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Abstract

Recent studies show that, voltage scaling, which is an efficient energy management technique, has

a direct and negative effect on system reliability because of the increased rate of transient faults (e.g.,

those induced by cosmic particles). In this work, we propose energy management schemes that explicitly

take system reliability into consideration. The proposedreliability-aware energy management schemes

dynamicallyschedule recoveries for tasks to be scaled down to recuperate the reliability loss due to energy

management. Based on the amount of available slack, the application size and the fault rate changes, we

analyze when it is profitable to reclaim the slack for energy savings without sacrificing system reliability.

Checkpoint technique is further explored to efficiently use the slack. Analytical and simulation results

show that, the proposed schemes can achieve comparable energy savings as ordinary energy management

schemes while preserving system reliability. The ordinary energy management schemes that ignore the

effects of voltage scaling on fault rate changes could lead to drastically decreased system reliability.
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1 Introduction

The performance of modern computing systems has increased at the expense of dramatically increased power

consumption. The increased power consumption reduces the operation time for battery-operated embedded

systems (e.g., PDAs and cell phones) as well as increases the operation cost for high performance parallel

systems (e.g., data centers and server farms), where the excessive amount of heat generated requires high

cooling capacity. Many hardware and software techniques have been proposed to manage power consumption

in modern computing systems and power aware computing has become an important research area recently.

As an efficient energy management technique,voltage scaling, which reduces system supply voltage for

lower operation frequencies [35, 37], has been used extensively in the recently proposed power management

schemes [2, 22, 24, 28].

Another traditionally important avenue in real-time systems research is fault tolerance. For safety-critical

real-time systems, where the consequence of a failure can be catastrophic, faults must be detected, and appro-

priate recovery operations must be completed before the deadline. It has been reported thattransientfaults

occur much more frequently thanpermanentfaults [5, 15, 16]. Moreover, with continuing scaling of CMOS

technologies and adjustment of design margins for higher performance, it is expected that, in addition to the

systems that traditionally operate in electronics-hostile environments (such as those in outer space), practi-

cally all digital systems will be much more vulnerable to the transient faults [9, 34]. In this work, we will

focus on transient faults and explore thebackward error recoverytechniques, which restore the system state

to a previous safe state and repeat the computation [25], to tolerate them.

However, both voltage scaling and backward recovery techniques rely on the active use of system slack.

When more slack time is dedicated as temporal redundancy for backward recovery to increase system relia-

bility, less slack is available for energy management to save energy. Therefore, there is an interesting trade-off

between system reliability and energy consumption [41]. Moreover, it has been shown that voltage scaling has

a direct effect on the rate increases of transient faults, especially for those induced by cosmic ray radiations,

which further complicates the interplay between system reliability and energy efficiency.

Due to the effects of cosmic ray radiations, soft errors (i.e., transient faults) can be caused by the atmo-

spheric nuclear/high energy particles (alpha-particles, protons and neutrons) when they strike the sensitive

region in a semiconductor device. In general, the error rate is exponentially related to thecritical charge

(which is the smallest charge required to cause a soft error in a circuit node) of a circuit [12]. Since the crit-

ical charge is proportional to system supply voltage [29], when system supply voltage is reduced, the critical

charge decreases and low energy cosmic particles could cause an error. Considering the number of particles

with lower energy is much more than that of particles with higher energy in the cosmic rays [44], scaling

down voltages and frequencies for energy savings could lead to dramatically increased transient fault rates

[41]. Therefore, voltage scaling has a severe effect on system reliability [9, 31, 41] and should be carefully
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evaluated before it is applied, especially for safety-critical embedded real-time applications, such as satellite

and surveillance systems, where both high level of reliability and low energy consumption are important.

Traditionally, to achieve a certain level of system reliability in the worst case, only static slack in a system

has been explored as temporal redundancy. However, as real-time applications exhibit large variations in ac-

tual execution time, and in many cases, only consume a small fraction of their worst case execution time [10],

large amount of dynamic slack is available during run-time. As mentioned earlier, simply reclaiming this dy-

namic slack for energy savings through voltage scaling technique could dramatically reduce system reliability

due to increased failure rates as well as extended execution time [9, 41]. Therefore, for dependable embedded

real-time systems (such as the ones deployed in out-space explorers), where both high system reliability and

low energy consumption are equally important, special considerations are needed when exploiting dynamic

slack for energy savings.

Though fault tolerance through redundancy and energy management through voltage and frequency scal-

ing have been well studied in the context of real-time systems independently, there are relatively less research

addressing the combination of fault tolerance and energy management [7, 8, 21, 27, 33, 39]. In this work,

we propose schemes that utilize dynamic slack for energy savings while taking system reliability into con-

sideration. Specifically, the proposedreliability-aware energy management schemesdynamicallyschedule

recoveries for tasks to be scaled down using dynamic slack to recuperate the reliability loss due to energy

management. To the best of our knowledge, this is the first work that addresses the complications of explor-

ing dynamic slack for both energy and reliability. The main contributions of this paper are three-fold:

• First, we propose a reliability-aware dynamic energy management scheme that can achieve significant

energy savings without degrading system reliability.

• Second, depending on the amount of available slack and the size of the application, we identify the

situation when it is profitable to reclaim dynamic slack for energy savings without sacrificing system

reliability.

• Third, checkpointing techniques are further explored for the reliability-aware dynamic energy manage-

ment scheme to efficiently use dynamic slack.

Analytical and simulation results show that ignoring the effects of voltage scaling on fault rates changes

could lead to drastically decreased system reliability and the proposed schemes can achieve comparable en-

ergy savings as ordinary energy management schemes while preserving system reliability.

The reminder of this paper is organized as follows. The models and problem description are presented in

Section 2. Reliability-aware dynamic energy management is proposed and analyzed in Section 3 and Section 4

explores checkpointing techniques to efficiently use dynamic slack. The simulation results are presented and

discussed in Section 5. Section 6 addresses the closely related work and Section 7 concludes the paper.
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2 Models and Problem Description

2.1 Power Model

For embedded systems, the power is consumed mainly by the processor, memory, I/O interfaces and underly-

ing circuits. While the power consumption is dominated by dynamic power dissipation, which is quadratically

related to supply voltage and linearly related to frequency [4], the static leakage power is ever-increasing and

cannot be ignored, especially with the scaled feature size and increased levels of integration [17, 32]. To

incorporate all the power consuming components in an embedded system while keeping the power model

simple, the power consumption in a system is divided into two major components:static powerandactive

power[41, 43].

The static power, which may be removed only by powering off the whole system, includes (but not limited

to) the power to maintain basic circuits, keep the clock running and the memory in sleep mode [19]. The

active power is further divided into two parts:frequency-independentactive power andfrequency-dependent

active power. Frequency-independent active power consists of part of memory and processor power as well as

any power that can be efficiently removed by putting systems into sleep state(s) and is independent of system

supply voltages and processing frequencies [6, 19]. Frequency-dependent active power includes processor’s

dynamic power and any power that depends on system supply voltages and processing frequencies [4, 32].

Considering the almost linear relation between supply voltage and operating frequency [4],voltage scaling

reduces the supply voltage for lower frequencies [23]. In this paper, we use frequency changes to stand for

changing both supply voltage and frequency and adopt the power model developed in [41, 43]:

P = Ps + h̄(Pind + Pd)

= Ps + h̄(Pind + Ceffm) (1)

wherePs is the static power,Pind is the frequency-independent active power andPd is the frequency-

dependent active power. BothPs andPind are system dependentconstants. h̄ = 1 if the system isactive

(defined as having computation in progress); otherwise (i.e., the system is in sleep mode or turned off)h̄ = 0.

The effective switching capacitanceCef and the dynamic power exponentm (in general, larger than or equal

to 2) are system/application dependent constants [4] andf is the processing frequency. For easy discussion,

normalized frequencies are used and the maximum frequencyfmax is assumed to be1 (with corresponding

normalized supply voltageVmax = 1). The maximum frequency-dependent active power is denoted byPmax
d

and we assumePs = αPmax
d andPind = βPmax

d .

From Equation (1), intuitively, lower frequencies result in less frequency-dependent active energy con-

sumption. But with reduced speed, the application will run longer and thus consume more static energy and

frequency-independent active energy. Hence, in general, anenergy-efficient frequency below which voltage
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scaling starts to consume more total energydoes exist1. In real-time applications, the time and energy over-

head of turning on/off a device that is actively used by the application may be prohibitive [3]. For the time

interval considered (e.g., within application’s deadline), we assume that the working system is always on (but

several components may be put to low-power sleep states for energy savings) andPs is always consumed.

Consequently, the total energy consumption of arunningapplication at frequencyf can be modeled as:

E = Ps ·D + (Pind + Ceffm) · c

f
(2)

whereD is the operation interval,c is the worst case execution time of the application at the maximum

frequencyfmax and c
f is the execution time of the application at frequencyf . That is, althoughPs affects the

total energy consumption, the amount ofenergy savingsfrom voltage scaling isindependentof it. For easy

discussion, in what follows, we assumePs = 0 and focus on active power2.

From Equation 2, it is easy to find out that theenergy efficient frequencyis [41, 43]:

fee = m

√
β

m− 1
(3)

For energy consideration, we should never run at a frequency belowfee, since doing so consumes more

energy. For simplicity, we assume thatfee ≥ flow, whereflow is the lowest frequency in the system, and

define theminimum energy efficient frequencyasfmin = max{flow, fee} = fee. Moreover, frequency is

assumed to be able to change continuously3 from fmax to fmin.

2.2 Fault Model

During the execution of an application, a fault may occur due to various reasons, such as hardware failures,

software errors and the effects of cosmic ray radiations. Sincetransientfaults occur much more frequently

thanpermanentfaults [5, 15, 16], in this paper, we focus on transient faults, especially the ones caused by

cosmic ray radiations, and explorebackward recoverytechniques to tolerate them. It is assumed that faults are

detected using sanity or consistency checks [25]. Should an error be detected, the system’s state is restored to

a previous safe state and the computation is repeated.

Transient faults that are caused by radiations in semiconductor circuits have been known and well studied

since the late 1970s [44]. However, considering the various factors that affect the transient fault rate (such as

cosmic ray flux, technology feature size, chip capacity, supply voltage and operating frequency), obtaining a

1We note that this conclusion has been also reached by several research groups, though through different energy modeling tech-
niques [8, 11, 17, 13, 28].

2For systems with multiple processing units, some processing units may be powered off for energy efficiency and the energy
savings will be affected byPs [36, 42].

3For discrete frequency levels, we can use two adjacent levels to emulate the execution at any frequency [14].
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precise and formal modelis an extremely challenging task [30, 31, 45]. In general, transient fault rate, also

known assoft error rate (SER), is exponentially-related to thecritical charge(Qcrit), of a circuit is given by

the following equation [12]:

SER ∝ F ×A× e
−Qcrit

Qs (4)

whereQcrit is the smallest charge needed to cause a soft error;A andQs are circuit-related constants; and

F is the neutron flux (i.e., radiation intensity). Moreover, the critical charge is proportional to system supply

voltage [29]. When the system supply voltage is reduced, the critical charge decreases, which will increase

the transient fault rate. For example, increased SERs have been observed with lower supply voltages for both

memory [45] and processors [29].

Based on these observations, we have studied the effects of low power techniques on transient fault rates

[41]. Assuming that radiation-induced transient faults follow a Poisson distribution with an average fault rate

λ [38], for systems running at frequencyf (f ≤ fmax, and corresponding supply voltageV ), the function

giving the average transient fault rate is generally expressed as [41]:

λ(f) = λ0g(f) (5)

whereλ0 is the average fault rate corresponding to the maximum frequencyfmax = 1 (and supply voltage

Vmax). That isg(fmax) = 1.

When supply voltage is scaled down, with smaller critical charges, lower energy particles could cause an

error with ahigherprobability [44]). Considering the exponential term in Equation (4), and the fact that the

number of low-energy particles is two magnitude higher than that of the high-energy particles [44], a more

specificfault rate model for voltage scaling has been suggested in our previous study [41]:

λ(f) = λ0g(f) = λ010
d(1−f)
1−fmin (6)

whered (> 0) is a constant. The maximum average fault rate is assumed to beλmax = λ010d, which

corresponds to the lowest frequencyfmin (and supply voltageVmin). That is, reducing the supply voltage and

frequency for energy savings results inexponentiallyincreased fault rates and largerd indicates that the fault

rate is more sensitive to voltage scaling. Although the exponential fault rate model is used in the analysis and

simulations, the reliability-aware energy management schemes proposed in this paper are very generic and do

not rely on any specific fault model.
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2.3 Problem Description

In this work, we consider a real-time application that consists of a set ofaperiodic tasks. The worst case

execution time (WCET) of taskTi at the maximum frequencyfmax is assumed to beci with a deadlineDi

(i = 1, · · · , n). When all tasks use their WCETs at the maximum frequencyfmax, the task set is assumed

to be scheduleable. Moreover, considering that the reliability of a real-time system depends on the correct

execution ofall tasks in an application, without loss of generality, the application reliability,R0 =
∏n

i=1 R0
i , is

assumed to besatisfactory. Here,R0
i = e−λ0ci is the probability of taskTi being executed correctly (from the

Poisson fault arrival pattern and the average fault rateλ0). That is, no recovery tasks arestaticallyscheduled

to achieve the required reliability4 R0, which will be preserved at run-time.

Due to early completion of tasks at run time, dynamic slack will exist during the execution of tasks [10].

For a given amount of available slackS, we focus on the problem of how to useS for energy savings

without sacrificing system reliability, while taking the effects of voltage scaling on fault rates into con-

sideration.

In order to preserve the reliability,R0, of an application, for simplicity, we focus on maintaining the

reliability of individual tasks in this work. That is, we propose schemes to keep the probability of taskTi

being correctly executed no less thanR0
i (i = 1, · · · , n). Recoveries of tasks will be scheduleddynamicallyif

needed. The overall performance of the proposed schemes for the whole application will be evaluated through

simulations in Section 5.

When errors are detected at a task’s completion, the task may bere-executedto recover from transient

faults. In the next Section, we first consider the case where the amount of available slackS is no less than

ck, the size of the next taskTk, and propose areliability-awaredynamic energy management scheme which

dynamicallyschedules a recovery task (i.e., a simple re-execution) forTk to recuperate the possible reliability

loss due to energy management. Section 4 further explores checkpointing techniques to efficiently use the

available slack, especially for the case whenS is smaller thanck.

3 Reliability-Aware Dynamic Energy Management

Although sophisticated dynamic power management schemes that explore tasks’ statistical information have

been proposed [2, 22], we will focus ongreedyscheme for it’s simplicity. Exploring other advanced schemes

is beyond the scope of this paper and will be considered in our future work. We first illustrate the problem of

ordinary greedy power management on reliability in Section 3.1. Then Section 3.2 presents the new reliability-

aware greedy energy management scheme and the analysis.

4When recovery tasks arestaticallyscheduled to satisfy higher levels of reliability requirements, our proposed schemes will treat
such recovery tasks as normal tasks and preserve the higher levels of reliability that should be achieved.

7



3.1 Ordinary Greedy Power Management

In ordinary greedypower management, all the available dynamic slack will be used to scale down the process-

ing of the next task for energy savings provided that such allocation complies with task’s timing constraints

[2, 22] and/or the minimum energy-efficient frequency limitation [41, 43]. For example, as shown in Fig-

ure 1a, due to the early completion of previous tasks, there are3 units of available dynamic slack at timet,

that is,S = 3. The WCET of the next ready taskTk is ck = 2. In the figures, the X-axis represents time,

the Y-axis represents processing frequency (e.g., cycles per time unit), and the area of the task box defines the

workload (e.g., number of cycles) of the task. Recall thatDk is the deadline of taskTk.

Dkf

t+1t t+2 t+3 t+4 t+5

time
Tk

Dkf

t+1t t+2 t+3 t+4 t+5

time

Tk

Dkf

t+1t t+2 t+3 t+4 t+5

time

S

a. at time t, slack S is available

b. Greedy power management

S

Tk

RC k

c. Reliability−aware greedy scheme

S

Figure 1: Ordinary and Reliability-Aware Greedy Schemes.

Suppose thatβ = 0.1 (i.e.,Pind = 0.1Pmax
d ) andm = 3, we have the minimum energy efficient frequency

fee = 0.37 (recall thatfmax = 1, Section 2) [43]. Therefore, all the available dynamic slackS can be

allocated to taskTk and the processing speed ofTk can be reduced fromfmax = 1 to f = 2
2+3 = 0.4 as

shown in Figure 1b. From Equation 1, it is easy to find that scaling down the processing ofTk could save63%

of theactive energy.

However, as discussed in Section 2, with reduced processing frequency and supply voltage, the processing

of taskTk is more susceptible to transient faults [9, 41]. Suppose that the exponent in the fault rate model is

d = 2 (see Equation 6 in Section 2), the probability of having fault(s) during the execution of taskTk at the

reduced speed will be:

ρk = 1−Rk = 1− e−λ010
d(1−f)
1−fmin (S+ck)

= 1− e
−λ010

d(1−f)
1−fmin

ck
f = 1− e−λ0ck10

2(1−0.4)
1−0.37 1

0.4

≈ 1− (R0
k)

200 = 1− (1− ρ0
k)

200 ≈ 200ρ0
k (7)
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whereρ0
k is the probability5 of having fault(s) when taskTk uses its WCET at the maximum processing

frequencyfmax. That is, though63% active energy is saved by scaling down the processing of taskTk, it

leads to approximately200 times higher in the probability of failure! The increase in the probability of failure

during the processing of individual tasks will degrade the overall system reliability, which is unbearable,

especially for safety-critical systems where the requirement for high levels of reliability is strict.

3.2 Reliability-Aware Greedy Scheme

In addition to being used by energy management schemes for energy savings, slack time can also be used

as temporal redundancy to increase system reliability [25]. To recuperate the reliability loss due to energy

management, we can reserve some slack as temporal redundancy for scheduling recoveries/backups for tasks

to be scaled down. For simplicity, here we assume that the recovery is in the form ofre-execution6 and it has

the same size of the task to be recovered.

The reliability-aware greedy (RA-Greedy)power management scheme will dynamically schedule are-

coveryfor the task to be scaled before applying slack reclamation for energy savings. The recovery will be

executed (if needed) at the maximum frequencyfmax = 1. Notice that, in this section, the amount of dynamic

slackS is assumed to be no less thanck, the size of next taskTk. After reservingck units of dynamic slack

for the recovery task, the remaining dynamic slack (S − ck, if any) can be used to scale down the execution

of Tk for energy savings. For example, as shown in Figure 1c, a recovery taskRCk is scheduled for taskTk

which uses2 units of dynamic slack. The remaining1 unit of dynamic slack allows taskTk to run at a lower

frequencyfk = 2
2+1 = 0.66 and save energy.

3.2.1 System Reliability under RA-Greedy

With the additional recovery taskRCk, the reliabilityRk of taskTk will be the summation of the probability

of primary taskTk being executed correctly andthe probability of having fault(s) duringTk’s execution while

RCk being executed correctly. Notice that, if the execution of the primary taskTk is faulty, the recovery

taskRCk will be executed at the maximum frequencyfmax and the probability of itsfault-freeexecution is

e−λ0ck = R0
k. Therefore, we have:

Rk = e−λ(fk)S +
(
1− e−λ(fk)S

)
R0

k > R0
k (8)

whereλ(fk) is the fault rate at the reduced frequencyfk. From the above equation, we can see that, under

the RA-Greedy scheme, with the help of the additional recovery taskRCk, the reliability of taskTk is always

better thanR0
k regardless different fault rate increases (i.e., different values ofd in Equation 6) and the reduced

5Note that,ρ0
k is a small number (usually< 10−4).

6Notice that the approach can be generalized to other settings with different recoveries [1].
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processing frequencyfk of the primary taskTk. That is, when the amount of dynamic slack is no less than

the size of the next task, by dynamically scheduling a recovery task before applying energy management, the

RA-Greedy scheme can achieve better reliability for individual tasks, and thus preserve system reliability.

3.2.2 Expected Energy Consumption under RA-Greedy

Suppose that the energy consumption to execute taskTk for time ck at the maximum frequencyfmax is7

E0
k = (Ps + Pind + Pmax

d )ck = (Pind + Pmax
d )ck = (β + 1)Pmax

d ck. Considering the probability ofRCk

being executed, theexpected energy consumptionfor processing taskTk will be:

Ek = (Pind + Ceffm
k )S + (1− e−λ(fk)S) · E0

k

= E0
k


1− e−λ(fk)S +

(β + cm
k

Sm ) S
ck

1 + β


 (9)

Intuitively, the more the available dynamic slack is allocated for energy management, the lower the processing

frequency can be for executing taskTk, and thus more energy savings can be obtained. However, due to the

limitation of the minimum energy efficient frequencyfee, the maximum amount of dynamic slack that should

be allocated to taskTk for energy management is limited, which can be easily calculated asck
fee
−ck. Consider

the amount of slack reserved for recovery isck, the maximum amount of total dynamic slack that may be used

when processingTk will be USmax = ( ck
fee

− ck) + ck = ck
fee

. When more dynamic slack thanUSmax is

available, part of the slack will be saved for future tasks due to energy consideration.

Moreover, with reduced processing frequency and supply voltage, the execution ofTk takes more time

and the fault rate increases, which results in higher probability of having fault(s) during the execution ofTk.

Therefore the probability of recovery taskRCk being executed increases, which mayovershadowthe energy

savings and lead to more expected energy consumption. However, considering the exponential component

in Equation 9, it is hard to obtain a simple closed formula for the optimal amount of dynamic slack that

minimizes the expected energy consumption. In what follows, we present some analytical results to illustrate

the relation between the expected energy consumption, the amount of available dynamic slack and the fault

rate changes due to energy management.

Without loss of generality, in the analysis, we assumeck = 1 andλ0 = 10−6 (which corresponds to

100,000 FITs,failure in timein terms of errors per billion hours of use per megabit, that is a reasonable fault

rate as reported [30, 45]). Moreover, we assumeα = 0 (i.e.,Ps = 0) andm = 3. Figure 2 shows the expected

energy consumption for executing taskTk, normalized toE0
k , versus the amount of available dynamic slack

under different frequency-independent power (β) and fault rate changes (d). Notice that, one unit (ck) of

dynamic slack is reserved for the recovery task and the minimum amount of dynamic slack considered isck.

7Recall that we assumePs = 0 and focus on active power in this paper.
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Figure 2: The normalized expected energy consumption vs. the amount of available dynamic slack.

From Section 2, for different frequency-independent powerβ = 0.1, 0.2 and0.4, the corresponding energy

efficient frequencies arefee = 0.37, 0.46 and0.58, which in turn limits the maximum amount of dynamic

slack used by RA-Greedy schemeUSmax = ck
fee

to be2.70ck, 2.17ck and1.72ck, respectively (see the X-axis

in the figure).

From the figures we can see that, for the different fault rate increases considered (i.e.,d = 2, 4 and5),

when the amount of available dynamic slack is more thanck (= 1), the size of the next taskTk, dynamic slack

is available for energy management. The expected energy consumption to executeTk is less thanE0
k and up

to 60% of energy savings is expected whenβ = 0.1 andd < 4. As the amount of available dynamic slack

increases, more slack is available for energy management and the expected energy consumption for executing

taskTk generally decreases. However, when the fault rate increases dramatically with reduced processing

frequencies and supply voltages (e.g.,d = 5), as more dynamic slack is available and the reduced frequency

approachesfee, more expected energy may be consumed due to the increased probability of recovery task

being executed. In this case, the optimal amount of dynamic slack to minimize expected energy consumption

is less thanUSmax.

Notice that, when the fault rate change is not that severe (e.g.,d ≤ 4), the maximum amount of dynamic

slackUSmax limited by fee is very close to the optimal amount of slack that minimizes the expected energy

consumption. Considering the difficulty of finding the close formula for the optimal amount of slack, for

the simulations in Section 5, the amount of dynamic slack that will be allocated for energy management is

only limited byfee (i.e., up toUSmax − ck amount of dynamic slack will be used for energy management).

Moreover, for higher frequency-dependent active power (i.e.,β = 0.4), fee increases andUSmax decreases,

which results in less energy savings (note the difference in the scale of Y-axis of Figure 2).

We have shown that the RA-Greedy scheme can achieve significant energy savings while guaranteeing to

preserve system reliability regardless the negative effects of voltage scaling on transient fault rates. However,

the amount of slack needed by the RA-Greedy scheme may be considerable, especially for large tasks. To

utilize the slack more efficiently, instead of scheduling a whole recovery task, checkpoints may be employed
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to re-compute only the faulty section for more energy savings as well as better system reliability [18, 20, 21].

4 Checkpointing for Better Performance

Checkpointing techniques insert checkpoints during the execution of a task. Within a checkpoint, the state of a

system is checked and correct states are saved to a stable storage [25]. When faults are detected, the execution

is rolled back to the latest correct checkpoint and re-compute the faulty section by exploring the temporal

redundancy [18, 20]. Checkpoints can beuniformlyor non-uniformlydistributed among an application [21].

In this work, we consider uniformly distributed checkpoints only.
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Figure 3: Reliability-Aware Energy Management with Checkpoints.

For example, Figure 3a shows that there are2 units of dynamic slack available at timet, which is less than

ck = 3, the size of the next ready taskTk. Apparently, the RA-Greedy scheme could not use this slack and

it may be wasted (ifTk is the last task). If the overhead of employing one checkpoint isr = 0.125 and3

checkpoints are inserted, Figure 3b illustrates the case of one recovery section being scheduled. Here there

is 0.5 units of remaining dynamic slack, which can be used to scale down the processing of the primary task

sections for energy savings as shown in Figure 3c.

The more the checkpoints are, the smaller a task section is. Thus, less slack is needed for recoveries.

However, checkpoints also take time and consume energy. Therefore, there is a tradeoff regarding the number

of checkpoints that should be employed to minimize the response time [18] or energy consumption [21]. For

simplicity, we focus on the optimal number of checkpoints that minimize the recovery overhead and explore

the efficient usage of the slack to save energy while preserving system reliability. That is,for given amount

of available slackS and the next taskTk, we study the relation between the checkpoint overhead, the

amount of energy savings and the number of recovery sections needed to preserve system reliability.
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4.1 Checkpoints with Single Recovery Section

To compensate the reliability loss due to energy management and checkpoint overhead,at leastone recovery

section is needed. In this Section, we consider first the simple case that only has a single recovery section and

analyze its performance on system reliability. When one recovery is not enough to recuperate the reliability

loss, the analysis is further generalized to multiple recovery sections in Section 4.2.

For easy discussion, we assume that the overhead of taking one checkpoint isr = γ · ck, whereck is the

WCET of the next taskTk. If n checkpoints are inserted during the execution ofTk, the size of one recovery

section will beck
n and we have:

S ≥ n · r + (r +
ck

n
) = (nγ + γ +

1
n

)ck (10)

In order forn to have a real (non-imaginary) solution, we can easily find that the minimum amount of slack

needed due to timing constraints isStime
min = (γ + 2

√
γ)ck with the optimal number of checkpoints being

nopt =
⌊√

1
γ

⌋
or nopt =

⌈√
1
γ

⌉
. However, considering the integer property ofnopt and the energy overhead

incurred by checkpoints, the minimum amount of slack needed for energy savingsSenergy
min should be larger

thanStime
min as illustrated in Section 4.2.2.

With the optimal number of checkpointsnopt and one recovery section, the amount of available slack for

energy management will beS − (nopt + 1)r − ck
nopt

, which can be used to scale down the execution of the

primary sections. Therefore, the reduced frequency to execute the primary sections will be

fckpt =
ck + nopt · r

S + ck − r − ck
nopt

(11)

and each primary section will taketprimary =
S+ck−r− ck

nopt

nopt
time units. From Section 2, the fault rate at

frequencyfckpt will be λ(fckpt) = λ010
d(1−fckpt)

1−fmin and the probability of having fault(s) during the execution

of one primary section isρprimary = 1 − e−λ(fckpt)tprimary . Notice that, the recovery section is executed

at fmax and the probability of having fault(s) during the execution of the recovery section isρrecovery =

1− e
−λ0(r+

ck
nopt

)
. Therefore, the reliability of executing taskTk is

Rckpt
k = (1− ρprimary)nopt + nopt · ρprimary(1− ρprimary)nopt−1(1− ρrecovery) (12)

where the first part is the probability of all primary sections being executed correctly and the second part is

the probability of having fault(s) during the execution of one primary section while the recovery section being

executed correctly.

From Equation 12,Rckpt
k is determined by the amount of available dynamic slackS, checkpoint overhead

r and fault rate changesd. For a given checkpoint overhead, more dynamic slack leads to lower reduced

13



frequency for the primary sections, which in turn leads to higher probability of failure and lower reliability

Rckpt
k . However, due to the complexity of Equation 12, it is hard to find the close formula forS to ensure

Rckpt
k ≥ R0

k and we illustrate the relation betweenS andRckpt
k in the following analysis.
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Figure 4: The normalized expected energy consumption vs. the amount of available dynamic slack.

Figure 4 shows the normalized probability of failure,
1−Rckpt

k

1−R0
k

, when executing taskTk with different

amount of available dynamic slack under different checkpoint overheads. Here, we limit the analysis to

the case ofS < ck since the RA-Greedy scheme can guarantee system reliability whenS > ck. The same as

before, we assumem = 3, λ0 = 10−6 andck = 1. Moreover,β is assumed to be0.1 and we havefee = 0.37.

Therefore, for a given checkpoint overheadr = γck, the amount of dynamic slack considered will be in the

range ofStime
min (= γ + 2

√
γ) and1.

From the figure, we can see that, with one recovery section, the normalized probability of failure to execute

taskTk is lower than1 most of the time. The exception comes from the case where the checkpoint overhead is

low (i.e.,γ = 0.01; see Figure 4a) which leaves more slack for energy management and the reduced frequency

is close tofee. With the exponent of fault rate model beingd = 5, the fault rate atfee is 105 time higher than

λ0 = 10−6 and leads to worse thanR0
k reliability. However, with moderate fault rate increase (e.g.,d ≤ 4),

for the cases we considered, adding checkpoints with one recovery section obtains higher reliability when

executing taskTk.

Moreover, the faster the fault rate increases (i.e., larger values ofd) with reduced frequencies and supply

voltages, the higher the probability of failure and the lower the reliability. Assuming constant fault rate (e.g.,

d = 0) is too optimistic and could lead to lower reliability than expected when exploring slack for energy

management, which is the same observation as our previous results [41].

From the above analysis, we can see that checkpointing with single recovery section may not be enough to

compensate the reliability loss due to energy management. In the next Section, we consider to exploit multiple

recovery sections to enhance reliability, especially for the case of more slack being available (e.g.,S > ck).
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4.2 Checkpoints with Multiple Recovery Sections

Suppose thatb (≥ 1) recovery sections are needed/scheduled to preserve system reliability. Equation 10 can

be generalized as:

S ≥ n · r + b · (r +
ck

n
) =

(
(n + b)γ +

b

n

)
ck (13)

With the optimal number of checkpointsnb,opt (i.e.,
⌊√

b
γ

⌋
or

⌈√
b
γ

⌉
), the minimum amount of slack needed

due to timing constraints can be found asStime
b,min = (b · γ + 2

√
b · γ)ck. When more slack is available, the

remaining slackS − nb,opt · r − b(r + ck
nb,opt

) (if any) can be used by energy management schemes to scale

down the execution of the primary sections for energy savings. The reduced frequency to execute the primary

sections will be

fb,ckpt =
ck + nb,opt · r

ck + S − b(r + ck
nb,opt

)
(14)

4.2.1 Reliability for Multiple Recovery Sections

From Equation 14, each primary section will taketb,primary =
ck+S−b(r+

ck
nopt

)

nopt
time units. Considering that

the fault rate at frequencyfb,ckpt is λ(fb,ckpt) = λ010
d(1−fb,ckpt)

1−fmin (see Section 2), the probability of having

fault(s) during the execution of one primary section isρb,primary = 1 − e−λ(fb,ckpt)tb,primary . Notice that,

the recovery sections are executed atfmax and the probability of having fault(s) during the execution of one

recovery section isρb,recovery = 1− e
−λ0(r+

ck
nb,opt

)
.

With b recovery sections, the reliabilityRk(b) of taskTk will be the summation of the probability ofall

primary sections being executed correctly andthe probability of havinganyx (x = 1, . . . , b) faulty primary

sections while there arex recovery sections being executed correctly. Notice that, the recovery sections are

activatedone at a timewhen they are needed. For example, to recoverx faulty primary sections, if there is no

faults during the execution of the firstx recovery sections, it is not necessary to invoke the remaining recovery

sections. Otherwise, the next recovery section is activated and so on, until there arex recovery sections are

correctly executed. Therefore, we have

Rk(b) =
b∑

x=0

[(
nb,opt
x

)
· (1− ρb,primary)nb,opt−x · ρx

b,primary · Pr(b, x, ρb,recovery)
]

(15)

where
(

nb,opt
x

)
is the number of combinations of havingx faulty sections in thenb,opt primary sections.

Pr(b, x, ρb,recovery) is the probability ofx faulty primary sections being successfully recovered by theb

recovery sections. Notice that, whenx = 0, no faulty primary section needs to be recovered and there is
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Pr(b, 0, ρb,recovery) = 1. Therefore, we have

Pr(b, x, ρb,recovery) =





1 x = 0

(1− ρb,recovery)x−1(1− ρb−x+1
b,recovery) x ≥ 1

(16)

From Equations 14, 15 and 16, clearly it is not practical to seek the close formula for the minimum number

of recovery sections needed to ensureRk(b) ≥ R0
k. In what follows, we show some analysis results regarding

the number of recovery sections employed and the reliability achieved versus the amount of available slack.

Notice that, the reduced frequencyfckpt is limited by the energy efficient frequencyfee. From Equation 14,

we can find that the maximum amount of slack can be used to processingTk to be

USmax
b,ckpt =

(
1 + nb,opt · γ

fee
+ b

(
γ +

1
nb,opt

)
− 1

)
ck (17)
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Figure 5: The normalized expected energy consumption vs. the amount of available dynamic slack.

Figure 5 shows the normalized probability of failure,
1−Rckpt

k

1−R0
k

, for different numbers of recovery sections.

Here, the same parameters as in last Section are used and the checkpoint overhead is assumed to beγ = 0.05.

From the figures, we can see that, as the number of recovery sections increases, the minimum amount of slack

needed increases, which is close tock when three recovery sections (i.e.,b = 3) are scheduled (Figure 5c).

Moreover, as the amount of slack increases, more slack is available for energy management which leads to

lower processing frequencies, higher fault rates and thus lower levels of reliability achieved, which is the same

observation as in Section 4.1.

For the case of low fault rate increase (e.g.,d ≤ 2), when there are three recovery sections (Figure 5c),

the normalized probability of failure is less than10−7 and is not shown in the figures, which is the same

for d = 0 andb = 2 in Figure 5b. When the fault rate increase is high (e.g.,d = 5), even three recovery

sections cannot guaranteeR0
k (i.e., the normalized probability of failure is larger than 1). However, as shown

in next Section, for the cases whereR0
k is preserved, compared with the RA-Greedy scheme, checkpointing

will result in smaller recovery sections, and more energy savings may be expected.
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4.2.2 Expected Energy Consumption with Checkpoints

With reduced frequencyfb,ckpt (see Equation 14), the energy consumption for executing each primary section

isEprimary =
(
β +

(
fb,ckpt

fmax

)m)
Pmax

d ·tb,primary. Recall that recovery sections are executed (if needed) at the

maximum frequencyfmax. The energy consumption for executing one recovery section will beErecovery =

(γ + 1
nb,opt

)E0
k , whereE0

k is the energy consumption to execute taskTk for time ck atfmax.

Notice that, for theqth recovery section (q = 1, . . . , b), it will not be invoked if the number of faulty

primary sectionsx is less thanq (i.e.,0 ≤ x < q) andthe first(q − 1) recovery sections successfully recover

all thex faulty primary sections. From previous discussion, when there arex (0 ≤ x < q) faulty primary

sections, the probability of these faulty primary sections being successfully recovered by the first(q − 1)

recovery sections can be given byPr(q − 1, x, ρb,recovery). Therefore, considering the probability of each

recovery section being executed, the expected energy consumption for executing taskTk will be

Eb,ckpt
k = nopt · Eprimary +

b∑

q=1

(Prq · Erecovery) (18)

where the first part is always consumed and is the energy for executing the primary sections (including the

checkpoints), and the second part is the expected energy consumption for executing the recovery sections.

Prq is the probability of theqth recovery section being invoked, which is given as

Prq = 1−
q−1∑

x=0

[(
nb,opt
x

)
· (1− ρb,primary)nb,opt−x · ρx

b,primary · Pr(q − 1, x, ρb,recovery)
]

(19)

Due to the overhead of checkpoints, in order to obtain energy savings (i.e.,Eckpt
k < E0

k), there is a min-

imum amount of dynamic slackSenergy
min needed for energy management. Again, due to the complexity of

Equation 18, it is hard to get the close formula forSenergy
min and we illustrate the relation betweenSenergy

min and

checkpoint overheadγ in the following analysis.
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Figure 6: The normalized expected energy consumption vs. the amount of available dynamic slack.
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Corresponding to the reliability analysis with one recovery section in Section 4.1, Figure 6 shows the

normalized expected energy consumption,
E1,ckpt

k

E0
k

, for different checkpoint overheads with the amount of slack

being limited byck. For different fault rate changes (i.e., different values ofd), due to the low probability

of recovery section being executed (lower than10−5 even whend = 5), the expected energy consumption is

almost the same for a given checkpoint overhead and amount of available dynamic slack. Therefore, we only

show the normalized expected energy consumption for the worst case ofd = 5.

From the figures, we can see that, although it is feasible to employ checkpoints when the amount of dynamic

slack is larger thanStime
min , due to the energy overhead of checkpoints, no energy savings could be obtained

until the amount of slack is more thanSenergy
min . The smaller the checkpoint overhead, the lower the value

of Senergy
min and the more energy savings could be obtained for a given amount of dynamic slack. When the

checkpoint overhead is large (e.g.,γ = 0.1, Figure 6c), almost no energy savings could be obtained for the

case considered.
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Figure 7: The comparison of the normalized expected energy consumption for checkpointing with multiple
recovery sections and the RA-Greedy scheme.

Figure 7 further shows the normalized energy consumption for multiple recovery sections considering the

extended range of available slack. For comparison, the normalized energy consumption for the RA-Greedy

scheme is also shown in the figure. Notice that, the ranges of the amount of slack could be exploited are

different for different numbers of recovery sections being employed. From the figure, we can see that, when

more than one recovery sections are employed, checkpointing with recoveries consume more energy than

the RA-Greedy scheme, except for the case where overhead is small (e.g.,γ = 0.01 in Figure 7a). When

checkpoint overhead is relatively large (e.g.,γ ≥ 0.05), checkpointing scheme should not be exploited when

the RA-Greedy scheme is applicable (i.e., whenS > ck).

Considering both reliability (Section 4.2.1) and energy savings (Section 4.2.2), checkpointing shouldnot

be employed when the checkpoint overhead is relatively large (e.g.,γ ≥ 0.05). No more than one recovery

section may be employed even when checkpoint overhead is relatively small (e.g.,γ = 0.01). Moreover,

although more energy savings could be obtained by checkpointing compared with the RA-Greedy scheme,
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limitation may exist on the amount of employed slack due to reliability consideration, especially for the case

where the fault rate increases dramatically with reduced frequencies and supply voltages (e.g.,d = 5).

We have analyzed the performance of the reliability-aware energy management schemes for a single task.

In what follows, to illustrate the merits of our proposed schemes and see how they performs for overall system

reliability and energy savings, we present simulation results for dependable real-time applications that consist

of a set of aperiodic tasks. We compare the energy savings as well as system reliability of the new proposed

schemes with ordinary energy management schemes.

5 Simulation Results and Discussion

In the simulations, we consider four different schemes: a)no power management (NPM), which is used as

the baseline for comparison; b)ordinary greedy power management (Greedy), which allocates all available

dynamic slack for next ready task to save energy without considering system reliability; c)reliability-aware

greedy power management (RA-Greedy), which dynamically allocates a recovery for the next ready task

before applying greedy power management. When the amount of available dynamic slack is less than the size

of next ready task, the slack is not used and saved for future tasks; d)reliability-aware power management

with checkpoints (Ckpt), which is the same as RA-Greedy except that checkpoints are employed when the

amount of available dynamic slack is less than the size of next ready task. As discussed in last Section, only

one recovery section is considered in the simulations.

For the system parameters, as discussed in Section 2, we use normalized frequency withfmax = 1 and

assume frequency can be changed continuously. Moreover, corresponding to the analysis in Section 3 and

4, we assumeα = 0, β = 0.1 andm = 3. That is, we assume the working system is always on and focus

on system active power. For the effects of different values ofα andβ on energy management, see [42, 43]

for more discussions. The same as in Section 3, we assume that faults follow a Poisson distribution with an

average fault rate asλ0 = 10−6 at fmax (and correspondingVmax). We vary the values ofd (as0, 2 and5

respectively) for different changes in fault rates due to the effects of frequency and voltage scaling [9]. An

application fails ifany task in the application fails andthere is no recoveryor both the task and its recovery

fail.

The number of tasks in an application is randomly generated between5 and20, where the WCETs of

tasks are uniformly distributed in the range of1 and10. When every task in an application uses its WCET,

we assume that the application finishes just in time and the system reliability is satisfactory. To emulate the

run-time behaviors of tasks, a parameterσ is used as an application-wide average over worst execution time,

which also indicates the amount of dynamic slack available on average during execution. Smaller values of

σ imply more dynamic slack. The value ofσi for taskTi in the application is generated from a uniform

distribution with an average value ofσ. The actual execution time ofTi follows a similar uniform distribution
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with an average value ofσi · ci, whereci is the WCET of taskTi. For each result point in the graphs,100 task

sets are generated and each task set is executed100, 000 times, and the result is the average of all the runs.

5.1 Performance of RA-Greedy

First, we compare the performance ofGreedyandRA-Greedyon reliability and energy consumption. For

different fault rate changes, Figure 8 shows the probability of failure when executing the applications with

different average system loads (i.e., different amounts of dynamic slack).
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Figure 8: The probability of failure vs. different average system loads.

Notice that,NPM executes every task at the maximum frequencyfmax and the fault rate is alwaysλ0 =

10−6. From Figure 8, we can see that for a given average system load, the probability of failure underNPM

is roughly the same, which is not affected by the different fault rate changes (i.e., different values ofd).

When the average system load increases, the applications run longer and the probability of failure underNPM

increases linearly. Note the log scale of Y-axis in Figure 8.

From the figure, it can be seen that theGreedyscheme results in higher probability of failure thanNPM

even whend = 0 (i.e., constant fault rate), which comes from the extended execution of tasks due to energy

management. When fault rate increases with reduced frequencies and supply voltages (i.e.,d > 0), the

probability of failure underGreedyscheme increases exponentially asd increases. For example, whend = 5,

Greedyscheme almost always leads to system failure (with probability of failure close to1), especially for the

case of low average system loads where more dynamic slack exists. When the average system load increases,

the probability of failure underGreedyscheme increases first and then decreases, the reason is because of

the limitation offee = 0.37. When the average system load is extremely low (e.g.,σ < 20%), tasks in

an application always run atfee and the probability of failure mainly depends on the execution time, which

increases as average system load increases. However, as average system load continues to increase, less slack

is available and tasks need to run at higher frequencies thanfee, which has lower fault rates and thus leads to

lower probability of failure. Moreover, from Figure 8, we can also see thatRA-Greedyscheme always has a

lower probability of failure (i.e., higher system reliability) thanNPM regardless the fault rate changes, which

coincides with the analysis in Section 3.2.1.
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Figure 9: The normalized expected energy consumption vs. average system loads.

Figure 9 shows the corresponding normalized energy consumption forGreedyandRA-Greedyschemes

with the one consumed byNPM as a baseline. AsGreedyscheme does not consider system reliability when

reclaiming dynamic slack for energy savings, the normalized energy consumption forGreedyscheme only

depends on the average system load and is roughly the same for different fault rate changes. ForRA-Greedy

scheme, by providing an additional recovery for maintaining system reliability, it consumes from10% to 20%

more energy thanGreedyscheme when the fault rate only increases moderately with reduced frequencies

and supply voltages (i.e.,d ≤ 2). However, when the fault rate increases dramatically (e.g.,d = 5), the

probability of failure for the original scaled-down execution is close to1 when the average system load is low

(see Figure 8c) and the recovery task is almost always executed, which leads to higher energy consumption

thanNPM (Figure 9c). Therefore, when the fault rate increases dramatically with reduced frequencies and

supply voltages, it will be more energy efficient to use less dynamic slack for energy management to keep the

fault rate at a reasonable level.

5.2 Effects of Checkpoints

Considering the checkpoint overhead could be very small [26], we user = 0.01, 0.05, 0.1, which corresponds

to Ckpt-0.01, Ckpt-0.05andCkpt-0.10in the following figures, respectively. Recall that the size of tasks is in

the range of[1, 10] inclusively, which leads to the averageγ = 0.002, 0.01 and0.02, smaller than the ones we

used in the analysis in Section 4.

Figure 10 shows the probability of failure for the schemes ofRA-GreedyandCkptwith different checkpoint

overheads. From the figure, when the fault rate increase is moderate (i.e.,d ≤ 2), Ckpt achieves slightly

better system reliability (lower probability of failure) by providing an additional recovery when the amount of

available dynamic slack is less than the size of the next ready task. When the checkpoint overhead is smaller,

Ckpthas more chances to use the dynamic slack and generally gets better system reliability. However, when

the fault rate increase is high (e.g.,d = 5), the additional recovery is almost always executed and overall

probability of failure increases due to the execution overhead of checkpoints. Smaller checkpoint overhead

leads to higher probability of using checkpoints and thus results in higher probability of failure.
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Figure 10: The probability of failure with checkpoints.
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Figure 11: The normalized expected energy consumption with checkpoints.

Figure 11 further shows the corresponding normalized energy consumption forRA-GreedyandCkptwith

different checkpoint overheads. With additional chances for energy management,Ckptwith smaller check-

point overhead consumes less energy, and all of them is less than the one consumed byRA-Greedy. The same

reason as before, due to the limitation offee and higher failure rates, the normalized energy consumption

decreases first and then increases as the average system load increases. All schemes consumes more energy

thanNPMwhend = 5 andσ ≤ 10%.

6 Closely Related Work

Using the primary/backup recovery model, Unsalet al. proposed to postpone the execution of backup tasks

to minimize the overlap of primary and backup execution and thus the energy consumption [33]. The optimal

number of checkpoints, evenly or unevenly distributed, to achieve minimal energy consumption while toler-

ating one transient fault was explored by Melhemet al. in [21]. Elnozahyet al.proposed anOptimistic TMR

scheme that reduces the energy consumption for traditional TMR systems by allowing one processing unit to

slow down provided that it can catch up and finish the computation before the application deadline [8]. The

optimal frequency settings for OTMR was further explored in [43]. Assuming a Poisson fault model, Zhang
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et al. proposed an adaptive checkpointing scheme that dynamically adjusts checkpoint intervals for energy

savings while tolerating a fixed number of faults for a single task [38]. The work is further extended to a set

of periodic tasks [40], and moreover, faults within checkpoints are also considered [39].

Most of the previous research either focused on tolerating fixed number of faults [8, 21] or assumed constant

fault rate [38, 39, 43] when applying frequency and voltage scaling for energy savings. The work reported in

this paper is different from all previous work in that we address the system reliability problem when exploring

dynamic slack for energy savings, while explicitly taking the effects of energy management on fault rates into

consideration.

7 Conclusions

As fault rates generally increase with reduced supply voltages, energy management exploring slack time

through voltage scaling will reduce system reliability, which is undesirable, especially for mission critical

applications (e.g., satellite and surveillance systems), where system reliability is as important as (or even

more important than) energy consumption. Considering the effects of voltage scaling on fault rates, we pro-

posereliability-awaredynamic energy management schemes that preserve system reliability while exploring

dynamic slack for energy savings.

By scheduling an additional recovery task before reclaiming dynamic slack for energy management, the

proposed reliability-aware energy management scheme ensures that the system reliability achieved is higher

than the case when there is no power management. Checkpointing techniques are further explored to more

efficiently use the dynamic slack especially for the case where the slack is not enough to schedule a recovery

for a whole task. The performance of the proposed schemes is analyzed and evaluated through simulations

for both system reliability and energy savings. The results show that, the proposed schemes can achieve

comparable energy savings as ordinary energy management schemes while preserving system reliability. For

checkpointing techniques, no more than one recovery section may be exploited for energy efficiency, espe-

cially when the checkpoint overhead is large. Ignoring the effects of energy management on fault rates is too

optimistic and the ordinary energy management schemes could lead to drastically decreased system reliability.
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[36] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé. Energy efficient policies for embedded clusters. InProc. of

the Conference on Language, Compilers, and Tools for Embedded Systems (LCTES), Jun. 2005.

[37] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. InProc. of The36th Annual

Symposium on Foundations of Computer Science, Oct. 1995.

[38] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in embedded real-time systems. InProc. of

IEEE/ACM Design, Automation and Test in Europe Conference(DATE), 2003.

[39] Y. Zhang and K. Chakrabarty. Task feasibility analysis and dynamic voltage scaling in fault-tolerant real-time

embedded systems. InProc. of IEEE/ACM Design, Automation and Test in Europe Conference(DATE), 2004.

[40] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault tolerance in fixed-priority real-time embedded

systems. InProc. of International Conference on Computer Aided Design, Nov. 2003.
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