them for resource allocation among multiple applications
while the latter does the actual adaptation. Incorporating
adaptations that inherently work at different time scales can
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be viewed as an orthogonal issue – our system incorporates
these as well, but that is not the focus of this work.

7 Conclusions

The GRACE project balances the scope and frequency of
energy saving adaptations in multiple layers through a hier-
archical approach, where expensive and infrequent global
adaptation allocates resources among applications based
on long-term predictions, and inexpensive per-application
control seeks to make the energy-optimal use of these re-
sources through localized short-term predictions and cross-
layer adaptations.

This paper presents results from the second generation
prototype, GRACE-2. Specifically, it shows that per-app
application adaptation provides significant benefits over and
above global adaptation when the network bandwidth is
constrained. These benefits are seen both with and without
per-app CPU adaptation. For example, the energy savings
in the CPU+network from adding per-app application adap-
tation to a system with global adaptation and per-app CPU
adaptation were seen to be up to 31% (average 23%). Inter-
estingly, when both per-app CPU and per-app application
adaptation are added to a system with global adaptation, the
combined benefits are more than additive.

To our knowledge, this work is the first to demonstrate
the benefits from per-app application adaptation control
over and above global control. It is also the first to demon-
strate significant benefits from hierarchical adaptation on
a real multimedia system implementing multiple applica-
tions, adaptations, and constraints. Given the low overhead
of per-app control and the relatively low added system im-
plementation complexity over a system with global control,
the benefits achieved seem worthwhile to exploit.

Our ongoing work is incorporating an adaptive network
layer that responds to variations in network bandwidth, and
is also exploring other possible application adaptations in-
cluding those that affect user perception.

References

[1] H. Aydin et al. Dynamic and aggressive scheduling tech-
niques for power-aware real-time systems. In RTSS, 2001.

[2] M. Caccamo et al. Capacity sharing for overrun control. In
RTSS, Dec. 2000.

[3] H. H. Chu and K. Nahrstedt. CPU service classes for multi-
media applications. In ICMCS, 1999.

[4] Cisco Aironet 350 Series Client Adapters Datasheet.
http://www.cisco.com/en/US/products/hw/wireless/ps4555/
products data sheet09186a0080088828.html, 2004.

[5] M. Corner et al. Fugue: time scales of adaptation in mobile
video. In MMCN, Jan. 2001.

[6] E. de Lara et al. HATS: hierarchical adaptive transmis-
sion scheduling for multi-application adaptation. In MMCN,
2002.

[7] C. Efstratiou et al. A platform supporting coordinated adap-
tation in mobile systems. In WMCSA, June 2003.

[8] K. Flautner and T. Mudge. Vertigo: Automatic performance-
setting for linux. In OSDI, Dec. 2002.

[9] J. Flinn et al. Reducing the energy usage of office applica-
tions. In Proc. of Middleware, Nov. 2001.

[10] J. Flinn and M. Satyanarayanan. PowerScope: A tool for
proling the energy usage of mobile applications. In WMCSA,
1999.

[11] K. Gopalan and T. Chiueh. Multi-resource allocation and
scheduling for periodic soft real-time applications. In
MMCN, Jan. 2002.

[12] C. J. Hughes et al. Variability in the Execution of Multimedia
Applications and Implications for Architecture. In Proc. of
the 28th Annual Intl. Symp. on Comp. Architecture, 2001.

[13] Intel Pentium M Processor Datasheet. http://www.intel.
com/design/mobile/datashts/25261203.pdf, 2003.

[14] T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In ISLPED, 1998.

[15] S. Krantz, S. Kress, and R. Kress. Jensen’s Inequality.
Birkhauser, 1999.

[16] M. Mesarina and Y. Turner. Reduced energy decoding of
MPEG streams. In MMCN, Jan. 2002.

[17] M. Moser et al. An algorithm for the multidimensional
multiple-choice knapsack problem. In IEICE Trans. Fun-
damentals of Electronics, 1997.

[18] B. Noble et al. Agile application-aware adaptation for mo-
bility. In SOSP, Dec. 1997.

[19] T. Pering et al. Voltage scheduling in the lpARM micropro-
cessor system. In ISLPED, July 2000.

[20] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In SOSP, 2001.

[21] C. Poellabauer et al. Cooperative run-time management of
adaptive applications and distributed resources. In Proc. 10th
ACM Multimedia Conf., Dec. 2002.

[22] G. Quan and X. Hu. Energy efficient fixed-priority schedul-
ing for real-time systems on variable voltage processors. In
DAC, 2001.

[23] C. Rusu et al. Maximizing the system value while satisfying
time and energy constraints. In RTSS, Dec. 2002.

[24] Sachs et al. GRACE: A Cross-Layer Adaptation Framework
for Saving Energy. SIDEBAR in IEEE Computer, dec 2003.

[25] D. Sachs et al. Adaptive video encoding to reduce energy on
general-purpose processors. In ICIP, Sept. 2003.

[26] T. Simunic et al. Dynamic voltage scaling and power man-
agement for portable systems. In DAC, 2001.

[27] V. Vardhan et al. Integrating Fine-Grained Applica-
tion Adaptation with Global Adaptation for Saving En-
ergy (extended version). Technical report, UIUC, 2005.
http://www.cs.uiuc.edu/grace/papers/perapp-tr.pdf.

[28] Xiph.org. Speex. http://www.speex.org/, 2003.
[29] W. Yuan. GRACE-OS: An Energy-Efficient Mobile Multi-

media Operating System. PhD thesis, UIUC, 2004.
[30] W. Yuan et al. GRACE: Cross-Layer Adaptation for Mul-

timedia Quality and Battery Energy. IEEE Trans. Mobile
Computing. Accepted for publication.

[31] W. Yuan et al. Design and evaluation of cross-layer adapta-
tion framework for mobile multimedia systems. In MMCN,
2003.

[32] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. In SOSP,
2003.

[33] H. Zeng et al. Ecosystem: Managing enegy as a first class
operating system resource. In ASPLOS-X, 2002.

8



Power Management and Dynamic Voltage Scaling: Myths and Facts

David Snowdon, Sergio Ruocco and Gernot Heiser

National ICT Australia
�

and
School of Computer Science and Engineering
University of NSW, Sydney 2052, Australia

Firstname.Lastname@nicta.com.au

Abstract

This paper investigates the validity of common ap-
proaches to power management based on dynamic volt-
age scaling (DVS). Using instrumented hardware and ap-
propriate operating-system support, we account separately
for energy consumed by the processor and the memory sys-
tem. We find that memory often contributes significantly to
overall power consumption, which leads to a much more
complex relationship between energy consumption and core
voltage and frequency than is frequently assumed. As a
consequence, we find that the voltage and frequency setting
that minimises energy consumption is dependent on system
characteristics, and, more importantly, on the application-
specific balance of memory and CPU activity. The optimal
setting of core voltage and frequency therefore requires ei-
ther a-priori analysis of the application or, where this is not
feasible, power monitoring at run time.

1 Introduction

Dynamic voltage scaling (DVS) is a standard technique
for managing the power consumption of a system [22]. It is
based on the fact that thedynamic(switching) power

�
of

CMOS circuits is strongly dependent on the core voltage�
and the clock frequency� according to

� � � � � � (1)

Under the assumption that the number of clock cycles
required for a computation is independent of the core fre-
quency, the execution time is inversely proportional to the

�
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frequency. The total energy� for the computation is then
proportional to the square of the voltage:

� � � � � (2)

Note that the total energy for a computation does in this
simple model not depend on the frequency, but a reduced
core voltage requires a reduction of the clock frequency and
therefore implies a longer overall execution time.

The assumptions behind Eqn. 2 are highly dubious, as
they ignore other system components, in particular the
front-side bus and memory [2]. Those other components
impact the execution time of a program, leading to a much
more complex dependence on the processor frequency. Fur-
thermore, those components themselves consume energy,
and that energy consumption scales differently than the pro-
cessor’s. While memory power may be dominated by CPU
power in high-end systems, this is not the case for embed-
ded systems using low-power processors. Finally, Eqn. 1 is
not even necessarily a good model of the power consump-
tion of a modern processor, as for modern CMOS circuits
thestaticenergy consumption can no longer be ignored.

This paper presents a measurement-based examination
of the effect of DVS on the energy required to execute appli-
cations on a modern embedded system. We independently
measure processor and memory power consumption on a
representative platform, and find that the behaviour is quite
different from what is expected by the simple model. As a
consequence, we find that more sophisticated methods are
required in order to manage limited energy resources well.

2 Related Work

There exists a large body of work on both dynamic and
static voltage scaling [3, 5, 6, 13, 14, 18, 22]. Many of the



ideas developed by Weiser et al. [22] and Govil et al. [5]
form the basis of these algorithms: that the CPU idle (slack)
time should be minimised by slowing the CPU core fre-
quency. This reduces the DVS problem to estimating the
idle time.

Other studies have examined frequency and voltage scal-
ing in time-sensitive systems [11,19,20,24]. One approach
is to use timing information which is available in real-time
systems. This can allow static schedules to be developed
such that processor utilisation is maximised (all deadlines
are only just met). Modifications can be made to the sched-
ule on-line in order to make use of slack-time made avail-
able by processes which complete before their deadlines.

Weissel and Bellosa [23] measured the effect of fre-
quency scaling on the performance and total power con-
sumption of an XScale-based computer running several
benchmarks. They examined the number of memory ref-
erences and instructions executed at runtime in order to
determine the memory dependence of an application, and
thus estimate its response to a reduction in CPU frequency
(a memory-bound application will be limited by memory
speed rather than CPU speed). They determine what CPU
core frequency will result in a 10% or less reduction in per-
formance for the process. No voltage scaling was used in
this work. Choi et al [10] refined this work to allow a dy-
namic rather than static tradeoff between power and per-
formance reduction by characterising process memory and
CPU usage at run-time.

There are several previous studies of the power con-
sumed by real computers. The most relevant is that of
Miyoshi et al [16] who examine a set of microbenchmarks
running on two different platforms. They find that in some
cases the lowest-performance setting may not give the low-
est total energy. They also provide a methodology for
choosing which settings shoud be ignored.

Fan et al. [2] used a modified simulator to estimate the
power consumed by an XScale-based device with power-
aware SDRAM. They observe that, owing to a system’s
static power consumption (particularly owing to DRAM),
the energy reduction via frequency scaling can be out-
weighed by the energy resulting from a longer execution
time. Their results indicate that an aggressive memory
power-down policy such as that which they had previously
developed [1] can reduce this effect.

Martin [14] studied the effect of frequency scaling on
battery lifetime, developing a system for identifying the
CPU frequency at which the most computation could be
performed using a single battery charge.

Flinn et al. [4] conducted a similar study of the ItSY
pocket computer, using external power management and
off-line evaluation. Micro-benchmarks were used to study

the effect of frequency scaling on the processor’s perfor-
mance and power consumption. Voltage scaling was not
examined.

3 Benchmarks

A number of benchmarks were used to represent typical
workloads for a variety of embedded system. The major-
ity of these were taken from the MiBench [7] suite, along
with four others, also representing typical embedded appli-
cations, described in previous work [21]. Each benchmark
in this collection represents a fixed amount of “work” for
the system, therefore the total energy for each benchmark is
directly comparable.

MiBench is a suite developed by the academic commu-
nity with the explicit aim of representing embedded work-
loads. The particular benchmarks used were selected based
on their resource requirements: many of the MiBench tests
require large input data which could not be accommodated
on the RAM disk of our disk-less system. The future addi-
tion of network and disk support to PLEB 2 should allow the
full suite to be executed. Furthermore, benchmarks which
ran for less than four seconds were excluded to avoid mea-
suring start-up and wind-down energy.

All output was discarded to avoid filesystem overheads
and resource constraints.

4 Experimental Platform

The experiments were performed on PLEB 2 [21], a
power-aware computer based on ARM XScale processor
running a standard Linux OS, augmented with current sen-
sors to measure the power consumption of the CPU core,
RAM, and I/O devices.

4.1 Hardware

PLEB 2 is a single-board computer based on the Intel
XScale PXA255 [9]. The PXA255 was chosen as being rep-
resentative of high-performance, low-power CPUs designed
for use in embedded systems. It consists of a 400MHz
ARMv5TE-compatible core combined with a set of on-
chip peripheral units including memory, interrupt, DMA
and LCD controllers.

The computer consists of the CPU, SDRAM and flash
memory. The SDRAM is implemented using two Micron
MT48LC16M16A2 ICs [15], and the flash is implemented
using two Intel TE28F320 ICs [8]. Three switching power
supplies generate core, memory and IO power. A minimal
set of peripherals (infra-red, USB, and serial port) are pro-
vided on-board. An 8-bit microcontroller performs a super-



visory role. The PXA255, flash, SDRAM and the power
supply represent the core of a typical embedded system.

Linux 2.4.19, Linux 2.6.8, L4ka::Pistachio [12], and
Iguana [17] have been adapted to run on PLEB 2 hardware.

4.2 Power management features

PLEB 2 supports a number of power management fea-
tures. Frequency/voltage scaling and low-power modes are
software-managed throttling mechanisms of interest.

The PXA255 supports the frequency scaling of three
main clocks:

� the CPU core (core);

� the PXBus (pxbus): an internal bus that links the CPU
core, DMA/Bridge, memory controller and LCD con-
troller;

� the memory clock (memclk): drives the memory and
LCD controller.

While the hardware which controls the frequency set-
tings will allow a large number of combinations of core,
pxbus and memclk frequencies, only a subset of these will
allow the system to operate correctly (i.e. within the upper
and lower frequency limits for all components in the sys-
tem). All of the valid setpoints are shown in in Table 1.

The power-supply chip used in PLEB 2 (Epson
S1F81100) supports voltage scaling. The core (CPU) volt-
age can be varied in 0.1V increments. This voltage is set to
the appropriate value as given in the PXA255 developer’s
manual [9].

The PXA255, SDRAM and flash memory all support
low-power states. In these states, the devices have a re-
duced functionality, but use significantly less power. For the
PXA255, there are several modes: run/turbo, idle, 33MHz
idle and sleep. Run/turbo are active modes where the CPU
is running. Turbo mode is a mechanism for performing fast
frequency changes by synchronously switching a clock di-
vider. Idle mode stops the CPU core clock but does not halt
its generation, avoiding loss of state and supporting a fast
recovery to run mode. 33MHz idle and sleep mode are pro-
gressively deeper sleep states that require longer recovery
times.

The Micron SDRAM also supports low-power modes.
While not being accessed, it maintains an active standby
mode which, according to the datasheet [15], consumes a
maximum of 132mW per chip (although the typical idle cur-
rent has been measured to be much lower on PLEB 2). If
the chip is put into power-down mode (data is retained, but
the chip must be refreshed periodically) it consumes a max-
imum of 6.6mW.

The Intel Flash chips have very effective automatic
power management: according to the datasheet [8] they
use less than 1mW unless being read/written, and even less
when in one of the available power-down mode. Since the
power consumption of flash is very small compared to CPU
and memory we ignore it in our discussion.

4.3 Measurement system

The computing core of PLEB 2 is supplied by three
power supplies. These are dedicated to the CPU core (nom-
inally 1.5V), memory bus devices (3.3V), and IO devices
(3.3V). Each of these power supplies is instrumented using
a small series resistor and an amplifier. The analogue-to-
digital converter within the on-board microcontroller reads
the resulting signal. The voltage on the supplies is assumed
to be sufficiently constant as to not require measurement.
The power can then be calculated via

� � � � .
Data collected is transferred from the microcontroller to

the PXA255 via an I2C bus. Statistical sampling is used
to associate the power readings with the running processes.
For each sample, a series of interrupts are generated to
record which process the sample should be attributed to,
and to start the transfer of data. The resulting information
is made available at user level at run-time.

The overhead associated with handling the measure-
ments on the PXA255 will introduce an error to the mea-
surement of time, cache misses, writebacks, etc. This is
because the CPU will spend some time handling the inter-
rupts, and because the events associated with the interrupt
handlers. This overhead varies between 2% and 10% of
execution time depending on the nature of the application.
Because the sampling rate is independent of the proces-
sor speed the overheads will vary. The measured power is
not affected by the measurement system because the power
samples are always taken when running the real system.

Further information regarding the measurement system,
its overheads and validation is given in a previous publica-
tion [21].

Cache miss and write-back numbers were determined us-
ing the PXA255’s performance monitoring unit and appro-
priate OS support.

All experiments were run on Linux 2.4.19, modified to
provide memory and CPU energy accounting through the�����

file system, from where it can be accessed by a mod-
ified � 	
 � �
 function.

5 Methodology

A number of operating points were chosen. Each oper-
ating point defines a specific hardware configuration under



� ���� (V) ���� (MHz) ������ (MHz) �	�	 (MHz)
1.0 99.5 50.0 99.5
1.0 199.1 99.5 99.5
1.1 298.6 99.5 99.5
1.3 398.1 99.5 99.5
1.3 398.1 199.5 99.5

Table 1. Hardware configurations under test
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Figure 1. Normalised CPU energy

test. Five operating points (as shown in Table 1) were ini-
tially available as defined by the frequency-setting code in
Linux — those where operating points where the memory
frequency was 99.5MHz. By varying (and even overclock-
ing) the memory frequency it would be possible obtain a
larger number of operating points than those used.

The platform was configured according to each of the
operating points and the benchmarks executed. The mean
current was measured for the CPU and memory power sup-
plies (since no devices are connected to the IO supply, that
supply was deemed irrelevant) and recorded on the RAM
disk. The results were later transferred to a PC for analy-
sis. Each experiment was repeated 10 times and the results
averaged, standard deviations were less than 1%.

6 Results

Fig. 1 shows the processor’s energy consumption of the
various benchmarks as a function of the core frequency, nor-
malised to the energy consumption at the lowest clock rate
(100MHz). There are two values at the highest frequency
(400MHz) correspond with the two different processor bus
frequencies used at that setting.

The bold line shows the prediction of Eqn. 2. Contrary to
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naı̈ve theory, we find that the energy is in fact quite depen-
dent on the clock rate: Increasing the core frequency from
100MHz to 200MHz (at unchanged core voltage) results in
a drop of total energy for all benchmarks. Further frequency
increases lead to increases in energy, as they are accompa-
nied by voltage scaling. The benchmarks consistently stay
below the predictions of Eqn. 2 — in other words, Eqn. 2
over-estimatesthe benefit from DVS.

This effect can be explained with the processor’sstatic
power consumption, which is independent of the core fre-
quency. As the runs with a faster clock require less total
time, the total static energy consumption is less in those
cases.

The two benchmarks whose energy, under frequencyand
voltage scaling (from 200 to 400MHz), grows steeper than
the theory are
� 	� and����
��, which are both memory-
limited while the others are CPU-limited. Memory is al-
ways clocked at the same rate, and therefore a memory-
limited application’s execution time benefits less from an
increase in the core frequency than CPU-limited applica-
tions. Hence, for those benchmarks the influence of the
static energy increases with increasing clock speed.

Memory behaves differently than the processor, and is
best examined in the power, rather than the energy dimen-
sion. As Fig. 2 shows, most benchmarks consume very lit-
tle memory power, and it is very weakly dependent on the
core frequency. These benchmarks run essentially out of
cache and cause very little memory traffic, so we see mainly
the static energy of RAM, which is attributed to DRAM
refreshes, leakage and powering input/output buffers. The
memory-intensive benchmarks show a strong frequency de-
pendence at lower clock rates, which then flattens out, a
consequence of the saturation of the memory system in
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those runs. Note also that the difference of the two data
points at the highest frequency (corresponding to different
bus frequencies, see Table 1) is highest for the memory-
limited benchmarks.

The flat curves mean that memory power scales very lit-
tle with core frequency. Translated into total energy (ac-
counting for total execution time) this means that memory
energy use is actuallylowestat thehighestclock rates.

Also shown in Fig. 2 (strongly rising curves) is the min-
imal and maximal CPU power consumed by the bench-
marks. It can be seen that, compared to memory power,
the range is relatively small, and except at the highest core
frequency, CPU power is dominated by memory power.

This helps explain Fig. 3, which shows the total
(CPU+memory) energy for the execution of the bench-
marks. Inclusion of the memory energy leads to results
which bear no similarity whatsoever with the model of
Eqn. 2, and, contrary to folklore, shows that the highest
clock rates actuallyminimisethe energy requirements of the
computations!

This result is somewhat misleading, however. The higher
clock rates lead to faster completions of the runs. A more
fair comparison of energy requirements needs to compare
the energy used over the same total time period [2]. This
means that the slack time remaining after an early comple-
tion results in an idle system, which still consumes power.
We assume that the system, when idle, switches to the low-
power idle mode from which it can be woken up quickly
when an interrupt arrives (indicating a new computation
task).

The result is shown in Fig. 4. We can clearly see that
for all benchmarks the total energy is minimised at some
intermediate frequency, neither the highest nor the lowest.
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That frequency depends on the particular benchmark, it is
lower for the memory-intensive than for the CPU-intensive
benchmarks. The optimal frequency will obviously also de-
pend on characteristics of the system, such as type and size
of memory.

Weissel and Bellosa [23] model memory energy by us-
ing a performance counter to measure memory references,
and assume that the energy cost of each memory reference
is the same. Many systems (such as ours) do not provide
such performance counters. One can attempt to approx-
imate the number of memory references by the number
of cache misses (for which the PXA255 has performance
counters). Fig. 5 shows that this is inaccurate, as a single
cache miss can produce either one or two memory refer-
ences. For this figure we ran synthetic benchmarks which



in a tight loop contained load instructions (readcase in the
figure), or load instructions followed immediately by a store
to the same memory location (modify). Varying numbers of
nop instructions were inserted to vary the cache miss rate.
We see that the modify case has a higher memory-energy
cost per cache miss than the read, owing to the higher num-
ber of memory operations (write-back followed by a refill,
compared to just the refill). A realistic load would lie some-
where in between those extremes, but it would be difficult
to predict where. In addition, the presence of read and write
buffers significantly complicates any modelling of memory
traffic from cache miss rates.

7 Discussion

Our results show that traditional model of Eqn. 2 is not
suitable for estimating the effect of DVS on modern proces-
sors, as it ignores the effect of static power, and grossly dis-
torts reality. Furthermore, our measurements confirm that
memory contributes significantly to the power consumption
of embedded systems, and attempts to manage power with-
out taking memory into account will likely lead to incorrect
results.

Static power is also important for memory, and should
be ideally be minimised by keeping as much RAM as pos-
sible in a low-power state. Furthermore, modelling dy-
namic memory power by measuring cache misses can pro-
duce misleading results, unless read and write misses can
be measured separately (and even then it would be difficult
to achieve good accuracy), owing to the complex memory-
access patterns resulting from a processor which augments
caches by read and write buffers.

Overall we find that the dependence of the energy cost of
a computation on the processor core voltage and frequency
is a complex function of system configuration and proper-
ties of the application, too complex to predict an energy-
optimal operating point for DVS using simple models.

In some cases, the optimal operation may be determined
by off-line measurements, but in general this is only pos-
sible if application loads are known well in advance. The
only alternative is to determine the optimal voltage and fre-
quency setting at run-time, based on the observation of the
actual power consumption.

While we have shown how, with the help of some rela-
tively simple instrumentation, such observation can be per-
formed on off-the-shelf processors, this only provides the
input data for successful power management. The required
algorithms and policies remain the subject of future work.
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ABSTRACT 
High-performance, timing accurate models of complex systems 
(called Virtual System Prototypes (VSP)) enable the 
computation of relatively accurate power in terms of events that 
occur in the model. VSPs are the integrations of models of 
electronic hardware, communication and mechanical 
subsystems into systems that execute software accurately. 
Software has a first order impact on system performance and 
has, typically, the major effect on modern system optimization. 
The computation of relative power, although fundamental, is not 
useful by itself – doubling the talk time of a mobile phone is not 
useful if, concomitantly, the speed dwindles so that look-up 
functions take 20 seconds rather than the 2 seconds that 
competitors take. Power is an exemplar of the complex, 
concept-based functions, with many hardware, software and 
system parameters, that constitute optimization functions and 
will be treated in detail in this paper. The general form of a 
power computation function is given in the paper, as well as, a 
simple example of the implementation of a power calculator. 
The use of power, along with the other components of objective 
functions, such as speed (instructions per second), response 
latency and cost, must drive algorithm choice and software 
development in mobility and other power-performance sensitive 
applications. The use of VSPs is mandatory in specifying the 
hardware and software architectures of, and then building, 
complex optimal systems.  

Categories and Subject Descriptors 
C3 [Special Purpose and Application Based Systems] Real-
time and embedded system; C4 [Performance of Systems] 
Measurement and modeling techniques; G3 [Probability and 
Statistics] Experimental design. 

General Terms 
Design, Experimentation, Measurement, Performance. 

Keywords 
Power measurement and analysis, quantitative systems 
architecture, empirical system design, event-based objective 
function, event data-driven optimization. 

1. Background and Motivation 
An empirical approach to composing optimal architectures for 
application specific embedded systems is relatively rare. The 
use of empiricism in developing optimal software is even rarer, 

and when used often primitive. The complexity of processor 
centric, electronic systems that control modern products (such 
as, cell phones, automobiles, communication base stations, 
consumer products) requires a systematic approach to 
developing software in order to deliver an optimal fit for an 
intended product. When a company’s engineering process is 
being used as a competitive weapon, the luxury of optimality, 
especially wrt power and speed and response latency in mobile 
systems, becomes a necessity [1].  
The bigger architecture picture is more complex. The intuitive 
optimization of systems – architecture, software design, 
hardware design, and interfaces – has largely been a by-product 
of hardware design. Since hardware designers have rarely 
understood, or had access to, the software that would run on 
their architectures, they produced conservative, often grossly 
over-engineered designs that were typically poor fits to a 
number of dimensions of the specification - especially in cost 
sensitive applications, where over-engineering is the antithesis 
of cost sensitivity [2]. 
The ability to support data-driven decision making early in the 
software development process is one of the underlying drivers 
of building models of systems that are timing accurate and high 
performance. Of course, this advantage also accrues to 
architecture development but that is another dialogue. From a 
purely software perspective, optimizing across the dimension of 
speed, response latency, cost (size) and power consumption is 
rarely done and, at a pre-silicon level, it is an undertaking only 
possible using high-performance, timing accurate models – 
called VSPs in this paper.  
It is known that poor software and inefficient algorithms have a 
1st order effect on an embedded system’s performance. This is 
difficult to reconcile with practice, when next-generation 
product planning has prime foci of processor microarchitecture 
and hardware (platform) design, regardless of the fact that 
iterative processor microarchitecture improvement typically 
yields a 2nd or 3rd order effect and hardware (platform) design 
has a 1st order effect at the system level. The question is what 
happened to software? It is negligent not to employ empirical 
methods in the development of software in real-time, embedded 
systems. 
 For complex, multi-processor and networked real-time systems 
running full software loads (i) advances in computer 
architecture and software have made it difficult or impossible to 
estimate or predict software's execution time [8] and (ii) 
experience with proving the correctness of even a well 
constructed, small, single processor micro-kernel, L4, indicates 



the overwhelming complexity of applying this technology to 
more complex systems [9]. This leaves schedulability analysis 
in the difficult position of having to use traces from simulation 
to determine whether a system will meets its overall real-time 
constraints. Deriving best-case, average and worst-case system 
performance from simulation using VSPs enables analyses of 
system variability leading to the identification of factors having 
the most significant impact on variability. These factors are 
prognostic as well as diagnostic and they can be used to drive 
the structural optimization of systems. On the deficit side, the 
number of simulation may require many experiments to be 
performed on various configurations of a system. However, here 
the design of experiment methodology [5] helps by providing a 
statistically valid mechanism for dramatically reducing the 
number of experiments needed to be performed.  
Since VSPs are used to directly execute software, including hard 

real-time code, during development and debugging, trace 
information (streamed from non-perturbing probes inserted into 
the model) - including response latencies, power consumption, 
speed between markers, frequency of function calls, etc. - is 
produced alongside the usual debug data and hence is available 
to software and systems engineers as a normal part of the edit-
compile-execute-debug software development cycle. This 
changes the perspective of where optimization should occur in 
the development cycle, and it is not as a post development 
exercise.

  
Figure 1 shows the hardware platform component of a VSP, 
called a Virtual Prototype, used in the experiments in this paper.  

2. Formulating Power 
There are many ways of constructing objective functions 
including for power. The classical way is to track event 
frequencies and/or latencies and to construct the power function 
based on events that contribute significantly to the computation 
of power.    

2.1 Event-Based Power Functions 
In an event driven simulation environment, a general form of the 
power function can be expressed as a function whose parameters 
are functions each characterizing contributions to the objective 
function by one of the components constituting the system, viz. 
CPUs, buses, bus bridges, memories and peripheral devices. The 
parameter functions themselves have parameters that are 
functions of simulation event types sourced from the various 

event activities that occur in a VSP during simulation.  In 
general, a power function will have the form shown in Equation 
1 [3]. 

A simple way to visualize and compute a power function is to 
build an interpretation table, as in Table 1. These tables are 
large and even though the Event Bindings are simple to 
implement, typically a pointer to a function and a history buffer 
of events, the extraction of appropriate data from register 
transfer (RT) models or representative samples of the silicon to 
put into the tables is not automatic and is difficult and time 
consuming.  

Table 1: Component Event Binding Table 
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Figure 1: A Typical Virtual System Prototype for Mobility  
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3. Computing Power 
We instrumented the VSP of Figure 1 and for the purposes of 
experiments for this paper put the 2nd ARM926 processor and 
the Starcore SC1200 processor in Reset – so they consumed no 
cycles and no power. 
The basic function computed is Instant Power which calculates 
the total energy consumed over some period of time or some 
number of events (such as cycles).  
The functions computed that are useful for optimization 
purposes are: 

• Maximum power consumed, over a particular period 
(maximum of the instant powers) 

• Average power consumed over the whole experiment. 
A simplified function used to compute instant power per k-
cycles is given in the Equation 2: 

Similar functions occur for fPipe, fCache, fTLB, fRegAcc, fMemAcc, 
fPeriphAcc and the weights for the constituent accumulating 
functions are given in Table 2, and the weights (Wi) for each of 
the classes of functions contributing to fPower have been set to the 
constant function 1 in this study. In more complex studies, the 
accumulating function might be replaced with individual 
functions relevant to computing power in ways not considered 
for the simple examples of this paper. Such functions can 
include history and implementation dependent technology 
functions. Similarly, the weights (Wi) may be more complex 
functions – for example, the cache hit weights are functions of 
cache structure (size, wayness, policies). 

4. Experimentation 
The following is an outline of the experimental design process.  

i. The goal of the 4 experiments reported here was to 
investigate the effects of various arrangements of cache, 
buses, memory hierarchy and algorithms on average 
power consumption and speed. The VSP used is that 
shown in Figure 1, but with only one ARM926E 
processor enabled. The target codes selected were 
MontaVista Linux v2.6,  Viterbi and Sieve programs from 
the EEMBC [4] test suite, and a prime number program 
downloaded from the web [5]. Access to customer data 

was not possible for this study. 
ii. To determine the goal, we specified, across the executed 

target codes: 
• Power in terms of average power per instruction 

executed;  

• Speed in terms of instructions executed per k-cycle 
(IPCk);  

• Cost – where cache size was used as a direct indicator 
of cost 

The contributing factors (independent of target codes) to 
the computation of power were identified as events 
captured from the VSP. These events are delineated above 
in Equation 2 and Table 2. The computation of speed is a 
simpler function – the total number of instructions 
executed averaged across all cycles executed. This 
information is directly available from the simulation.  
 

Table 2: Power: Function Types, Event &  Weighting 
Functions 

Function Types Events Weight Functions 
Pipeline ibase 6.0 
Instruction Types ijmp  2.0 
 iexcept  2.0 
 ictrl  0 
 icoproc  12.0 
 iundefs  0 
 imemrd  0 
 imemwt  0 
 imemrw  0 
 iarith  1.0 
 iother  1.0 
Caches (I&D) Cache_lookup fi-dcache(size, ways) 

 icache_hit 
iCache-lookup + 

ficache(line size, 
decode) 

 icache_miss  Icache_lookup 

 dcache_hit  
Dcache_lookup + 

fdcache(size, ways, 
line size,) 

 dcache_miss  Dcache_lookup 
 line_fill  0 
TLB tlb_miss  30.0 
Register regfile_access  1.0 
Memory (incl. 
bus transactions) membus_transaction  50.0 

Periph Device 
(incl. 
bus transactions) 

periphbus_reg_access  50.0 

 

iii. In a simulation environment, all factors are effectively 

controllable. Therefore randomization of experiments will 
have no effect. However, sample size and selection – say 
the random selection of a number of the EEMBC [4] 
communications related programs – are indeed important 
parts of the experimental protocol. It is in this way that 
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variability and variability optimization functions – such as 
minimization of variability – are addressed as part of the 
experimental procedure. In the latter characteristic, 
simulated systems and real systems are very similar. 

iv. It then remains to determine which factors effect the 
power, speed and cost computations and what 
combination of factors produces optimal outcomes. In an 
industrial engineering set of experiments, we would want 
to determine whether the optimum we had achieve was 
local or whether a better result could be achieved and 
what factors can be adjusted to produce the better 
outcome.  

The design of experiments methodology relies on the ability to 
vary several variables in the system being observed in order to 
calculate the effects of the variables and the interactions 
between variables in terms of the objective functions. The 
prioritization of variables and interactions that cause the greatest 
effects gives us a handle by which to choose values of variables 

that guarantee an optimal outcome. If there are no interaction 
effects between variables, the response of the objective function 
will be linear wrt the variables. Interaction effects produce 
higher-order polynomial responses.  
Table 3 sets out the values of variables that can be set in 
experiments. It is impossible to perform but a small subset of the 

experiments in a reasonable amount of time given that 
simulation runs of 500 million cycles during a Linux boot might 
take a few minutes, in full data acquisition and profiling mode. 
Fortunately, nor is it necessary, the number of experiments can 
be reduced dramatically using fractional factorial designs in 
which the number of experiments is determined by the main 
effects and their interactions.   
In our study, we ran exploratory experiments using Viterbi and 
Linux target code on many model variants and assessed the 
patterns of results in the light of analysis and expected 
behaviours. This preliminary investigation indicated that the 
important main effects were: I&D cache enabled/disabled; I&D 
cache size – 1k and 32k, cache line size – 16B & 32B, data rate 
of memory (DDR – double data rate, SDR – single data rate, 
and code ), and target code. For simplicity here, we ignored 
interaction effects, even though to reach a global optimum they 
are likely to have an impact.  

5. Experimental Results 
We constructed 4 sets of experiments (58 in total) using various 
code running on the VaST ARM926E-based VSP subsystem 
with instruction and data buses bridged to a shared memory. The 
VSP subsystem was extensively parameterized and we used 
various configurations of cache and memory. For all 
experiments, the speed performance is calculated as instructions 
executed per 10 cycles (IPC10) on the VSP (that is it is an index 
of VSP speed NOT processor speed) and power consumption is 
a relative measure of average power over all instructions 
executed.  

5.1 Viterbi  
The results from 7 Viterbi (calibration) experiments are 
expected, see Graphs 1A & 1B. Uncached performance is poor 
both in regard to power consumption and speed (IPC10). With 
cache enabled, and even minimal cache (1,024 bytes) is 
sufficient, a good working set fit of Viterbi to cache was 
achieved. If the ARM926E was the selected controller 

implementing an acoustic filter then a cache size of 1k bytes 
would be adequate. Since there is a better than 99.5% hit rate on 
the D-cache and I-cache, cache line size is immaterial as is bus 
width and memory type (either DDR or SDR). However, to 
minimize cost, SDR memory would be used instead of DDR. 

Optimizing Objective Functions:  
Generalizing the results – for target code with a working set size 
that matches the cache size, cache size is the dominant 
determinant in optimizing speed and power consumption in the 
single processor VSP subsystem. When the optimum cache is 

Table 3:  Factors Determining the Number of Experiments to be Peformed 

Factors Variants Number of 
Variants 

Number of 
Experiments 

I-cache Enabled, disabled 2 2 

I-cache size 1k, 4k, 8k, 16k, 
32k, 64k, 128k 7 7 * above = 14 

I-cache Line 
Size 

16B, 32B, 64B, 
128B 4 4 * above = 56 

D-cache All variants – as 
for I cache 56 28 * above = 3,136 

TLB 32, 64, 128 entries 3 3 * above = 9,408 

I & D Bus 
Width 4B, 8B, 16B 3 * 3 9 * above = 84,672 

I & D Memory 

1st R/W = 4, 5, 6, 
8 

2nd R/W = 1, 2 
(DDR, SDR) 

2 * 4 8 * above = 677,376 

Target code 
(programs) 

Linux, Viterbi, 
Sieve 3 3 * above = 2,032,128 

Event Weights 
in Table 2 Ibase, ijmp, ….. ∞ ∞ 

Etc.    

Graph 1B: Power Consumption - Viterbi on ARM926E 
Subsystem of VSP in Figure 1
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the smallest selectable, cost is also minimized with respect to 
this factor. Depending on the overall system objective function 
fSystem(Power, Speed, Cost) the selection of optimal sets of 
settings (the so-called optimal response contour) will be 
determined by the tradeoffs inherent in the objective function. 

5.2 Linux Boot  
The Speed (IPC10) and relative Power Consumption of 9 
structural variants of the experimental VSP were computed 
while booting Linux. The variants were selected from the full 
set of variants determined by - cache size: 1k, 8k, 32k; cache 
line: 16B, 32B; Mem configured as DDR (1st word delayed 5-
cycles, 2nd word available per ½ cycle) and SDR (1st word 
delayed 5-cycles, 2nd word available per 1 cycle); bus data width 

4bytes. The results are shown in the Graphs 2A & 2B.  
The boot sequence of Linux spends more than 50% of its time 
executing with the ARM926E I&D caches disabled. Linux 
performs initialization of the cache after the Initial Program 
Load, kernel load and the device driver installations. Once the 
operating system has booted and the idle loop is executing, the 
behaviour of the ARM926E VSP is much the same as its 

behaviour running Viterbi – that is the working-set size is 
compatible with any cache size. As is also expected, in an 
environment where the working set size of the target code 
greatly exceeds the cache size, the impact of the memory 
hierarchy on power and speed is considerable. For booting 
Linux, the settings of the ARM926E VSP subsystem: cache size 
(32 kbytes), cache line size (32bytes), and Memory (DDR) yield 
minimum power consumption and maximum VSP speed.  
 
To mimimize cost, as well, a cache size (I&D) of 16 kbytes 
would proportionally reduce silicon cost by about 30% and 

adversely affect both power and speed by about 1%. To further 
optimize for cost, cache sizes of 8 kbytes will yield a further 
~25% reduction in silicon with a worsening in power 
consumption and speed of 5%-10%.. 

5.3 Viterbi Executing on Linux 
If the target code workload is Viterbi executing instead of the 

Idle Loop of Linux then the analysis in Section 6.2 remains 
valid. This is far from a representative workload for a general 
purpose computer but it may easily be a representative of the 
constrained workloads on embedded processors – especially 
those executing real-time control code.  
For real-time systems, a requirement is to demonstrate the 
meeting of service deadlines. A simple experiment to refute the 
hypothesis that the VSP will not meet the deadline, is to set 
worst case delays for appropriate peripheral devices attached to 
the VSP, then run the experiment. For the simple VSP used 
here, memory being set as DDR or SDR gives the flavour of the 
experiment.  

5.4 Alternate Memory Hierarchies 
This investigation considered a pure embedded systems 
problem, that of finding the best tradeoff between speed, power 
consumption and silicon cost for a controller executing a limited 
amount of code – a prime number generator using the sieve of 
Eratosthenes algorithm [4]. This has the same outcome as the 
Viterbi experiment for cache sizes above 1 kbyte. However, we 
were interested in this experiment in determining the near 
minimum cache size that would still yield within 5% of 
optimum speed and power for the VSP .  
In this experiment we considered I&D cache characteristics:  
size of 0B (uncached), 64B, 128B, 256B, 1 kB, 4 kB and 8kB; 
cache line size (16B, 32B), wayness (1, 2, 4), cache power 
weighting (3, 4, 5 – depending on size) and memory type (DDR, 
SDR). We varied the relative power consumption of the cache 
based on size. The results of the experiments are shown in 
Graphs 3A & 3B. The speed of the VSP followed expectations 
except that the transition between 64 bytes and 128 bytes was 
sharp and at 128B the VSP essentially achieved full speed. The 
power graph shows another picture. Uncached power consumed 
by the VSP was 20% - 35% less than the power consumed by 64 
byte caches (variability was due to cache line size, wayness and 
memory type) and 200% higher than power consumed with 128 
byte caches. What we are observing here is the step-function 
effect on power consumption of installing a cache in a 

Graph 2A: VPM Speed - Linux Boot on ARM926E 
Subsystem of Fig.1 VSP

1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60

0 10,000 20,000 30,000 40,000

Cache Size (Bytes)

In
st

ru
ct

io
ns

 / 
10

-C
yc

le
s

CL = 16B,
Mem = DDR
CL = 32B,
Mem = DDR
CL = 32B,
Mem = SDR

Graph 2B: Power Consumption - Linux Boot on 
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processor. For the sieve program, beyond 512 bytes, the power 
consumed was stable and about 20% higher than the minimum 
cache configuration at 128 bytes.  
The effect on power consumption of installing a small cache in a 
processor to achieve a 4-fold increase in performance has a 
detrimental effect on power consumption due to the 
infrastructure required to support the cache. The cost of a cache 
is also high since the infrastructure consumes relatively large 
silicon real estate. These considerations led to an investigation 

of alternative memory hierarchies that might achieve a better 
trade-off between speed, power and cost for a controller running 
a limited amount of code in an embedded application.  
We varied the cache_hit/miss power weightings of the processor 
(see Table 2) to mimic the relative power consumed by a 
dedicated external buffer of 128 bytes (essentially a small, 
physically addressed, direct-mapped, on-chip cache external to 
the processor). This architecture is similar to the buffer 
organization found in processors like the Renesas SH2A [6] a 
processor popular in automotive control [1] where differences of 
cents in the price of a controller translate to several million 
dollars in large manufacturing runs. The results were that we 
could achieve a further ~40% power saving whilst maintaining 
near optimum speed. The cost of the chip is close to the non-
cache cost. To prove that this is a global minimum requires 
more sophisticated statistical machinery (see [3]). 

5.5 Algorithm Optimization 
The final 10 experiments considered the effect of alternate 
algorithms on the problem of optimizing a VSP (software + 
hardware) for a particular (embedded) application. Since we had 
good empirical data already for the sieve prime number 
generator, we acquired from the web Kazmierczak’s prime 
generation algorithm [7] and used the same experimental set-up 
as for the sieve experiments. The Kazmierczak algorithm 
required a small external buffer of 512 bytes to achieve 
maximum speed (IPC10) ~40% higher than sieve and power 
consumption ~15% higher than sieve.  
Clearly, algorithms have a 1st order effect on power, speed and 
cost – often say the dominant order effect! By just looking at or 
mathematically analyzing both the sieve and Kazmierczak 
algorithms, it is inconceivable that the optimal VSPs – that is 
software-hardware structure, as determined in this paper, would 
have been discovered. 

6.  Discussion and Conclusions 
Empirical experimentation is a powerful mechanism with which 
to refute hypotheses that, when carefully constructed, drive the 
quantitative engineering process. To engage in this engineering 
process, prior to the existence of a physical realization, requires 
the existence and use of a model. If hypothesis building 
concerns speed, power consumption, reaction time, latency, 
meeting real-time schedules, etc. the model needs to be timing 
accurate (processor, buses, bus bridges and devices). If the 
extensive execution of software is an intrinsic part of the 
empirical experimentation, then the model needs to have high 
performance across all components. This paper assumes the 
existence of pre-silicon, high performance (20-100 MIPS), 
timing accurate virtual system prototypes. 
Optimizing systems with complex objective functions is not 
intuitive. Complex tradeoffs between hardware structure and the 
software and algorithms that are executed on the hardware 
cannot be done by ratiocination or formal analysis alone, the 
acquisition of data as part of well-formed experiments refuting 
thoughtfully constructed hypotheses (ratiocination) enables 
decision making driven by results. Optimization comes from 
considering hardware and software together – not separately. 

7. Acknowledgement 
The capability underlying the empirical experimentation and 
data gathered and used to write this paper is due to the vision, 
effort and extra-ordinary dedication and execution of the high 
caliber VaST R&D team. Primus inter pares are Neville Clark, 
James Torossian, Foo Ngok Yong and Patricia Hughes. It is a 
pleasure to work with the whole VaST team. 

8. References 
[1] Winters, F.J., Mielenze, C. and Hellestrand, G.R. Design Process 

Changes Enabling Rapid Development. Proc. Convergence 2004 
P-387, Oct 2004, 613-624, Society of Automotive Engineers, 
Warrendale, PA.  

[2] Hellestrand, G.R. The Engineering of Supersystems. IEEE 
Computer, 38, 1(Jan 2005), 103-105. 

[3] Hellestrand, G.R. Systems Architecture: The Empirical Way – 
Abstract Architectures to ‘Optimal’ Systems. ACM Conf. Proc. 
EmSoft2005, Sept 2005, Jersey City, NY. 

[4] EEMBC: Embedded Microprocessor Benchmark Consortium. 
www.eembc.org 

[5] Anthony, J. Design of Experiments. 2003, Butterworth-
Heinemann, Oxford, UK. 

[6] Renesas SH-2A, SH2A-FPU Software Manual, Rev 2.00, 
REJ09B0051-0200O, 13 Sept. 2004, Renesas Technology, Tokyo, 
Japan. 

[7] Kazmierczak, M. Simple method of finding primes. 2002. 
http://www.mkaz.com/math/primes.html 

[8] Lee, E. Absolutely Positively on Time: What Would It Take?. 
IEEE Computer, 38, 7(Jul 2005) 

[9] Heiser, G. Private communication. Sept 2005. 
http://ertos.nicta.com.au/Research/L4/ 

 

 

Graph 3B: Power Consumption - Sieve of Eratosthenes on ARM926E 
Subsystem of Fig.1 VSP

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 200 400 600 800 1000

Cache Size (Bytes)

A
ve

. P
ow

er
 * 

10
^7

 / 
# 

In
st

ru
ct

io
ns

CL = 16B,
Mem = DDR

CL = 16B,
Mem = SDR

CL = 32B,
Mem = DDR

CL = 32B,
Mem = SDR


