Optimal Speed Assignment for Probabilistic Execution Times

2nd Power-Aware Real-Time Computing Workshop

Claudio Scordino
University of Pisa, Italy
scordino@di.unipi.it

Enrico Bini
Scuola Superiore Sant’Anna, Italy
e.bini@sssup.it
Energy-constrained real-time systems

Embedded systems

- Special purpose computers, part of larger systems which may not be of electronic kind
- Often powered by rechargeable batteries
- Battery influences autonomy, size, weight and cost
- **Goal**: extend the lifetime of the system

Servers

- The power consumed by the processors is increasing
- Dissipating the heat generated is becoming very difficult
- Cooling devices can consume up to 50% of total energy
- **Goal**: reduce the thermal dissipation
Energy-constrained real-time systems

- Embedded systems
 - Special purpose computers, part of larger systems which may not be of electronic kind
 - Often powered by rechargeable batteries
 - Battery influences autonomy, size, weight and cost
 - **Goal**: extend the lifetime of the system

- Servers
 - The power consumed by the processors is increasing
 - Dissipating the heat generated is becoming very difficult
 - Cooling devices can consume up to 50% of total energy
 - **Goal**: reduce the thermal dissipation
Dynamic Voltage Scaling

- **Dynamic Voltage Scaling (DVS):**
 - Technique to reduce the power consumed by the processor
 - Change of processor voltage and frequency at runtime
 - Tasks take more time to be executed
 - Allows to balance computational speed vs. energy consumption

- Power-aware scheduling algorithm
 - Selects both the task to be scheduled and the processor speed
 - Must provide the worst-case computational requirement
Dynamic Voltage Scaling

- Dynamic Voltage Scaling (DVS):
 - Technique to reduce the power consumed by the processor
 - Change of processor voltage and frequency at runtime
 ⇒ Tasks take more time to be executed
 - Allows to balance computational speed vs. energy consumption

- Power-aware scheduling algorithm
 - Selects both the task to be scheduled and the processor speed
 - Must provide the worst-case computational requirement
Our problem

- The design of a new algorithm from scratch is complex
 - The problem with many tasks is complex
 - We preferred a bottom-up procedure
 - Provide the basis for the design of new algorithms

- Simple case:
 - A certain amount of “work” to be finished in \([0, T]\)
 - One task \(\tau\)
 - One hard deadline \(T\)
 - Processor with continuous speed scaling

- General model:
 - No specific power functions
 - Consider energy and time overheads during voltage transition
Our problem

- The design of a new algorithm from scratch is complex
 - The problem with many tasks is complex
 - We preferred a bottom-up procedure
 - Provide the basis for the design of new algorithms

- **Simple case:**
 - A certain amount of “work” to be finished in \([0, T]\)
 - One task \(\tau\)
 - One hard deadline \(T\)
 - Processor with continuous speed scaling

- **General model:**
 - No specific power functions
 - Consider energy and time overheads during voltage transition
Our problem

- The design of a new algorithm from scratch is complex
 - The problem with many tasks is complex
 - We preferred a bottom-up procedure
 - Provide the basis for the design of new algorithms

- Simple case:
 - A certain amount of “work” to be finished in \([0, T]\)
 - One task \(\tau\)
 - One hard deadline \(T\)
 - Processor with continuous speed scaling

- General model:
 - No specific power functions
 - Consider energy and time overheads during voltage transition
Probabilistic execution times

- The probability of a task executing for its WCEC is very low
 - Embedded systems: variations up to 87% wrt WCEC
 - Servers: average processor use between 10% and 50% of peak capacity

- Many algorithms try to predict the actual execution cycles
 - Typically, only the average value is used

- Better reduction can be achieved using a more detailed information on the required workload
 - Idea: exploit probabilistic information about execution times
 - Goal: minimize expected energy consumption while meeting the deadline
Probabilistic execution times

- The probability of a task executing for its WCEC is very low
 - Embedded systems: variations up to 87% wrt WCEC
 - Servers: average processor use between 10% and 50% of peak capacity

- Many algorithms try to predict the actual execution cycles
 - Typically, only the average value is used

- Better reduction can be achieved using a more detailed information on the required workload
 - **Idea**: exploit probabilistic information about execution times
 - **Goal**: minimize expected energy consumption while meeting the deadline
Probabilistic execution times

- The probability of a task executing for its WCEC is very low
 - Embedded systems: variations up to 87% wrt WCEC
 - Servers: average processor use between 10% and 50% of peak capacity

- Many algorithms try to predict the actual execution cycles
 - Typically, only the average value is used

- Better reduction can be achieved using a more detailed information on the required workload
 - **Idea**: exploit probabilistic information about execution times
 - **Goal**: minimize *expected* energy consumption while meeting the deadline
Deferring the work

Since we don’t know actual execution cycles, we can’t compute the optimal constant speed

Idea: defer some work
- We expect that the task will request less than its WCEC
- Technique widely adopted in many power-aware algorithms
 - Examples: DRA, RTDVS, EDF-DVS, PACE, PPACE

We use only 2 levels of speed in \([0, T]\)
- Goal: find the optimal speed assignments and the optimal instant for speed change
- We want the analytical expression in a closed form
Deferring the work

- Since we don’t know actual execution cycles, we can’t compute the optimal constant speed

- **Idea:** defer some work
 - We expect that the task will request less than its WCEC
 - Technique widely adopted in many power-aware algorithms
 - Examples: DRA, RTDVS, EDF-DVS, PACE, PPACE

- We use only 2 levels of speed in \([0, T]\)
 - **Goal:** find the optimal speed assignments and the optimal instant for speed change
 - We want the analytical expression in a closed form
Deferring the work

- Since we don’t know actual execution cycles, we can’t compute the optimal constant speed

- Idea: defer some work
 - We expect that the task will request less than its WCEC
 - Technique widely adopted in many power-aware algorithms
 - Examples: DRA, RTDVS, EDF-DVS, PACE, PPACE

- We use only 2 levels of speed in $[0, T]$
 - **Goal:** find the optimal speed assignments and the optimal instant for speed change
 - We want the analytical expression in a closed form
System model

Processor model:
- Speed: $0 \leq \alpha \leq \alpha_{\text{max}}$
- Generic function for power consumption: $p(\alpha)$
- Overhead of voltage transition
 - o: time overhead
 - e: energy consumed

Task model:
- Hard deadline: T
- Actual execution cycles c unknown
- $f_c(c)$: p.d.f. of number of cycles required in $[0, T]$
- C_{max}: worst case execution cycles in $[0, T]$
System model

- Processor model:
 - Speed: $0 \leq \alpha \leq \alpha_{\text{max}}$
 - Generic function for power consumption: $p(\alpha)$
 - Overhead of voltage transition
 - a: time overhead
 - e: energy consumed

- Task model:
 - Hard deadline: T
 - Actual execution cycles c unknown
 - $f_c(c)$: p.d.f. of number of cycles required in $[0, T]$
 - C_{max}: worst case execution cycles in $[0, T]$
Energy management scheme (1)

\[\text{Processor Speed} \]

\[\alpha_H \]

\[\alpha_L \]

\[p_H \]

\[p_L \]

\[C_x \]

\[Q \]

\[f \]

\[T \]

\[Q: \text{ instant when to switch} \]

\[C_x: \text{ number of cycles provided at } \alpha_L \]
Energy management scheme (2)

How much should we execute in the first part??
Energy management scheme (2)

- On average 50% of times we need only the first part
- Sub-optimal solution
We increase the number of times that we need only the first part.
Average energy consumed

- From the worst-case constraint we have

\[
\alpha_L(C_x, Q) = \frac{C_x}{Q - o} \quad \alpha_H(C_x, Q) = \frac{C_{\text{max}} - C_x}{T - Q - o}
\]

- \(E = \begin{cases}
 e + \frac{p_L}{\alpha_L} c & \text{if } f \leq Q \\
 2e + \frac{p_L}{\alpha_L} C_x + \frac{p_H}{\alpha_H} (c - C_x) & \text{if } f > Q + o
\end{cases} \)

- \(E_{\text{avg}} = \int_0^{C_{\text{max}}} E f_C(c) \, dc \)
 Expectation of \(E \)
Average energy consumed

From the worst-case constraint we have

\[\alpha_L(C_x, Q) = \frac{C_x}{Q - o} \quad \alpha_H(C_x, Q) = \frac{C_{\text{max}} - C_x}{T - Q - o} \]

\[E = \begin{cases}
 e + \frac{p_L}{\alpha_L} c & \text{if } f \leq Q \\
 2e + \frac{p_L}{\alpha_L} C_x + \frac{p_H}{\alpha_H} (c - C_x) & \text{if } f > Q + o
\end{cases} \]

\[E_{\text{avg}} = \int_0^{C_{\text{max}}} E f_C(c) \, dc \quad \text{Expectation of } E \]
Average energy consumed

- From the worst-case constraint we have

\[\alpha_L(C_x, Q) = \frac{C_x}{Q - o} \quad \alpha_H(C_x, Q) = \frac{C_{\text{max}} - C_x}{T - Q - o} \]

- \[E = \begin{cases}
 e + \frac{pL}{\alpha_L} c & \text{if } f \leq Q \\
 2e + \frac{pL}{\alpha_L} C_x + \frac{pH}{\alpha_H}(c - C_x) & \text{if } f > Q + o
\end{cases} \]

- \[E_{\text{avg}} = \int_0^{C_{\text{max}}} E f_C(c) \, dc \quad \text{Expectation of } E \]
Average energy consumed (2)

\[E_{\text{avg}} = e \left(2 - F_C(C_x) \right) + \frac{p_H}{\alpha_H} (C_{\text{avg}} - \gamma(C_x)) + \frac{p_L}{\alpha_L} \gamma(C_x) \]

where

- \(\gamma(x) = G_C(x) + x(1 - F_C(x)) \) \(\quad \) \(0 \leq \gamma(x) \leq C_{\text{avg}} \quad \forall x \)
- \(F_C(x) = \int_0^x f_C(c) \, dc \)
- \(G_C(x) = \int_0^x c \, f_C(c) \, dc \)
Level curves of E_{avg}

- Plot of level curves of E_{avg} on a plane (C_x, Q)

- Particular case:
 - Exponential p.d.f.
 - Polynomial power function: $p(\alpha) = k \alpha^3$
 - $T = 1$
 - $C_{\text{avg}} = 0.2929$
Level curves of E_{avg} (2)

$$C_x > C_{\text{avg}} = 0.2929$$
Minimum of E_{avg}

- The minimum satisfies $\nabla E_{\text{avg}} = 0$

- For the general model the components of ∇E_{avg} are:

$$\frac{\partial E_{\text{avg}}}{\partial C_x} = -e f_C(C_x) - \left(p'_H - \frac{p_H}{\alpha_H} \right) \frac{C_{\text{avg}} - \gamma(C_x)}{C_{\text{max}} - C_x}$$

$$+ \left(p'_L - \frac{p_L}{\alpha_L} \right) \frac{\gamma(C_x)}{C_x} - \left(\frac{p_H}{\alpha_H} - \frac{p_L}{\alpha_L} \right) \gamma'(C_x)$$

$$\frac{\partial E_{\text{avg}}}{\partial Q} = \left(p'_H \alpha_H - p_H \right) \frac{C_{\text{avg}} - \gamma(C_x)}{C_{\text{max}} - C_x} - \left(p'_L \alpha_L - p_L \right) \frac{\gamma(C_x)}{C_x}$$
Polynomial power function

- Significant example:
 - Time and energy overheads equal to zero (i.e. $e = o = 0$)
 - Polynomial power function $p(\alpha) = k \alpha^n$

- $\nabla E_{\text{avg}} = 0$ can be simplified:

\[
\begin{aligned}
\left\{ \begin{array}{c}
(n - 1) \gamma(C_x) + C_x \gamma'(C_x) \\
\frac{(n - 1)(C_{\text{avg}} - \gamma(C_x)) + (C_{\text{max}} - C_x) \gamma'(C_x)}{(n - 1)(C_{\text{avg}} - \gamma(C_x)) + (C_{\text{max}} - C_x) \gamma'(C_x)} \left(\frac{C_{\text{max}}}{C_x} - 1 \right) \left(\frac{C_{\text{avg}}}{\gamma(C_x)} - 1 \right) = \frac{T}{Q} - 1 \\
\left(\frac{C_{\text{max}}}{C_x} - 1 \right)^{n-1} \left(\frac{C_{\text{avg}}}{\gamma(C_x)} - 1 \right) = \left(\frac{T}{Q} - 1 \right)^n
\end{array} \right.
\end{aligned}
\]
Case study 1 - Uniform density

- Uniform density function:

\[f_C(c) = \begin{cases}
\frac{1}{C_{\text{max}} - C_{\text{min}}} & \text{if } C_{\text{min}} \leq c \leq C_{\text{max}} \\
0 & \text{otherwise}
\end{cases} \]

- \(x = \frac{C_x}{C_{\text{max}}} \) and \(a = \frac{C_{\text{min}}}{C_{\text{max}}} \).

- When \(n=2 \)

\[x_{\text{opt}} = \frac{1 + \sqrt{1 + 3a^2}}{3}. \]

- When \(n=3 \)

\[x_{\text{opt}} = \frac{5 - \sqrt{5} + \sqrt{2\sqrt{5}(3 - \sqrt{5}) - 8(1 - \sqrt{5})a^2}}{8}. \]
Case study 1 - Uniform density

- Uniform density function:

\[f_C(c) = \begin{cases}
\frac{1}{C_{\text{max}} - C_{\text{min}}} & \text{if } C_{\text{min}} \leq c \leq C_{\text{max}} \\
0 & \text{otherwise}
\end{cases} \]

- \(x = \frac{C_x}{C_{\text{max}}} \) and \(a = \frac{C_{\text{min}}}{C_{\text{max}}} \).

- When \(n=2 \)

\[x_{\text{opt}} = \frac{1 + \sqrt{1 + 3a^2}}{3} \]

- When \(n=3 \)

\[x_{\text{opt}} = \frac{5 - \sqrt{5} + \sqrt{2} \sqrt{5(3 - \sqrt{5}) - 8(1 - \sqrt{5})a^2}}{8} \]
Case study 1 - Uniform density

- Uniform density function:

\[f_C(c) = \begin{cases}
\frac{1}{C_{\text{max}} - C_{\text{min}}} & \text{if } C_{\text{min}} \leq c \leq C_{\text{max}} \\
0 & \text{otherwise}
\end{cases} \]

- \(x = \frac{C_x}{C_{\text{max}}} \) and \(a = \frac{C_{\text{min}}}{C_{\text{max}}} \).

- When \(n=2 \)

\[x_{\text{opt}} = \frac{1 + \sqrt{1 + 3a^2}}{3} \]

- When \(n=3 \)

\[x_{\text{opt}} = \frac{5 - \sqrt{5} + \sqrt{2}(5(3 - \sqrt{5}) - 8(1 - \sqrt{5})a^2)}{8} \]
Case study 1 - Uniform density (2)
Case study 2 - Exponential density

- What happens for asymmetric densities?

- Exponential density:

\[
 f_C(c) = \begin{cases}
 \frac{1}{K} e^{\beta c} (1 - c)(c - a) & \text{if } c \in [a, 1] \\
 0 & \text{otherwise}
\end{cases}
\]

\(K \) such that \(\int_a^1 f_C(c) \, dc = 1. \)

- \(\beta \) allows to alter the symmetry of the density
 - \(\beta < 0 \): values close to \(C_{\text{min}} \) are more likely to happen
 - \(\beta > 0 \): values close to \(C_{\text{max}} \) are more likely to happen
Case study 2 - Exponential density

- What happens for asymmetric densities?

- Exponential density:

\[f_C(c) = \begin{cases} \frac{1}{K} e^{\beta c}(1 - c)(c - a) & \text{if } c \in [a, 1] \\ 0 & \text{otherwise} \end{cases} \]

\[K \text{ such that } \int_a^1 f_C(c) dc = 1. \]

- \(\beta \) allows to alter the symmetry of the density
 - \(\beta < 0 \): values close to \(C_{\min} \) are more likely to happen
 - \(\beta > 0 \): values close to \(C_{\max} \) are more likely to happen
Case study 2 - Exponential density

- What happens for asymmetric densities?

- Exponential density:

\[
f_C(c) = \begin{cases}
\frac{1}{K}e^{\beta c}(1 - c)(c - a) & \text{if } c \in [a, 1] \\
0 & \text{otherwise}
\end{cases}
\]

- \(K\) such that \(\int_a^1 f_C(c)\,dc = 1\).

- \(\beta\) allows to alter the symmetry of the density
 - \(\beta < 0\): values close to \(C_{\text{min}}\) are more likely to happen
 - \(\beta > 0\): values close to \(C_{\text{max}}\) are more likely to happen
Case study 2 - Exponential density (2)
Case study 2 - Exponential density (3)
Conclusions

- Found the optimal solution with 2 speeds
 - Analytical expression
 - Very general model
 - No specific power functions
 - Time and energy overheads for voltage transition

- Applied to 2 case studies: uniform and exponential densities

- Still a work-in-progress
 - Basis for the design of new power-aware algorithms
 - **Future work**: see how this result can be extended to the case of \(n \) concurrent tasks