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Abstract

Although the scheduling problem for multiprocessor real-time systems has been studied for

decades, it is still an evolving research field with many open problems. In this work, focusing on

periodic real-time tasks, we propose a novel optimal scheduling algorithm, namely boundary fair

(Bfair), which follows the same line of research as the well-known Pfair scheduling algorithms

and can also achieve full system utilization. However, different from the Pfair algorithms that

make scheduling decisions at every time unit to enforce proportional progress (i.e., fairness) for

each task, Bfair makes scheduling decisions and enforces fairness to tasks only at tasks’ period

boundaries. The correctness of the Bfair algorithm to meet the deadlines of all tasks’ instances

∗A preliminary version of this paper appeared in IEEE RTSS 2003. This work is supported in part by NSF award
CNS-0720651.
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is formally proved. The performance of Bfair is evaluated through extensive simulations. The

results show that, compared to that of the Pfair algorithms, Bfair can significantly reduces the

number of scheduling points (by upto 94%) and the time overhead of Bfair is comparable to that

of the most efficient Pfair algorithm (i.e., PD2). Moreover, by aggregating the time allocation of

tasks for the time interval between consecutive period boundaries, the resulting Bfair schedule

needs dramatically reduced number of context switches and task migrations, as low as 18% and

15%, respectively, when compared to those of Pfair schedules.

1 Introduction

For different (such as periodic, sporadic and aperiodic) real-time tasks to be executed on systems

with a single or multiple processing units, the scheduling problem of how to guarantee various hard

and/or soft timing constraints has been studied extensively in the last few decades [25]. Although

the scheduling theory for uniprocessor systems has been well developed, such as the optimal EDF

(earliest deadline first) and RM (rate-monotonic) scheduling algorithms [18], the scheduling for

multiprocessor real-time systems is still an evolving research field and many problems remain open

due to their intrinsic difficulties.

In general, there are two major approaches for scheduling real-time tasks in multiprocessor real-

time systems: partitioned and global scheduling [10, 11]. With the emergence of multicore proces-

sors, where the shared cache architecture can significantly alleviate the task migration overhead for

global scheduling, there is a reviving interest in global scheduling and many interesting results have

been reported in recent years.

In this work, we focus on the problem of scheduling periodic real-time tasks on multiprocessor

systems. It concerns allocating m identical processors to n periodic real-time tasks, where a task

Ti = (ci, pi) is characterized by two parameters: the worst case computation requirement ci and a

period pi. A feasible periodic schedule will allocate exactly ci time units of a processor to task Ti

within each interval [(k− 1) · pi, k · pi) for all k ∈ {1, 2, 3, . . .} with the constraints that a processor

can only be allocated to one task and a task can only occupy one processor for any time unit.

The proportional fair (Pfair) scheduling, first proposed by Baruah et al., is the well-known op-

timal scheduling method for scheduling periodic tasks on multiple processors, which explicitly re-

quires tasks to make proportional progress (i.e., fairness) [6]. That is, at any time t, the accumulated
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processor allocation for task Ti will be either bt ·wic or dt ·wie, where wi = ci

pi
is the weight of task

Ti. Note that, the fairness is a more strict requirement than that of the original problem. Although

the Pfair algorithm can achieve fully system utilization while ensuring all deadlines are met, it can

incur quite high scheduling overhead by making scheduling decision at every time unit.

Observing the fact that a task can only miss its deadline at a period boundary, we propose in

this paper a novel scheduling algorithm, boundary fair (Bfair), which makes scheduling decisions

only at tasks’ period boundaries. Specifically, at any period boundary, the Bfair algorithm allocates

processors to tasks for the time units between current boundary and the next boundary. Similar to

the Pfair algorithm, to prevent deadline misses, Bfair ensures fairness for tasks at the boundaries;

that is, for any period boundary time bt, the difference between bt · wi and the number of time units

allocated to task Ti is less than one time unit. The same as the Pfair algorithm, Bfair is also optimal

and can achieve 100% system utilization.

We have formally proved the correctness of the Bfair algorithm on meeting the deadlines of all

tasks’ instances. Although the complexity of Bfair is the same as that of the Pfair algorithm at each

scheduling point, it can reduce the number of scheduling points significantly, and thus reduce the

overall scheduling overhead, which is especially important for on-line scheduling. Our simulation

results show that, compared to that of the Pfair algorithm, the number of scheduling points can be

reduced by upto 94%. Moreover, the time overhead of Bfair for each scheduling point as well as for

generating the whole schedule is comparable to that of the most efficient Pfair algorithm, PD2 [2].

Furthermore, by aggregating the time allocation of tasks for the time interval between consecutive

period boundaries, the resulting Bfair schedule only needs dramatically reduced number of context

switches and task migrations, as low as 18% and 15%, respectively, when compared to those of

Pfair schedules. Such reduction in context switches and task migrations can significantly reduce the

run-time overhead, which is specially valuable for real-time systems.

The remainder of this paper is organized as follows. The related work is discussed in Section 2.

Section 3 defines the related notations and formulates the problem, which is further illustrated

through a concrete motivating example. Section 4 presents the Bfair algorithm and its complex-

ity analysis. The correctness of the Bfair algorithm is formally proved in Section 5. Simulation

results are reported and discussed in Section 6. Section 7 gives out our conclusions.
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2 Related Work

Although rate monotonic (RM) scheduling and earliest deadline first (EDF) have been shown to be

optimal in uni-processor periodic real-time systems, for static and dynamic priority assignments, re-

spectively [18], neither of them is optimal for multiprocessor real-time systems [11]. Traditionally,

there are two major approaches for scheduling real-time tasks in multiprocessor real-time systems:

partitioned and global scheduling [10, 11]. In partitioned scheduling, each task is assigned to a

specific processor and processors can only execute tasks that are assigned to them. This approach

simplifies the scheduling problem after partitioning, where different well-developed uniprocessor

scheduling algorithms (e.g., RM and EDF [18]) can be applied to the subset of tasks on each in-

dividual processor. In [24], Oh and Baker studied the partitioned scheduling based rate-monotonic

first-fit (RMFF) heuristic and showed that RMFF can schedule any system of periodic tasks with

total utilization bounded by m(21/2 − 1), where m is the number of processors in the system. Later,

a better bound of (m + 1)(21/(m+1) − 1) for RMFF was shown in [20]. For the partitioned schedul-

ing with earliest deadline first (EDF) first-fit heuristic, Lopez et al. showed that any task set can be

successfully scheduled if the total utilization is no more than (β ·m + 1)/(β + 1), where β = b1/αc
and α is the upper bound on the individual task’s utilization [21].

In global scheduling, on the other hand, all tasks are put into a shared single queue and all proces-

sors fetch the next ready task for execution from the global queue. That is, tasks may migrate and

execute on different processors depending on their run-time behaviours. For global qscheduling,

the utilizations of tasks play an important role. Suppose that α is the maximum utilization of every

individual task. It has been shown that, for global EDF, a task set is schedulable on m processors if

the total utilization does not exceed m(1−α)+α [13]. For global RM scheduling, system utilization

of (m/2)(1−α) + α can be guaranteed [5]. Andersson et al. also studied one scheduling algorithm

named RM-US, where tasks with utilizations higher than some threshold θ have the highest priority

[3]. For θ = 1
3
, Baker showed that RM-US can guarantee a system utilization of (m + 1)/3 [5].

More recently, based on the concept of portion tasks, Andersson et al. proposed the EKG algo-

rithm aiming to reducing the number of preemptions [4]. EKG assigns some tasks to processors as in

conventional partitioned scheduling and splits a task into two portions if necessary, where the portion

tasks are assigned to adjacent processors. The worst case system utilization bound can be achieved

by EKG is 66%. Following the same line of research, Kato et al. also studied a few scheduling
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algorithms, which are different in how to handling portion tasks and thus achieve different system

utilizations [15, 16, 17]. Assuming that the scheduler can be invoked at any time instance (i.e., con-

tinuous time domain) and processors can be allocated in arbitrary small share, the T-L plane based

scheduling algorithms have been studied, which can achieve full system utilization and guarantee

all the timing constraints of tasks [9, 12]. However, due to the limitation in real systems, processors

are generally allocated to tasks in discrete time qunta (e.g., 10ms in Linux).

Based on the discrete time model, the proportional fair (Pfair) scheduling algorithm has been

proposed for periodic real-time tasks, which is optimal in terms of achieving full system utilization

[6]. The basic idea of Pfair is to enforce proportional progress (i.e., fairness) for each task at every

time unit, which actually puts a more strict requirement for the problem. That is, any Pfair schedule

for a set of periodic real-time tasks will ensure that all task instances can complete their executions

before the deadlines. By separating tasks as light (with task weight less or equal 50%) and heavy

(with task weight larger than 50%) tasks, a more efficient Pfair algorithm, PD, is proposed in [7].

A simplified PD algorithm, PD2, uses two less parameters than PD to compare the priorities of

tasks [2]. However, both of them have the same with complexity of O(min{n,m lg n}), where n is

the number of tasks and m is the number of processors. A variant of Pfair scheduling, early-release

scheduling, was also proposed in [1].

The supertask approach was first proposed to support non-migratory tasks in [23]: tasks bound

to a specific processor are combined into a single supertask which is then scheduled as an ordinary

Pfair task. When a supertask is scheduled, one of its component tasks is selected for execution

using earliest deadline first policy. Unfortunately, the supertask approach cannot ensure all the

non-migratory component tasks to meet their deadline even when the supertask is scheduled in a

Pfair manner. However, it has been proved that Pfair schedules with such mapping constraints do

exist [19]. Based on the concept of supertask, a reweighting technique has been studied, which

inflates a supertask’s weight to ensure that its component tasks meet their deadlines if the supertask

is scheduled in a Pfair manner [14]. While this technique ensures that the supertask’s non-migratory

component tasks meet their deadlines, some system utilization is sacrificed.

The work reported in this paper is different from all existing results. For periodic tasks whose

timing parameters are represented by integers, the proposed novel Bfair scheduling algorithm can

achieve full system utilization. Different from the Pfair algorithms, which make scheduling deci-

sions at every time unit, the Bfair algorithm makes scheduling decisions only at tasks period bound-
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aries, which can significantly reduce the scheduling overhead, as shown in this paper.

3 System Models and Problem Formulation

In this section, we first define the boundary fairness as well as related notations. Then, the scheduling

problem of periodic real-time tasks on multiprocessor systems is formally stated. A motivation

example is also presented to illustrate the idea of boundary fairness.

The system considered consists of m identical processors and n periodic real-time tasks, {T1, . . . , Tn},

where each task Ti = (ci, pi) is characterized by its worst case computation requirement ci and its

period pi. ci and pi are integer multiples of a system unit time. The deadline for each task instance

is the task’s next period boundary. The weight for task Ti is defined as wi = ci

pi
, and the system

utilization is U =
∑n

i=1 wi. Without loss of generality, we assume that wi < 1 (notice that actually

0 < wi ≤ 1; if wj = 1, we can dedicate one processor to task Tj and consider a smaller problem

with the remaining tasks and the remaining processors). We also assume that the system utilization

U = m, the number of available processors. If m − 1 < U < m, we can add one dummy task

Tn+1 = (c, p) such that
∑n+1

i=1 wi = m. If U ≤ m− 1, we can just use dUe processors [23].

The multiprocessor real-time scheduling problem is to construct a periodic schedule for the above

tasks, which allocates exactly ci time units of a processor to task Ti within each interval [(k − 1) ·
pi, k · pi) for all k ∈ {1, 2, 3, . . .}, subject to the following constraints [7]:

• C1: A processor can only be allocated to one task at any time, that is, processors can not be

shared concurrently;

• C2: A task can only be allocated at most one processor at any time, that is, tasks are not

parallel and thus cannot occupy more than one processor at any time.

Assume that the least common multiple of all tasks’ period is LCM and the first instance of

each task is available at time 0. Because of the periodic property of the problem, we only consider

the schedule from time 0 to time LCM . We define a set of period boundary time points as B =

{b0, . . . , bf}, where b0 = 0, bf = LCM and ∀c, ∃(i, k), bc = k · pi and bc < bc+1 (c = 0, . . . , f − 1).

Define time unit (or slot) t as the real interval between time t − 1 and time t (including t − 1,

excluding t), t ∈ {1, 2, 3, . . .}. For convenience, we use [bk, bk+1) to denote time units between two

boundaries, bk and bk+1, including time unit bk and excluding time unit bk+1. Define allocation error
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for task Ti at boundary time bk as the difference between bk · wi and the time units allocated to Ti

before bk. A periodic schedule is boundary fair if and only if the absolute value of the allocation

error for any task Ti at any boundary time bk is less than one time unit.

Lemma 1 For the multiprocessor real-time scheduling problem, if the system utilization, U , is no

bigger than m, the number of available processors, a boundary fair schedule exists.

Proof If U ≤ m, a proportional fair (Pfair) schedule is known to exist for the multiprocessor

real-time scheduling problem [6]. From the definitions, we know that any Pfair schedule is also

a boundary fair schedule (a Pfair schedule also conforms to the allocation error requirements at

boundaries). That is, a boundary fair schedule exists if U ≤ m.

♦

0 10 15 20 25 30

1 14 3 4 1 4 1 2 5 4 1 1 3 5 1 4 1 3 4 1 4 1 2 5 4 1

5 5 2 5 6 5 5 5 3 6 25 5 4 6 5 5 2 5 6 5 5 5 3 6 5 2 5

5 6 12 18 24

1 3

4

5

6

a. A propotional fair schedule.

0 10 15 20 25 305 6 12 18 24

1 1 1 1 1 1 1 12 2 3 3 2 2 3 43 4 3 4 4 2 4

5 6

3 5

65 54

2

4 4 5 45 6 5 6 65 54 65

b. A boundary fair schedule.

Figure 1: Different fair schedules for the example.

To illustrate the idea of boundary fairness, we first consider an example task set that has 6 tasks:

T1 = (2, 5), T2 = (3, 15), T3 = (3, 15), T4 = (2, 6), T5 = (20, 30), T6 = (6, 30). Here,
∑6

i=1 wi = 2

and LCM = 30. Figure 1a shows one proportional fair schedule generated by the Pfair scheduling

algorithm [6], where the dotted lines are tasks’ period boundaries. Note that this schedule is also a

boundary fair schedule.
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From Figure 1a we can see that there is an excessive number of scheduling points, context

switches as well as task migrations due to the requirement of proportional progress (fairness) for

each task at any time. Consider the schedule section between two consecutive period boundaries,

for example, [b0, b1) = [0, 5): here T1 and T4 get 2 time units each, T2, T3 and T6 get 1 unit each

and T5 gets 3 units. If we follow the idea of McNaughton’s algorithm [22] and pack tasks within

this section on two processors sequentially (consecutively fill the time units on processors with tasks

one by one), after T1, T2, T3 are packed on the first processor, there is one time unit left and part of

T4’s allocation (one time unit) is packed on the first processor; the rest of T4’s allocation (another

time unit) is packed on the second processor followed by T5 and T6. Thus, we can schedule [0, 5) as

shown in Figure 1b. Continuing the above process for other schedule sections until LCM , we can

get a boundary fair schedule as shown in Figure 1b.

From the figure, we can also see that, by aggregating the time allocation of tasks for the time

interval between consecutive period boundaries, the resulting schedule (which is actually a Bfair

schedule) can dramatically reduce number of context switches and task migrations. Compared to

the Pfair schedule in Figure 1a, which has 52 context switches and 18 task migrations within one

LCM, the Bfair schedule shown in Figure 1b requires only 45 context switches and 9 task migrations.

Such reduction of context switches and task migrations in the resulting schedule can significantly

reduce run-time overhead, which is specially important for real-time systems.

Observing the fact that the deadline misses can only happen at the end of a task’s period, we

propose a novel scheduling algorithm: at any boundary time point bk (k = 0, . . . , f−1), we allocate

processors to tasks for time units [bk, bk+1) properly. The details are discussed in the next section.

4 A Boundary Fair (Bfair) Algorithm

The Bfair algorithm has the following high-level structure: at each boundary time, it allocates pro-

cessors to tasks for time units between the current and the next period boundaries; each task Ti

will have some mandatory integer time units that must be allocated to ensure fairness at the next

boundary; if there are idle processor slots after allocating the mandatory time units for every task, a

dynamic priority is assigned to all eligible (as defined later) tasks and a few tasks with the highest

priorities will get one optional time unit each.

Before formally presenting the Bfair algorithm, we give some definitions. We say that the remain-
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ing work for task Ti after allocating [bk, bk+1) is the same as the allocation error (see Section 3) of Ti

at bk+1 and denoted as RW k+1
i . The mandatory integer units needed for Ti while allocating [bk, bk+1)

is defined as mk+1
i = max{0, bRW k

i +(bk+1− bk) ·wic}, which is the integer part of the summation

of the remaining work from [bk−1, bk) and the work to be done during [bk, bk+1). The pending work

is the corresponding decimal part and denoted as PW k+1
i = RW k

i + (bk+1 − bk) · wi −mk+1
i . If Ti

gets one optional unit while allocating [bk, bk+1), we say that ok+1
i = 1; otherwise ok+1

i = 0. From

these definitions, after allocating processors in [bk, bk+1), we get RW k+1
i = PW k+1

i − ok+1
i .

Similar to the notations used in [6], at boundary time bk+1, task Ti is said to be ahead if RW k+1
i <

0, punctual if RW k+1
i = 0 and behind if RW k+1

i > 0. Furthermore, we define task Ti to be pre-

behind at bk+1 if PW k+1
i > 0.

Algorithm 1 The Bfair algorithm at bk

1: for (T1, . . . , Tn) do
2: /*allocate mandatory units for Ti */
3: mk+1

i = max{0, bRW k
i + (bk+1 − bk) · wic};

4: PW k+1
i = RW k

i + (bk+1 − bk) · wi −mk+1
i ;

5: end for
6: RU = m · (bk+1 − bk)−

∑
mk−1

i ;
7: /*allocate optional processor-time units if any*/
8: /*Pick up the RU highest priority tasks*/
9: SelectedTaskSet = TaskSelection(RU );

10: for (Ti ∈ SelectedTaskSet) do
11: ok+1

i = 1; /*allocate an optional unit for Ti*/
12: end for
13: for (T1, . . . , Tn) do
14: RW k+1

i = PW k+1
i − ok+1

i ;
15: end for
16: GenerateSchedule(bk, bk+1);

The Bfair algorithm is presented in Algorithm 1, where RU is the remaining units after allocat-

ing tasks’ mandatory units. It is used to determine how many optional units need to be allocated.

Initially, RW 0
i = 0 (i = 1, . . . , n).

First, the algorithm allocates mandatory units for each task Ti in the first FOR loop. Next, if there

are time units left (i.e., RU > 0), the function of TaskSelection(RU) will return the RU highest

priority eligible tasks1 and each of them will get one optional unit. After allocating all time units,

RW k+1
i are updated in the second FOR loop and the schedule for section [bk, bk+1) is generated by

1A task Ti is eligible for an optional unit if PW k+1
i > 0 (it is pre-behind) and mk+1

i < bk+1 − bk (it is not fully
allocated).
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function GenerateSchedule(), which sequentially packs tasks to processors following the idea of

McNaughton’s algorithm [22] (see Figure 1b in Section 3).

Algorithm 2 The function Compare(Ti, Tj) at bk

1: /*For task Ti and Tj , assume that i < j;*/
2: s = 1;
3: while (αk+s(Ti) = αk+s(Tj) =′+′) do
4: s = s + 1;
5: end while
6: if (αk+s(Ti) > αk+s(Tj)) then
7: return (Ti > Tj);
8: else if (αk+s(Ti) < αk+s(Tj)) then
9: return (Ti < Tj);

10: else if (αk+s(Ti) = αk+s(Tj) =′0′) then
11: return (Ti > Tj);
12: else if (UF k+1

i > UF k+1
j ) then

13: return (Ti < Tj);
14: else
15: return (Ti > Tj);
16: end if

To determine tasks’ priorities when allocating optional units, following the idea in [6], a charac-

teristic string of task Ti at boundary time bk is a finite string over {−, 0, +} and is defined as:

α(Ti, k) = αk+1(Ti)αk+2(Ti), . . . , αk+s(Ti)

where αk(Ti) = sign[bk+1 ·wi−bbk ·wic− (bk+1− bk)] and s(≥ 1) is the minimal integer such that

αk+s(Ti) 6= ′+′. Then, if αk+s(Ti) =′−′, the urgency factor is defined as UF k
i = 1−(bk+s·wi−bbk+s·wic)

wi
,

which is the minimal time needed for a task to collect enough work demand to receive one unit

allocation and become punctual after bk+s. Finally, the priority for task Ti at time bk is defined as a

tuple ηk
i = {α(Ti, k), UF k

i }.

The priority comparison function Compare(Ti, Tj), which is used by TaskSelection(), com-

pares two eligible tasks’ priorities and is shown in Algorithm 2. First, the characteristic strings of

the tasks’ are compared, then their urgency factors if necessary. When comparing the characteristic

strings, the comparison is done by comparing characters starting from bk+1 until one task’s character

does not equal to ′+′ at the boundary time point bk+s (the WHILE condition in Algorithm 2). If

there is a difference, the task with higher character (here, we have ′−′ < ′0′ < ′+′) has higher prior-

ity; if both of them equal ′0′, the task with smaller identifier has higher priority; if both of them equal
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′−′, the urgency factors are compared and the task with smaller urgency factor has higher priority;

when there still a tie, the task with the smaller identifier has higher priority.

4.1 Complexity of the Bfair algorithm

Assume that the maximum period for all tasks is pmax, that is, pmax = max(pi) (i = 1, . . . , n). In the

function Compare(), there are at most pmax iterations of character comparison for corresponding

tasks in the WHILE loop (line 3 in Algorithm 2); this is because after the end of a period, the

character for a task is no longer equal ′+′. So, the complexity for Compare() is O(pmax). Using

any linear-comparison selection algorithm [8], TaskSelection() from line 9 of Algorithm 1 needs

to make O(n) calls to the function Compare() to decide which RU -subset of all eligible tasks to

receive the optional units. Note that the function GenerateSchedule() (line 16 in Algorithm 1) has

a complexity of O(n) by sequentially packing all tasks onto processors. Thus, the overall complexity

of the Bfair algorithm is O(n · pmax), as in the Pfair algorithm [6].

4.2 Constant-Time Priority Comparison

To improve the efficiency of the priority comparison function, following the idea in [7], we have de-

signed a constant time comparison algorithm to compare two eligible tasks’ priorities. Specifically,

when αk+1(Ti) = αk+1(Tj) =′+′ (i < j), instead of looking forward to future boundaries, we can

compare the priorities for two counter tasks CTi and CTj , which have the weight of 1 − wi and

1−wj , respectively. Since the characters for CTi and CTj would be ′−′ at bk+1, we will need to cal-

culate the urgency factors for them. If CTi’s urgency factor is less than that of CTj , Tj has the higher

priority; otherwise, Ti has the higher priority. It can be proved that the above process will return

the same result as that of Compare() for any two eligible tasks. Thus, using the constant priority

comparison function and any linear-comparison selection algorithm (e.g., [8]), the complexity of our

BF algorithm will be O(n), which is comparable to that of the PD algorithm, O(min{n,m lg n})
[7].
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Table 1: The execution of the Bfair algorithm for the example

time 0 5 6 10 12 15 18 20 24 25 30
bk b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

RW k
1 0 0 -3/5 0 -1/5 0 -4/5 0 -2/5 0 0

RW k
2 0 0 1/5 0 -3/5 0 -2/5 0 -1/5 0 0

RW k
3 0 0 1/5 0 2/5 0 3/5 0 -1/5 0 0

RW k
4 0 -1/3 0 1/3 0 0 0 -1/3 0 1/3 0

RW k
5 0 1/3 0 -1/3 0 0 0 1/3 0 -1/3 0

RW k
6 0 0 1/5 -0 2/5 0 3/5 0 4/5 0 0

mk
1 * 2 0 1 0 1 1 0 1 0 2

mk
2 * 1 0 1 0 0 0 0 0 0 1

mk
3 * 1 0 1 0 1 0 1 0 0 1

mk
4 * 1 0 1 1 1 1 0 1 0 2

mk
5 * 3 1 2 1 2 2 1 3 0 3

mk
6 * 1 0 1 0 1 0 1 0 1 1

PW k
1 * 0 2/5 0 4/5 0 1/5 0 3/5 0 0

PW k
2 * 0 1/5 0 2/5 0 3/5 0 4/5 0 0

PW k
3 * 0 1/5 0 2/5 0 3/5 0 4/5 0 0

PW k
4 * 2/3 0 1/3 0 0 0 2/3 0 1/3 0

PW k
5 * 1/3 0 2/3 0 0 0 1/3 0 2/3 0

PW k
6 * 0 1/5 0 2/5 0 3/5 0 4/5 0 0

αk(T1) * - - - - - - - 0 - -
αk(T2) * - - - - - - - 0 - -
αk(T3) * - - - - - - - 0 - -
αk(T4) * 0 - - - - - - - - -
αk(T5) * 0 - 0 - - - - - - -
αk(T6) * - - - - - - - 0 - -
UF k

1 * * 3/2 * 1/2 * 2 * * * *
UF k

2 * * 4 * 3 * 2 * * * *
UF k

3 * * 4 * 3 * 2 * * * *
UF k

4 * * * * * * * 1 * 2 *
UF k

5 * * * * * * * 1 * 1/2 *
UF k

6 * * 4 * 3 * 2 * * * *
ok
1 * 0 1 0 1 0 1 0 1 0 0

ok
2 * 0 0 0 1 0 1 0 1 0 0

ok
3 * 0 0 0 0 0 0 0 1 0 0

ok
4 * 1 0 0 0 0 0 1 0 0 0

ok
5 * 0 0 1 0 0 0 0 0 1 0

ok
6 * 0 0 0 0 0 0 0 0 0 0

4.3 Sample execution of the Bfair algorithm

Before we present the proof of correctness for our Bfair algorithm, we illustrate the execution of

Bfair for the example in page 7. There are 10 boundary time points within [0, 30). The parameters
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used by our algorithm are calculated as shown in Table 4.3, where a ′∗′ means the corresponding

item is not eligible or does not need to be calculated.

As we can see, initially, RW 0
i = 0, (i = 1, . . . , 6). When allocating the first section (from b0 to

b1), the mandatory units for each task are allocated in the first step, where T1, . . . , T6 get 2, 1, 1, 1, 3, 1

units, respectively. Since
∑6

i=1 m1
i = 9 and the total available time units are (b1 − b0) · m =

(5 − 0) · 2 = 10, there is 1 time unit left (i.e., RU = 1). To allocate it, one task is to be selected to

receive an optional unit. Notice that there are 2 eligible tasks T4 and T5 (at time b1, PW 1
i > 0 and

m1
i < 5, i = 4, 5), and their characteristic strings are α(T4, 0) =′0′ and α(T5, 0) =′0′. Task T4 has

the highest priority (T4 and T5 have same character ′0′ at b1, so the task with smaller identifier has

higher priority) and will get an optional time unit. After that, the allocation for [0, 5) is complete

and RW 1
i (i = 1, . . . , 6) values are calculated accordingly. The schedule for the section [0, 5) will

be generated by packing tasks to processors sequentially as shown in Figure 1b (see Section 3).

For section [5, 6), only T5 gets one mandatory unit (m2
5 = max{0, bRW 1

5 + 2 · w5c} = 1) and

there is one additional unit to be allocated. T1, T2, T3 and T6 are eligible tasks because PW 2
i > 0

and m2
i < b2 − b1 (i = 1, 2, 3, 6). All these tasks have α(Ti, 1) = ′−′. T1 has the highest priority

with the smallest urgency factor and will get an optional unit. These steps are repeated until after

allocating section [25, 30), and we get a boundary fair schedule within the LCM . Note that the

schedule generated by our Bfair algorithm is happened to be the same as shown Figure 1b, which

is also generated from the proportional fair schedule as explained on Page 7. However, compared

to the Pfair scheduling algorithm that has 30 scheduling points [6], there are only 10 scheduling

points for the Bfair algorithm. Furthermore, as mentioned earlier, the schedule generated by the

Bfair algorithm (Figure 1b) will also incur much less context switches and task migrations than the

schedule generated by the Pfair algorithm (Figure 1a).

From the above example, we can also see that when allocating the processors in the interval

[bk, bk+1):

• The summation of the mandatory units is less than or equal to the time units available (see

Lemma 3):
∑n

i=1 mk+1
i ≤ (bk+1 − bk) ·m;

• There are enough eligible tasks to claim the remaining units if any (see Lemma 4):

the number of eligible tasks ≥ (bk+1 − bk) ·m−∑n
i=1 mk+1

i ;
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• After allocation,
∑n

i=1 RW k+1
i = 0 (which means processors are fully allocated) and ∀i |RW k+1

i | <
1 (which means the schedule is fair).

These observations will be used to present the correctness of our algorithm as shown in the next

section.

5 Analysis of the Bfair Algorithm

First, we recall that PW k
i = RW k−1

i +(bk− bk−1) ·wi−mk
i (where mk

i = max{0, bRW k−1
i +(bk−

bk−1) · wic}), and RW k
i = PW k

i − ok
i . For convenience, we define some notations. Three task sets

are defined as in [6]:

ASk = {Ti|RW k
i < 0} : ahead task set at bk;

BSk = {Ti|RW k
i > 0} : behind task set at bk;

PSk = {Ti|RW k
i = 0} : punctual task set at bk;

Furthermore, a task Ti is said to be pre-ahead at bk if PW k
i < 0, which means that even if Ti

does not get any mandatory unit (mk
i = 0; otherwise, there will be PW k

i ≥ 0, a contradiction) in

[bk−1, bk) it will still be ahead at bk. The pre-ahead task set is defined as:

PASk = {Ti|PW k
i < 0}.

A task Ti is said to be pre-behind at bk if PW k
i > 0 after allocating mk

i , but it may “recover” after

the optional units allocation. The pre-behind task set is defined as:

PBSk = {Ti|PW k
i > 0}.

Notice that, if a task Ti is punctual after mandatory units allocation, it will not get any optional

unit and will still be punctual after optional units allocation; thus, there is no need to define a pre-

punctual task set. Moreover, we define the eligible task set as:

ESk = {Ti|(Ti ∈ PBSk) AND (mk
i < bk − bk−1)};

PSk−1

BSk−1

ASk−1 PASk

PBSk

kPS PSk

BSk

ASkm  =0k  o  =0k

 o  =1k

 o  =0k

 o  =0k

Figure 2: Task transitions from bk−1 to bk.
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From these definitions, we can get task transitions between bk−1 and bk as shown in Figure 2. For

example, ∀Ti ∈ PASk, Ti was ahead at bk−1 and got no mandatory unit. Moreover, Ti will get no

optional unit (since it is not an eligible task) and still be ahead at bk. That is, PASk ⊆ ASk−1 and

PASk ⊆ ASk. For task Ti ∈ ASk−1, it is also possible for Ti to have enough work demand during

[bk−1, bk) and belong to PSk or PBSk. For task Ti ∈ PBSk, Ti may get an optional unit to become

ahead or get no optional unit and remain behind at bk.

From the Bfair algorithm, we can easily get the following properties of the defined task sets.

Property 1 For the defined task sets:

(a) If Ti ∈ BSk−1 and mk
i = 0, Ti ∈ PBSk;

(b) If αk−1(Ti) =′+′ and Ti ∈ ASk, mk
i + ok

i = bk − bk−1;

(c) ∀Ti ∈ PASk, mk
i = ok

i = 0 and RW k−1
i < RW k

i < 0;

(d) If Ti ∈ BSk−1 and mk
i = ok

i = 0, Ti ∈ BSk and 0 < RW k−1
i < RW k

i ;

(e) If Ti ∈ ASk and mk
i = ok

i = 0, Ti ∈ ASk−1 and αk−1(Ti) =′−′;
(f) If Ti ∈ BSk and mk

i = bk − bk−1, Ti ∈ BSk−1 and αk−1(Ti) =′+′;

(g) If Ti ∈ ASk−1 ∩ASk and mk
i + ok

i = bk − bk−1, RW k
i < RW k−1

i < 0;

(h) If Ti ∈ BSk−1 ∩BSk and mk
i + ok

i = bk − bk−1, 0 < RW k
i < RW k−1

i .

♦

Below we give a proof sketch of Lemma 2, which will be used by Lemmas 3 and 4. For task

Tx ∈ PASk ⊆ ASk, from Properties 1c and 1e, we have mk
x = ok

x = 0 and αk−1(Tx) =′−′.
If Tx gets an optional unit during last iteration when allocating [bk−2, bk−1) (i.e., ok−1

x = 1), for

any task Ty (x 6= y) that is behind at bk−1 and is not fully allocated during last iteration (i.e.,

Ty ∈ ESk−1), from the BF algorithm, we have that Ty’s priority is lower than that of Tx; that

is, αk−1(Ty) = αk−1(Tx) =′−′ and Ty’s urgency factor (UF k−1
y ) is bigger than or equal to that of

Tx (UF k−1
x ). Since Tx ∈ PASk ⊆ ASk, we have UF k−1

x > bk − bk−1 (otherwise, there will be

PW k
x ≥ 0 and Tx /∈ PASk, a contradiction).

This scenario is further illustrated in Figure 3, where tx and ty are the nearest punctual time points

after bk−1 for Tx and Ty, respectively. Recall that, the urgency factor is the minimal time needed for

a task to collect enough work and become punctual after bk−1. We have UF k−1
y = ty − bk−1 ≥

UF k−1
x = tx − bk−1 > bk − bk−1, that is, ty ≥ tx > bk. Thus, we have Lemma 2.
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Ty

Tx

bk−1 bk

Punctual time point for tasks

t y

UFx
k−1

UFy
k−1 t x

t

t

Figure 3: Urgency factors for different tasks.

Lemma 2 If ∃Tx ∈ PASk, ok−1
x = 1, and ∀Ty ∈ ESk−1 (x 6= y), then αk−1(Ty) =′−′ and

UF k−1
y ≥ UF k−1

x > bk − bk−1.

♦

To prove that the Bfair algorithm correctly generates a boundary fair schedule, first we show

that two conditions are always satisfied during allocating [bk−1, bk): (1) the summation of all tasks’

mandatory integer units is at most equal to the available time units on the m processors; (2) there

are enough eligible tasks to claim any available optional units. The proof for these conditions is by

contradiction, that is, if any one of these two conditions is not met, we can show that there will be at

least one task ahead and one task behind in every one of the previous boundaries; this will contradict

the fact that there is at least one boundary (i.e., b0) in which every task is punctual. This is formally

proved in the following two lemmas.

Lemma 3 If
∑

i wi = m and Algorithm 1 is followed at boundary time b0, . . . , bk−1 and for v =

0, . . . , k − 1,
∑

i RW v
i = 0 and |RW v

i | < 1, then when allocating processors in [bk−1, bk), we have
∑

i m
k
i ≤ (bk − bk−1) ·m.

Proof The proof is by contradiction, that is, if the equation does not hold, we will show that both

ahead set and behind set are not empty for each of the previous boundaries, which contradicts the

fact that there is at least one boundary (i.e., b0) in which every task is punctual.

Suppose
∑

i m
k
i > (bk − bk−1) ·m. By assumption,

∑
i RW k−1

i = 0 and
∑

i wi = m. Thus:

∑

i

PW k
i =

∑

i

(RW k−1
i + (bk − bk−1) · wi −mk

i )

= (bk − bk−1) ·m−
∑

i

mk
i ≤ −1
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Define two task sets PWAS (possibly-wrong ahead set) and PWBS (possibly-wrong behind

set) for boundary bk−1 as follows:

PWASk−1 = {Tx|Tx ∈ PASk};

PWBSk−1 = {Ty|(Ty ∈ BSk−1)AND(mk
y ≥ 1)};

Notice that, both PWASk−1 and PWBSk−1 are not empty. Otherwise, if PWASk−1 = ∅, we

have
∑

i PW k
i ≥ 0, which contradicts

∑
i PW k

i ≤ −1. If PWBSk−1 = ∅, we have ∀Ti ∈ BSk−1,

mk
i = 0. From Property 1a, Ti ∈ PBSk and BSk−1 ⊆ PBSk. Therefore:

∑

Ti∈PBSk

PW k
i ≥

∑

Ti∈BSk−1

PW k
i >

∑

Ti∈BSk−1

RW k−1
i > 0

Notice that PASk ⊆ ASk−1, therefore:

∑

Ti∈ASk−1

RW k−1
i <

∑

Ti∈PASk

RW k−1
i <

∑

Ti∈PASk

PW k
i < 0

By assumption,
∑

i RW k−1
i = 0. Since ∀Ti ∈ PSk−1, RW k−1

i = 0, thus
∑

Ti∈ASk−1 RW k−1
i =

−∑
Ti∈BSk−1 RW k−1

i . Therefore:

∑

Ti∈PBSk

PW k
i >

∑

Ti∈BSk−1

RW k−1
i =

−
∑

Ti∈ASk−1

RW k−1
i > −

∑

Ti∈PASk

PW k
i

hence
∑

i PW k
i > 0 that contradicts

∑
i PW k

i ≤ −1.

So, both PWASk−1 and PWBSk−1 are not empty. From Lemma 2 and the Bfair algorithm, we

will get either:

(a) ∀Tx ∈ PWASk−1, Tx ∈ PASk−1; or

(b) ∀Ty ∈ PWBSk−1, mk−1
y = bk−1 − bk−2;

Otherwise, ∃Tx ∈ PWASk−1 and ∃Ty ∈ PWBSk−1 such that Tx ∈ PBSk−1, ok−1
x = 1 and

mk−1
y < bk−1− bk−2. From Lemma 2, there will be UF k−1

y > UF k−1
x > bk− bk−1. Notice that from

the definition of PWASk−1 and PWBSk−1, we have UF k−1
y < UF k−1

x , which is a contradiction.

Below, we extend the construction of the non-empty sets PWAS and PWBS to earlier boundaries.

Recall that our intuition behind this proof is that there will at least one boundary (e.g. b0) in which
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every task is punctual.

If (a) is true, ∀Tx ∈ PWASk−1, Tx ∈ PASk−1 . Define:

PWASk−2 = {Tx|Tx ∈ PWASk−1} 6= ∅;

PWBSk−2 = {Ty|(Ty ∈ BSk−2)AND(
k∑

l=k−1

(ml
y + ol

y) > 0)};

Suppose PWBSk−2 = ∅, that is, ∀Ty ∈ BSk−2,
∑k

l=k−1(m
l
y + ol

y) = 0. From Properties 1a and

1d, Ty ∈ PBSk and BSk−2 ⊆ PBSk. Since PWASk−2 = PWASk−1 = PASk ⊆ PASk−1 ⊆
ASk−2, from Property 1c, we have ∀Tx ∈ PWASk−2, mk−1

x = ok−1
x = mk

x = ok
x = 0. Therefore:

∑

Ty∈PBSk

PW k
i >

∑

Ty∈BSk−2

PW k
i

>
∑

Ty∈BSk−2

RW k−1
i >

∑

Ty∈BSk−2

RW k−2
i

= −
∑

Tx∈ASk−2

RW k−2
i ≥ −

∑

Tx∈PASk−1

RW k−2
i

≥ −
∑

Tx∈PASk

RW k−2
i > −

∑

Tx∈PASk

PW k
i

that is,
∑

i PW k
i > 0, which is a contradiction.

So, both PWASk−2 and PWBSk−2 are not empty. Similarly, this will lead to either:

(i) ∀Tx ∈ PWASk−2, Tx ∈ PASk−2; or

(ii) ∀Ty ∈ PWBSk−2, mk−2
y = bk−2 − bk−3;

If (b) is true, ∀Ty ∈ PWBSk−1,mk−1
y = bk−1 − bk−2. From Property 1f, Ty ∈ BSk−2 and

αk−2(Ty) =′+′. Define:

PWASk−2 = {Tx|(Tx ∈ ASk−2)AND(∃Ty ∈ PWBSk−2,

α(Tx, k − 3) < α(Ty, k − 3))};

PWBSk−2 = PWBSk−1 6= ∅;

If PWASk−2 = ∅, then ∀Tx ∈ ASk−2 and ∀Ty ∈ PWBSk−2, α(Tx, k − 3) ≥ α(Ty, k − 3).

Thus αk−2(Tx) = αk−2(Ty) =′+′. Since mk
y ≥ 1, whatever the value of αk−1(Tx) is, we will have

Tx ∈ (PBSk ∪ PSk). Notice that PASk 6= ∅, we have ∃Tz ∈ ((BSk−2 − PWBSk−2) ∪ PSk−2),

Tz ∈ PASk ⊆ ASk−1 (i.e., ok−1
z = 1). Note that αk−2(Tz) <′+′ (otherwise, Tz ∈ PWBSk−2,
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a contradiction). Since ∀Tx ∈ ASk−2, αk−2(Tx) =′+′ (i.e., Tx’s priority is higher than Tz’s) and

mk−1
x < bk−1−bk−2, there will be ok−1

x = 1 and Tx ∈ ASk−1 (notice that mk−1
x +ok−1

x = bk−1−bk−2

because of Property 1b), that is ASk−2 ⊆ ASk−1. Then, there is ASk−1 ⊇ (ASk−2 ∪PASk). Since

∑

Ti∈BSk−1

RW k−1
i = −

∑

Ti∈ASk−1

RW k−1
i

=
∑

Ti∈PWBSk−1

RW k−1
i +

∑

Ti∈(BSk−1−PWBSk−1)

RW k−1
i

≥ −
∑

Ti∈ASk−2

RW k−1
i −

∑

Ti∈PWASk−1=PASk

RW k−1
i

Notice that PWBSk−2 = PWBSk−1. From Property 1h:

∑

Ti∈PWBSk−1

RW k−1
i <

∑

Ti∈PWBSk−2

RW k−2
i

≤
∑

Ti∈BSk−2

RW k−2
i = −

∑

Ti∈ASk−2

RW k−2
i

< −
∑

Ti∈ASk−2

RW k−1
i

then, from last two equations, we will have:

∑

Ti∈(BSk−1−PWBSk−1)

RW k−1
i > −

∑

Ti∈PASk

RW k−1
i

Since (BSk−1 − PWBSk−1) ⊆ PBSk, we will have:

∑

Ti∈PBSk

PW k
i ≥

∑

Ti∈(BSk−1−PWBSk−1)

PW k
i

>
∑

Ti∈(BSk−1−PWBSk−1)

RW k−1
i

> −
∑

Ti∈PASk

RW k−1
i > −

∑

Ti∈PASk

PW k
i

that is
∑

i PW k
i > 0, a contradiction.

So, both PWASk−2 and PWBSk−2 are not empty. The same as before, we will get either:

(i) ∀Tx ∈ PWASk−2, Tx ∈ PASk−2; or

(ii) ∀Ty ∈ PWBSk−2, mk−2
y = bk−2 − bk−3;

Continue the above steps to the boundary time bk−w, where ∀Ti, RW k−w
i = 0 (note that ∀Ti, RW 0

i =
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0). At that boundary we will have two non-empty sets PWBS and PWAS, which is a contradic-

tion.

Therefore, when allocating [k−1, bk), we have
∑

i m
k
i ≤ (bk − bk−1) ·m.

♦

Lemma 4 If
∑

i wi = m and Algorithm 1 is followed at boundary time b0, . . . , bk−1 and for v =

0, . . . , k − 1,
∑

i RW v
i = 0 and |RW v

i | < 1, then when allocating processors in [bk−1, bk), we have

|ESk| ≥ (bk − bk−1) ·m−∑
i m

k
i ; that is, the number of eligible tasks is no less than the number of

remaining units (RU) to be allocated.

Proof The proof is similar to that for Lemma 3. If |ESk| < (bk−bk−1) ·m−∑
mk

i , we will show

that there are two non-empty sets associated with each of the previous boundaries, contradicting the

fact that every task is punctual at the most recent boundary.

Suppose |ESk| < (bk − bk−1) · m − ∑
i m

k
i . After allocating mk

i and ok
i , we will have ∀Ti ∈

ESk, ok
i = 1 and ∀Ty ∈ BSk,mk

y = bk − bk−1. From Property 1, we have BSk ⊆ BSk−1. Since

∑

i

(mk
i + ok

i ) < (bk − bk−1) ·m
∑

i

RW k
i =

∑

i

(PW k
i − ok

i )

=
∑

i

(RW k−1
i + (bk − bk−1) · wi −mk

i − ok
i )

= 0 + (bk − bk−1) ·m−
∑

i

(mk
i + ok

i ) ≥ 1

thus BSk 6= ∅. Define:

PWASk−1 = {Tx|(Tx ∈ ASk−1)AND(∃Ty ∈ PWBSk−1,

α(Tx, k − 2) < α(Ty, k − 2))};

PWBSk−1 = BSk 6= ∅

If PWASk−1 = ∅, we will have ∀Tx ∈ ASk−1 and ∀Ty ∈ PWBSk−1, α(Tx, k−2) ≥ α(Ty, k−2).

From Property 1, αk−1(Ty) =′+′, there will be αk−1(Tx) =′+′. Since ∀Tx ∈ ASk−1, there is

mk
x < bk − bk−1, then ok

x = 1 and Tx ∈ ASk. Thus, ASk−1 ⊆ ASk. Since,

−
∑

Ti∈ASk−1

RW k−1
i < −

∑

Ti∈ASk−1

RW k
i
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≤ −
∑

Ti∈ASk

RW k
i <

∑

Ti∈BSk

RW k
i

<
∑

Ti∈BSk

RW k−1
i <

∑

Ti∈BSk−1

RW k−1
i

then we will have
∑

i RW k−1
i > 0, which contradicts with

∑
i RW k−1

i = 0.

So, both PWASk−1 and PWBSk−1 are not empty.

The same as in Lemma 3, we will get either

(a) ∀Tx ∈ PWASk−1, Tx ∈ PASk−1; or

(b) ∀Ty ∈ PWBSk−1, mk−1
y = bk−1 − bk−2;

If (a) is true, that is, ∀Tx ∈ PWASk−1, Tx ∈ PASk−1 ⊆ ASk−2. Define:

PWASk−2 = PWASk−1 6= ∅;

PWBSk−2 = {Ty|(Ty ∈ BSk−2)AND(
k∑

l=k−1

(ml
y + ol

y) > 0)};

Notice that, PWBSk−2 6= ∅; otherwise, ∀Ty ∈ BSk−2, mk
y = 0 and Ty ∈ BSk, which contradicts

with ∀Ti ∈ BSk,mk
i = bk − bk−1 > 0. That is, both PWASk−2 and PWBSk−2 are not empty.

The same as before, we will get either:

(i) ∀Tx ∈ PWASk−2, Tx ∈ PASk−2; or

(ii) ∀Ty ∈ PWBSk−2, mk−2
y = bk−2 − bk−3;

If (b) is true, that is, ∀Ty ∈ PWBSk−1,mk−1
y = bk−1 − bk−2. Define:

PWASk−2 = {Tx|(Tx ∈ ASk−2)AND(∃Ty ∈ PWBSk−2,

α(Tx, k − 3) < α(Ty, k − 3))};

PWBSk−2 = PWBSk−1 6= ∅;

Notice that ∀Ty ∈ PWBSk−2 = PWBSk−1, there is Ty ∈ BSk−2 and αk−1(Ty) =′+′ (Prop-

erty 1); that is, PWBSk−2 ⊆ BSk−2. If PWASk−2 is empty, we will have ∀Tx ∈ ASk−2 and

∀Ty ∈ PWBSk−2, α(Tx, k − 3) ≥ α(Ty, k − 3); notice that αk−2(Ty) = αk−1(Ty) =′+′, then

αk−2(Tx) = αk−1(Tx) =′+′. We will have ∀Tx ∈ ASk−2, Tx ∈ ASk−1 (otherwise, Tx ∈ BSk−1;

since αk−1(Tx) =′+′, there will be mk
x = bk − bk−1 ⇒ Tx ∈ PWBSk−1 = PWBSk−2 ⊆ BSk−2, a
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contradiction), and also Tx ∈ ASk (otherwise, Tx ∈ BSk and mk
x < bk − bk−1, a contradiction), so

we have ASk−2 ⊆ ASk. Note that, ok−1
x = ok

x = 1. From Property 1, we have:

−
∑

Ti∈ASk−2

RW k−2
i < −

∑

Ti∈ASk−2

RW k−1
i

< −
∑

Ti∈ASk−2

RW k
i ≤ −

∑

Ti∈ASk

RW k
i

<
∑

Ti∈BSk=PWBSk−1

RW k
i

<
∑

Ti∈PWBSk−1=PWBSk−2

RW k−1
i

<
∑

Ti∈PWBSk−2

RW k−2
i ≤

∑

Ti∈BSk−2

RW k−2
i

That is,
∑

i RW k−2
i > 0, a contradiction.

Thus, we will have that both PWASk−2 and PWBSk−2 are not empty.

The same as before, we will get either:

(i) ∀Tx ∈ PWASk−2, Tx ∈ PASk−2; or

(ii) ∀Ty ∈ PWBSk−2, mk−2
y = bk−2 − bk−3;

Continue the above steps to the boundary time bk−w, where ∀Ti, RW k−w
i = 0 (note that ∀Ti, RW 0

i =

0). At that boundary we will have two non-empty sets PWBS and PWAS, which is a contradic-

tion.

That is, when allocating [bk−1, bk), we have |ESk| ≥ (bk − bk−1) ·m−∑
i m

k
i .

♦
The proof for Lemma 4 is similar to that for Lemma 3 and is omitted. From Lemma 3 and 4, we

can get the following theorem.

Theorem 1 The schedule generated by Algorithm 1 is boundary fair, that is, at boundary time bk

(after allocating [bk−1, bk)), we have
∑

i RW k
i = 0 and |RW k

i | < 1 (i = 1, . . . , n).

Proof The proof is by induction on boundary time bk.

Base case: At time b0, we have RW 0
i = 0, i = 1, . . . , n, that is,

∑
i RW 0

i = 0 and |RW 0
i | < 1;

Induction step: Assume that for boundary time b0, . . . , bk−1, we have
∑

i RW v
i = 0 and |RW v

i | <
1 (v = 0, . . . , k − 1, i = 1, . . . , n);
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When allocating [bk−1, bk), from Lemma 3 and 4, the following two conditions are satisfied:

(1)
∑

i m
k
i ≤ (bk − bk−1) ·m; and

(2) |ESk| ≥ (bk − bk−1) ·m−∑
i m

k
i ;

After allocating mk
i , task Ti will belong to one of the sets in the middle column of Figure 2. Below

we consider the four possible transitions (arrows from the middle sets to the sets on the right):

∀Ti ∈ PASk ∩ ASk, −1 < RW k
i = PW k

i < 0;

∀Ti ∈ PBSk ∩ ASk, −1 < RW k
i = PW k

i − 1 < 0;

∀Ti ∈ PBSk ∩BSk, 0 < RW k
i = PW k

i < 1;

∀Ti ∈ PSk, RW k
i = PW k

i = 0;

Hence, ∀Ti, |RW k
i | < 1. Next,

∑

i

RW k
i =

∑

i

(PW k
i − ok

i )

=
∑

i

(RW k−1
i + (bk − bk−1) · wi −mk

i − ok
i )

= 0 + (bk − bk−1) ·m−
∑

i

(mk
i + ok

i );

Since
∑

i(m
k
i + ok

i ) = (bk − bk−1) ·m, we will have, at time bk,
∑

i RW k
i = 0.

Thus, the schedule generated by the Bfair algorithm in Algorithm 1 is boundary fair.

♦
As we noted above, a boundary fair schedule maintains fairness for tasks at the boundaries, which

means that there is no deadline miss and the Bfair algorithm generates a feasible schedule. Moreover,

the Bfair algorithm is optimal in the sense that it utilizes 100% of the processors in a system.

6 Simulations and Discussions

In this section, we will experimentally evaluate the performance of our Bfair algorithm (denoted

by BF ) on reducing the number of scheduling points as well as the overall scheduling overhead.

For comparison, we also implemented three Pfair algorithms: the original algorithm PF [6], an

improved algorithm PD [7] and the most efficient algorithm PD2 [2].

In our experiments, each task set contains 20 to 100 tasks. The period for a task is uniformly

distributed within the minimum period pmin and the maximum period pmax. We vary the values of

pmin and pmax from 10 to 100. However, due to limitation in the simulations, we consider only the
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Figure 4: The number of scheduling points with varying pmax; pmin = 10.
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Figure 5: The number of scheduling points with varying pmin; pmax = 100.

task sets with LCM < 232. Note that, for task sets with LCM > 232, Bfair will actually perform

better as the number of scheduling points for Pfair algorithms increases much faster than that of

the Bfair algorithm. For each data point in the following figures, the result is the average of 100

randomly generated task sets.

6.1 Number of Scheduling Points

First, with fixed minimum task period pmin = 10, we vary the maximum period pmax from 20 to 100

and show the normalized number of scheduling points for the Bfair algorithm with that of Pfair (PF)

algorithms as the baseline. Note that, the scheduling points for Bfair are the period boundaries of all

tasks which are independent of tasks’ computation requirements, while the the number of scheduling

points for Pfair (PF) algorithms will be LCM. The results are shown in Figure 4.
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From the figure, we can see that the number of scheduling points of our Bfair algorithm varies

from 25% to 48% of that for the Pfair algorithms. For a given maximum period, when there are more

tasks in a task set, a time point is more likely to be a period boundary and there are more scheduling

points for the Bfair algorithm. Note that, for a task set with fixed number of tasks, the periods of

tasks are more separated with larger values of pmax. Therefore, for larger values of pmax, there are

fewer number of period boundaries and thus fewer number scheduling points for the Bfair algorithm.

When the maximum period is fixed at pmax = 100, Figure 5 further shows the normalized number

of scheduling points for the Bfair algorithm when the minimum period of tasks pmin varies from 10

to 90. For the larger values of pmin, the periods of tasks become more regular and the number of

scheduling points become much less. For the case of pmin = 90, only 6% of the time points within

LCM are period boundaries (and thus scheduling points) even for task sets with 100 tasks. That is,

the Bfair algorithm can save upto 94% of the scheduling points for the task sets considered.

6.2 Time Overhead of Bfair and Pfair Algorithms

Next, we compare the run-time overhead of our Bfair algorithm with that of the Pfair algorithms by

measuring their execution times at each scheduling point as well as the overall execution times to

generate the whole schedule within LCM. The algorithms are implemented in C and run on a Linux

server with two Intel quad-core 2.4GHz processors and 16 GB memory. As mentioned before, to

select k highest priority tasks from n tasks, the task selection function can be implemented in O(n)

[8]. However, in the implementation of the algorithms, a simple linear search technique with a

complexity of O(k · n) is used.

Moroever, the original Pfair (PF ) algorithm is implemented as described in [6]. For the PD

algorithm, we implement its constant time priority comparison function. To limit the search space

of the task selection function, tasks are first divided into 7 priority categories [7] with the complexity

of O(n); then the tasks are selected from high priority category to low priority category; if not all

tasks in a category can be selected, the O(k · n) task selection function is used within that category.

In this way, we effectively reduced the number of priority comparison needed by the PD algorithm.

While the complexity of implemented PD algorithm is still O(m · n), where m is the number

of processors, the results (see below) are almost linear with the number of tasks. For the PD2

algorithm, the window of tasks is generated online. The group deadline of each window is computed
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Figure 6: Execution time (in microseconds) at each scheduling point.

with a constant time approach [2].

For the Bfair (BF ) algorithm, eligible tasks are first divided into three categories based on their

characters (corresponding to ′+′, ′0′ and ′−′) for the current boundary time. We implement the

constant time priority comparison function as described in Section 4 and the implemented Bfair

algorithm has an overall complexity of O(n2). Note that at most n − 1 optional units need to be

allocated per-invocation for the Bfair algorithm.

Figure 6 shows the execution time (on average, in microsecond) of the algorithms at each schedul-

ing point for task sets with different number of tasks. Here, we set pmin = 10 and pmax = 100. For

the worst execution time of a task (ci), it is uniformly distributed between 1 and its period (pi).

Therefore, on average, the utilization of tasks is around 0.5 and the number of processors is around

half of the number of tasks. Note that, the execution time of PF is much more than the other algo-

rithms and increases very quickly as the number of tasks increases. For the cases with 100 tasks, PF

uses more than 9 times execution time than that of the other algorithms, which is not shown in the

figure for clear illustration of other algorithms. From the figure, we can see that all algorithms only

take a few microseconds for each scheduling points when the number of tasks is 20. Moreover, both

PD and PD2 perform better than the Bfair (BF ) algorithm and use less time at each scheduling

point. When the number of tasks increases, the execution time of PD and PD2 increases almost

linearly while the execution time of BF increases slightly fast. The reason comes from the increased

number of optional units that take more time to be allocated in BF algorithms. In addition, PD2

performs slightly better than PD when the number of tasks is less than 80, however it takes more

time than that of PD when more tasks are in a task set. The possible reason is related to the differ-

26



 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 20  30  40  50  60  70  80  90  100
no

rm
al

iz
ed

 o
ve

ra
ll 

ex
ec

ut
io

n 
tim

e

number of tasks

PD vs. BF
PD2 vs. BF

Figure 7: Normalized overall execution time to generate the schedule within LCM.

ent approach on handling of heavy tasks (with utilization more than 0.5) in PD2, which requires the

computation of window and group deadlines. When the number of such tasks increases, PD2 needs

more time to handle them at each scheduling point.

Although BF takes more time at each scheduling point, as shown earlier, there are much less

scheduling points for BF within one LCM. Figure 7 further shows the normalized execution time

(on average) for PD and PD2 to generate the whole schedule within LCM of tasks’ periods, where

the overall execution time of BF is used as the baseline. Again, as PF takes too much time when

compared with other algorithms, its overall execution time is not shown in the figure for easy com-

parison of others. Here, we can see that, for all the cases considered, PD and PD2 take more time

(on average) to generate the whole schedules when comparing to BF . However, as the number of

tasks increases, the difference between the overall execution time of PD and BF become smaller.

There are two reasons: first, there are more scheduling points for BF when the number of tasks

increases; second, the execution time of BF at each scheduling point increases faster than that of

PD with more tasks being in a task set.

Note that, the performance of PD2 depends closely on the characteristics of the tasks in a task

set. When task sets contain only light tasks (with utilization less than 0.5), PD2 performs much

better as it does not need to calculate the group deadlines for heavy tasks anymore. The execution

time for such task sets is further shown in Figures 8 and 9. Here, we can see that PD2 only needs

50% of the time to generate the whole schedule. However, for task sets with only heavy tasks, both

PD and PD2 perform much worse as more units need to be allocated for the same number of tasks

as shown in Figures 10 and 11.
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Figure 8: Execution time (in microseconds) at each scheduling point for light tasks.
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6.3 Number of Context Switches and Task Migrations

In addition to less run-time overhead, as shown in the example on page 3, by aggregating the time

allocation of tasks together for the time interval between consecutive period boundaries, the schedule
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Figure 10: Execution time (in microseconds) at each scheduling point for heavy tasks.
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Figure 11: Normalized overall execution time to generate the schedule within LCM for heavy tasks.

generated by the Bfair algorithm can also reduce the number of required context switches as well

as task migrations. Note that, all Pfair algorithms enforce proportional progress for tasks at every

time unit. Therefore, we expect that the resulting Pfair schedules will be roughly the same and we

consider only the one generated by PF . In what follows, for randomly generated task sets with

different number of tasks, we experimentally compare the number of context switches and task

migrations for the schedules generated by the BF and PF algorithms.

For fixed pmin = 10, Figure 12 first shows the normalized number of context switches for the

schedule of BF when the one of PF is used as the baseline with varying pmax. From the figures, we

can see that, the normalized number of context switches generally decreases as pmax increases. The

reason is that, as pmax increases, there are fewer number of period boundaries within LCM of tasks’

periods (see Figure 4) and the time interval between consecutive boundaries becomes larger, which

provides better opportunities for tasks to aggregate their time allocations and thus leads to reduced

number of context switches. For task sets with different number of tasks, we can also see that the

normalized number of context switches is roughly the same for a given value of pmax. The reason

comes from the average utilization of tasks, which is around 0.5 as mentioned earlier. In this case,

for task sets with more tasks, more processors will be deployed, which results in increased number

of context switches for both BF and PF , but in roughly the same rate. Therefore, the normalized

number of context switches stays roughly the same for task sets with different number of tasks with

a given pair of pmin and pmax.

The same reasonings apply to the case of varying pmin with fixed pmax = 100 as shown in

Figure 13. From these results, we can see that, even with pmin = 10 and pmax = 100, there are only
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Figure 13: Normalized number of context switches with varying pmin; pmax = 10;

44% of context switches in the schedules generated by BF compared to that of the PF . For the case

of pmin = 90 and pmax = 100, the periods of tasks are more regular and the time interval between

consecutive boundaries is larger, the normalized number of context switches for the schedules of

BF is only 18% of that for PF . That is, upto 82% of context siwtches can be saved, which will be

very helpful to reduce the run-time overhead of real-time systems.

As another metric, Figures 14 and 15 further show the normalized number of task migrations

required for the resluting Bfair schedule when compared to that of the Pfair schedule. With the

same reasonings as those for context switches, we can see that the number of task migrations is also

significantly reduced, upto 85% for the case with pmin = 90 and pmax = 100. Such reduction is very

important to reduce the run-time overhead of real-time systems, especially considering the cache

effects (e.g., due to cold start) of task migrations.
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7 Conclusions

In this paper, we present a novel optimal scheduling algorithm, boundary fair (Bfair), for multipro-

cessor real-time systems. Unlike its predecessor, the Pfair scheduling [6], which makes scheduling

decisions at every time unit to ensure proportional progress for all tasks at any time, our Bfair

scheduling algorithms makes scheduling decisions and maintains fairness for tasks only at the pe-

riod boundaries, which effectively reduces the number of scheduling points compared to that of the

Pfair algorithms. Moreover, by aggregating the time allocation of tasks for the time interval between

consecutive period boundaries, the resulting Bfair schedule needs dramatically reduced number of

context switches and task migrations, which are very important to reduce the run-time overhead for

real-time systems.

The correctness of the Bfair algorithm to meet the deadlines of all tasks’ instances is formally
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proved and the run-time performance of Bfair is evaluated through extensive simulations. The results

show that, compared to that of the Pfair algorithms, Bfair can significantly reduces the number of

scheduling points (upto 94%) and the time overhead of Bfair for each scheduling point is comparable

to that of the most efficient Pfair algorithm, PD2 [2]. For task sets with fewer number (e.g., 20) of

tasks, Bfair use much less time to generate the whole schedule within LCM when compared to PD

and PD2. However, for task sets with more (e.g., 100) tasks where more scheduling points exist

for the Bfair algorithm, PD2 uses around half of the time to generate the whole schedule when

compared to Bfair. Moreover, for the number of context switches and task migrations, the resulting

Bfair schedule only needs as low as 18% and 15%, respectively, when compared to those of Pfair

schedules.
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