
Proc. of the Fifth European Dependable Computing Conference, Apr. 2005

Energy Efficient Configuration for QoS in
Reliable Parallel Servers

Dakai Zhu1?, Rami Melhem2, and Daniel Mossé2

1 University of Texas at San Antonio, San Antonio, TX, 78249, USA,
2 University of Pittsburgh, Pittsburgh, PA, 15260, USA,

Abstract. Redundancy is the traditional technique used to increase sys-
tem reliability. With modern technology, in addition to being used as
temporal redundancy, slack time can also be used by energy manage-
ment schemes to scale down system processing speed and supply voltage
to save energy. In this paper, we consider a system that consists of mul-
tiple servers for providing reliable service. Assuming that servers have
self-detection mechanisms to detect faults, we first propose an efficient
parallel recovery scheme that processes service requests in parallel to in-
crease the number of faults that can be tolerated and thus the system
reliability. Then, for a given request arrival rate, we explore the optimal
number of active severs needed for minimizing system energy consump-
tion while achieving k-fault tolerance or for maximizing the number of
faults to be tolerated with limited energy budget. Analytical results are
presented to show the trade-off between the energy savings and the num-
ber of faults being tolerated.

1 Introduction

The performance of modern computing systems has increased at the expense
of drastically increased power consumption. For large systems that consist of
multiple processing units (e.g., complex satellite and surveillance systems, data
warehouses or web server farms), the increased power consumption causes heat
dissipation problems and requires more expensive packaging and cooling tech-
nologies. If the generated heat cannot be properly removed, it will increase the
temperature and thus decrease system reliability.

Traditionally, energy management has focused on portable and handheld de-
vices that have limited energy budget to extend their operation time. However,
the energy management for servers in data centers, where heat generated and
cooling costs are big problems, have caught people’s attention recently. In [1],
Bohrer et al. presented a case of managing power consumption in web servers.
Elnozahy et al. evaluated a few policies that combine dynamic voltage scaling
(DVS) [24, 25] on individual server and turning on/off servers for cluster-wide
power management in server farms [5, 14]. Sharma et al. investigated adaptive
algorithms for voltage scaling in QoS-enabled web servers to minimize energy
consumption subject to service delay constraints [19]. Although fault tolerance

? Work was done while the author was a Ph.D student in University of Pittsburgh.

through redundancy [11, 13, 16, 20] has also been well studied, there is relatively
less work addressing the problem of combining fault tolerance and energy man-
agement [26, 27]. For systems where both lower levels of energy consumption
and higher levels of reliability are important, managing the system reliability
and energy consumption together is desired.

Modular redundancy and temporal redundancy have been explored for fault
tolerance. Modular redundancy detects and/or masks fault(s) by executing an
application on several processing units in parallel and temporal redundancy can
be used to re-execute an application to increase system reliability [16]. To effi-
ciently use temporal redundancy, checkpointing techniques have been proposed
by inserting checkpoints within an application and rolling back to the last check-
point when there is a fault [11, 13]. In addition to being used for temporal re-
dundancy, slack time can also be used by DVS techniques to scale down system
processing speed and supply voltage to save energy [24, 25]. Therefore, there is
an interesting trade-off between system reliability and energy savings.

For independent periodic tasks, using the primary/backup model, Unsal et
al. proposed an energy-aware software-based fault tolerance scheme which post-
pones as much as possible the execution of backup tasks to minimize the overlap
of primary and backup execution and thus to minimize energy consumption
[23]. For Duplex systems, the optimal number of checkpoints, uniformly or non-
uniformly distributed, to achieve minimum energy consumption was explored in
[15]. Elnozahy et al. proposed an Optimistic-TMR (OTMR) scheme to reduce
the energy consumption for traditional TMR systems by allowing one processing
unit to slow down provided that it can catch up and finish the computation be-
fore the deadline if there is a fault [6]. The optimal frequency setting for OTMR
is further explored in [28]. Combined with voltage scaling techniques, an adap-
tive checkpointing scheme was proposed to tolerate a fixed number of transient
faults and save energy for serial applications [26]. The work was further extended
to periodic real-time tasks in [27].

In this paper, we consider the execution of event-driven applications on par-
allel servers. Assuming that self-detection mechanisms are deployed in servers
to detect faults, for a given system load (i.e., the number of requests in a fixed
interval), we explore the optimal number of active servers needed for minimizing
system energy consumption while achieving k-fault tolerance. We also explore
maximizing the number of faults to be tolerated with limited energy budget. An
efficient parallel recovery scheme is proposed, which processes service requests in
parallel to increase the number of faults that can be tolerated within the interval
considered and thus system performability (defined as the probability of finishing
an application correctly within its deadline in the presence of faults [10]).

This paper is organized as follows: the energy model and the application and
problem description are presented in Section 2. The recovery schemes are dis-
cussed in Section 3. Section 4 presents two schemes to find the optimal number
of active servers needed for energy minimization and performability maximiza-
tion, respectively. The analysis results are presented and discussed in Section 5
and Section 6 concludes the paper.

2 Models and Problem Description

2.1 Power Model

The power in a server is mainly consumed by its processor, memory and the
underlying circuits. For CMOS based variable frequency processors, power con-
sumption is dominated by dynamic power dissipation, which is cubicly related
to the supply voltage and the processing speed [2]. As for memory, it can be put
into different power states with different response times [12]. For servers that em-
ploy variable frequency processors [7, 8] and low power memory [17], the power
consumption can be adjusted to satisfy different performance requirements. Al-
though dynamic power dominates in most components, the static leakage power
increases much faster than dynamic power with technology advancements and
thus cannot be ignored [21, 22].

To incorporate all power consuming components in a server and keep the
power model simple, we assume that a server has three different states: active,
sleep and off. The system is in the active state when it is serving a request.
All static power is consumed in the active state. However, a request may be
processed at different frequencies and consume different dynamic power. The
sleep state is a power saving state that removes all dynamic power and most of
the static power. Servers in sleep state can react quickly (e.g., in a few cycles) to
new requests and the time to transit from sleep state to active state is assumed
to be negligible. A server is assumed to consume no power in the off state.

Considering the almost linear relation between processing frequency and sup-
ply voltage [2], voltage scaling techniques reduce the supply voltage for lower
frequencies [24, 25]. In what follows, we use frequency scaling to stand for chang-
ing both processing frequency and supply voltage. Thus, the power consumption
of a server at processing frequency f can be modeled as [28]:

P (f) = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceffm) (1)

where Ps is the sleep power; Pind and Pd are the active powers that are frequency-
independent and frequency-dependent, respectively. h̄ equals 1 if a server is ac-
tive and 0 otherwise. Cef and m are system dependent constants. The maximum
frequency-dependent active power corresponds to the maximum processing fre-
quency fmax and is given by Pmax

d = Ceffm
max. For convenience, the values

of Ps and Pind are assumed to be αPmax
d and βPmax

d , respectively. Moreover,
we assume that continuous frequency is used. For systems that have discrete
frequencies, two adjacent frequencies can be used to emulate any frequency as
discussed in [9].

Notice that, less frequency-dependent energy is consumed at lower frequen-
cies; however, it takes more time to process a request and thus more sleep and
frequency-independent energy is consumed. Therefore, due to the sleep power
and frequency-independent active power, there is an energy efficient processing
frequency at which the energy consumption to process a request is minimized
[28]. Since the overhead of turning on/off a server is large [1], we assume in this
paper that the deployed servers are always on and the sleep power Ps is not

manageable (i.e., always consumed). Thus, the energy efficient frequency can be
easily found as:

fee = m

√
β

m− 1
· fmax (2)

If fee > fmax, that is, β > m− 1, all requests should be processed at the max-
imum frequency fmax to minimize their energy consumption and no frequency
scaling is necessary. Notice that fee is solely determined by the system’s power
characteristics and is independent of requests to be processed. Given that flow

is the lowest supported processing frequency, we define the minimum energy ef-
ficient frequency as fmin = max{flow, fee}. That is, we may be forced to run at
a frequency higher than fee to meet an application’s deadline or to comply with
the lowest frequency limitation. However, for energy efficiency, we should never
run at a frequency below fee. For simplicity, we assume that fee ≥ flow, that is,
fee = κfmax, where κ = fee

fmax
.

2.2 Application Model and Problem Description

In general, the system load of an event-driven application is specified by service
request3 arrival rates. That is, the number of requests within a given interval.
Although the service time for each individual request may vary, we can employ
the law of large numbers and use a mean service time for all requests, which can
be justified in the case of high performance servers where the number of requests
is large and each individual request has relatively short service time [19]. That is,
we assume that requests have the same size and need C cycles to be processed.
For the case of large variations in request size, checkpointing techniques can be
employed to break requests into smaller sections of the same size [15].

Given that we are considering variable frequency processors, the number of
cycles needed to process a request may also depend on the processing frequency
[18]. However, with a reasonable size cache, C has been shown to have very small
variations with different frequencies [15]. For simplicity, we assume that C is a
constant4 and is the mean number of cycles needed to process a request at the
maximum frequency fmax. Without loss of generality, the service time needed
for each request at fmax is assumed to be c = C

fmax
= 1 time unit. Moreover, to

ensure responsiveness, we consider time intervals of length equal to D time units.
All requests arriving in an interval will be processed during the next interval.
That is, the response time for each request is no more than 2D.

During the processing of a request, a fault may occur. To simplify the dis-
cussion, we limit our analysis to the case where faults are detected through a
self-detection mechanism on each server [16]. Since transient and intermittent
faults occur much more frequently than permanent faults [3], in this paper, we

3 Without causing confusion, we use events and service requests interchangeably.
4 Notice that, this is a conservative model. With fixed memory cycle time, the number

of CPU cycles needed to execute a task actually decreases with reduced frequencies
and the execution time will be less than the modeled time.

focus on transient and intermittent faults and assume that such faults can be
recovered by re-processing the faulty request.

For a system that consists of M servers, due to energy consideration, suppose
that p (p ≤ M) servers are used to implement a k-fault tolerant system, which
is defined as a system that can tolerate k faults within any interval D under all
circumstances. Let w be the number of requests arriving within an interval D.
Recall that the processing of one request needs one time unit. Hence, n = dw

p e
time units are needed to process all the requests. Define a section as the execution
of one request on one server. If faults occur during the processing of one request,
the request becomes faulty and a recovery section of one time unit is needed to
re-process the faulty request. To tolerate k faults in the worst case, a number of
time units, b, have to be reserved as backup slots, where each backup slot has p
parallel recovery sections. For a faulty request, the processing during a recovery
section may also encounter faults. If all the recovery sections that process a given
faulty request fail, then we say that there is a recovery failure.

Dslack

p

b: backup time unitsn: primary time units

Fig. 1. To achieve a k-fault tolerant system, p servers are used to process w requests
within a time interval of D. Here, b time units are reserved as backup slots.

The schedule for processing all requests within the interval of D is shown in
Figure 1. In the figure, each white rectangle represents a section that is used
to process one request on a server and the shadowed rectangles represent the
recovery sections reserved for processing the faulty requests. For ease of presen-
tation, the first n time units are referred to as primary time units and all white
rectangles are referred as primary execution. After scheduling the primary time
units and backup slots, the amount of slack left is D − (n + b), which can be
used to scale down the processing frequency of servers and save energy.

For a given request arrival rate and a fixed time interval in an event-driven
system that consists of M servers, we focus on exploring the optimal number of
active servers needed to minimize energy consumption while achieving a k-fault
tolerant system or to maximize the number of faults that can be tolerated with
limited energy budget.

3 Recovery with Parallel Backup Slots

In this section, we calculate the worst case maximum number of faults that can
be tolerated during the processing of w requests by p servers with b backup slots.
The addition of one more fault could cause an additional faulty request that can
not be recovered and thus leads to a system failure. As a first step, we assume

that the number of requests w is a multiple of p (i.e., w = n · p, n ≥ 1). The
case of w being not a multiple of p will be discussed in Section 3.4. For different
strategies of using backup slots, we consider three recovery schemes: restricted
serial recovery, parallel recovery and adaptive parallel recovery.

T9

T3

R
T6T5

T8T7

T4

T1 2T R 3

8

R
T

T
R
T9R

T1 T2 T3
T6
R

T5
T8T7

T4

8

9

3

3

9

3

R

T9

T1 T T
T6
R

T5
T8T7

T4 R 3

3

8

32

a. Restricted serial recovery b. Parallel recovery c. Adaptive parallel recovery

Fig. 2. Different recovery schemes.

Consider the example shown in Figure 2 where 9 requests are processed on
three servers. The requests are labeled T1 to T9 and there are two backup slots
(i.e., six recovery sections). Suppose that requests T3 and T8 become faulty on
the top server during the third time unit and the bottom server during the
second time unit, respectively. Request T8 is recovered immediately during the
third time unit (R8) and the processing of request T9 is postponed. Therefore,
before using backup slots, there are two requests to be processed/re-processed;
the original request T9 and the recovery request R3.

3.1 Restricted Serial Recovery

The restricted serial recovery scheme limits the re-processing of a faulty request
to the same server. For example, Figure 2a shows that T3 is recovered by R3 on
the top server while T8 is recovered by R8 on the bottom server.

R RR

T9

T1
T4
T7 T8

T5

T2 T3
T6

 33 R 9

9T
T
R
T9R

T1 T2 T
T
RT8

T5T4
T7

3

6

8

3

3

3

R R
R
R

R
T9

T1
T4
T7 T8

T5

T2 T3
T6
R

93

3 9

98

a. Restricted serial recovery b. Parallel recovery c. Adaptive parallel recovery

Fig. 3. The maximum number of faults that can be tolerated by different recovery
schemes in the worst case.

It is easy to see that, with b backup slots, the restricted serial recovery scheme
can only recover from b faults in the worst case (either during primary or backup
execution). For example, as shown in Figure 3a, if there is a fault that causes
request T3 to be faulty during primary execution, we can only tolerate one more
fault in the worst case when the fault causes T3’s recovery, R3, to be faulty. One
additional fault could cause the second recovery RR3 of request T3 to be faulty
and lead to system failure since the recovery of the faulty requests is restricted
to the same server.

3.2 Parallel Recovery

If faulty requests can be re-processed on multiple servers in parallel, we can
allocate multiple recovery sections to recover one faulty request concurrently.
The parallel recovery scheme considers all recovery sections at the beginning of
backup slots and equally allocates them to the remaining requests. For the above

example, there are 6 recovery sections in total and each of the remaining requests
R3 and T9 gets three recovery sections. The schedule is shown in Figure 2b.

Suppose that there are i faults during primary execution and i requests re-
main to be processed/re-processed at the beginning of the backup slots. With b·p
recovery sections in total, each remaining request will get at least b b·p

i c recovery
sections. That is, at most b b·p

i c−1 additional faults can be tolerated. Therefore,
when there are i faults during primary execution, the number of additional faults
during the backup execution that can be tolerated by parallel recovery is:

PR(b, p, i) =
⌊

b · p
i

⌋
− 1 (3)

Let PRb,p represents the maximum number of faults that can be tolerated by p
servers with b backup slots in the worst case. Hence:

PRb,p = min
1≤i≤min{b·p,n·p}

{i + PR(b, p, i)} (4)

Notice that, w (= n·p) is the maximum number of faults that could occur during
the n primary time units. That is, i ≤ n·p. Furthermore, we have i ≤ b·p because
it is not feasible for b·p recovery sections to recover more than b·p faulty requests.
Algebraic manipulations show that the value of PRb,p is obtained when:

i = min
{

n · p,
⌊√

b · p
⌋

+ u
}

. (5)

where u equals 0 or 1 depending on the floor operation in Equation 3. For the
example in Figure 2, we have PR2,3 = 4 when i = 2 (illustrated in Figure 3b) or
i = 3. That is, for the case shown in Figure 3b, two more faults can be tolerated
in the worst case and we can achieve a 4-fault tolerant system. One additional
fault could cause the third recovery section for R3 to be faulty and lead to a
system failure. Notice that, although T9 is processed successfully during the first
backup slot, the other two recovery sections in the second backup slot that are
allocated to T9 can not be used by R3 due to the fixed recovery schedule.

3.3 Adaptive Parallel Recovery

Instead of considering all recovery sections together, we can use one backup slot
at a time and adaptively allocate the recovery sections to improve the perfor-
mance and tolerate more faults. For example, as shown in Figure 2c, we first
use the three recovery sections in the first backup slot to process/re-process the
remaining two requests. The recovery R3 is processed on two servers and re-
quest T9 on one server. If the server that processes T9 happens to encounter a
fault, the recovery R9 can be processed using all recovery sections in the second
backup slot on all three servers, thus allowing two additional faults as shown
in Figure 3c. Therefore, a 5-fault tolerant system is achieved. Compared to the
simple parallel recovery scheme, one more fault could be tolerated.

In general, suppose that there are i requests remaining to be processed/re-
processed before using backup slots. Since there are p recovery sections within

one backup slot, we can use the first backup slot to process up to p remaining
requests. If i > p, the remaining requests and any new faulty requests during
the first backup slot will be processed on the following b − 1 backup slots. If
i ≤ p, requests are processed redundantly using a round-robin scheduler. In
other words, p − i

⌊
p
i

⌋
requests are processed with the redundancy of

⌊
p
i

⌋
+ 1

and the other requests are processed with the redundancy of
⌊

p
i

⌋
.

Assuming that z requests need to be processed/re-processed after the first
backup slot, then the same recovery algorithm that is used in the first backup
slot to process i requests is used in the second backup slot to process z requests;
and the process is repeated for all b backup slots.

With the adaptive parallel recovery scheme, suppose that APRb,p is the worst
case maximum number of faults that can be tolerated using b backup slots on p
servers. We have:

APRb,p = min
1≤i≤min{b·p,n·p}

{i + APR(b, p, i)} (6)

where i is the number of faults during the primary execution and APR(b, p, i) is
the maximum number of additional faults that can be tolerated during b backup
slots in the worst case distribution of the faults.

In Equation 6, APRb,p is calculated by considering different number of faults,
i, occurred in the primary execution and estimating the corresponding number
of faults allowed in the worst case in backup slots, APR(b, p, i), and then taking
the minimum over all values of i. Notice that at most w = n · p faults can
occur during the primary execution of w requests and at most b · p faults can be
recovered with b backup slots. That is i ≤ min{n · p, b · p}. Hence, APR(b, p, i)
can be found iteratively as shown below:

APR(1, p, i) =
⌊p

i

⌋
− 1 (7)

APR(b, p, i) = min
x(i)≤J≤y(i)

{J + APR(b− 1, p, z(i, J))} (8)

When b = 1 (i.e., i ≤ p), Equation 7 says that the maximum number of additional
faults that can be tolerated in the worst case is

⌊
p
i

⌋− 1. That is, one more fault
could cause a recovery failure that leads to a system failure since at least one
request is recovered with redundancy

⌊
p
i

⌋
.

For the case of b > 1, in Equation 8, J is the number of faults during the first
backup slot and z(i, J) is the number of requests that still need to be processed
during the remaining b− 1 backup slots. We search all possible values of J and
the minimum value of J + APR(b − 1, p, z(i, J)) is the worst case maximum
number of additional faults that can be tolerated during b backup slots.

The bounds on J , x(i) and y(i), depend on i, the number of requests that
need to be processed during b backup slots. When i > p, we have enough requests
to be processed and the first backup slot is used to process p requests (each on
one server). When J (0 ≤ J ≤ p) faults happen during the first backup slot and
the total number of requests that remain to be processed during the remaining
b− 1 backup slots is z(i, J) = i− p + J . Since we should have z(i, J) ≤ (b− 1)p,

then J should not be larger than b · p− i. That is, when i > p, we have x(i) = 0,
y(i) = min{p, b · p− i} and z(i, J) = i− p + J .

When i ≤ p, all requests are processed during the first backup slot with
the least redundancy being

⌊
p
i

⌋
. To get the maximum number of faults that

can be tolerated, at least one recovery failure is needed during the first backup
slot such that the remaining b− 1 backup slots can be utilized. Thus, the lower
bound for J , the number of faults during the first backup slot, is x(i) =

⌊
p
i

⌋
.

Therefore,
⌊

p
i

⌋
= x(i) ≤ J ≤ y(i) = p. When there are J faults during the

first backup slot, the maximum number of recovery failures in the worst case is
z(i, J), which is also the number of requests that need to be processed during
the remaining b − 1 backup slots. From the adaptive parallel recovery scheme,
it is not hard to get z(i, J) =

⌊
J

bp/ic
⌋

when
⌊

p
i

⌋ ≤ J ≤ (i − p + ibp
i c)bp

i c and

z(i, J) = (i− p + ibp
i c) +

⌊
J−(i−p+ib p

i c)b p
i c

bp/ic+1

⌋
when (i− p + ibp

i c)bp
i c < J ≤ p.

For the example in Figure 2, applying Equations 7 and 8, we get APR(2, 3, 1) =
5. That is, if there is only one fault during the primary execution, it can tol-
erate up to 5 faults since all 6 recovery sections will be redundant. Similarly,
APR(2, 3, 2) = 3 (illustrated in Figure 3c), APR(2, 3, 3) = 2, APR(2, 3, 4) = 1,
APR(2, 3, 5) = 0 and APR(2, 3, 6) = 0. Thus, from Equation 6, APR2,3 =
min6

i=1{i + APR(2, 3, i)} = 5.

3.4 Arbitrary Number of Requests

We have discussed the case where the number of requests, w, in an interval is a
multiple of p, the number of working servers. Next, we focus on extending the
results to the case where w is not a multiple of p.

Without loss of generality, suppose that w = n · p + d, where n ≥ 1 and
0 < d < p. Thus, processing all requests will need (n + 1) primary time units.
However, the last primary time unit is not fully scheduled with requests. If we
consider the last primary time unit as a backup slot, there will be at least d
requests that need to be processed after finishing the execution in the first n
time units.

Therefore, similar to Equations 3 and 6, the worst case maximum number of
faults that can be tolerated with b backup slots can be obtained as:

PRb+1,p = min
d≤i≤min{w,(b+1)·p}

{i + PR(b + 1, p, i)} (9)

APRb+1,p = min
d≤i≤min{w,(b+1)·p}

{i + APR(b + 1, p, i)} (10)

where i is the number of requests to be processed/re-processed on b + 1 backup
slots. PR(b + 1, p, i) and APR(b + 1, p, i) are defined as in Equations 3 and 8,
respectively. That is, we pretend to have b + 1 backup slots and treat the last d
requests that are not scheduled within the first n time units as faulty requests.
Therefore, the minimum number of faulty requests to be processed/re-processed
is d and the maximum number of faulty requests is min{w, (b+1) ·p}, which are
shown as the range of i in Equations 9 and 10.

3.5 Maximum Number of Tolerated Faults

To illustrate the performance of different recovery schemes, we calculate the
worst case maximum number of faults that can be recovered by p servers with
b backup slots under different recovery schemes. Recall that, for the restricted
serial recovery scheme, the number of faults that can be tolerated in the worst
case is the number of available backup slots b and is independent of the number
of servers that work in parallel.

Table 1. The worst case maximum number of faults that can be tolerated by p servers
with b backup slots.

b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

p = 4 parallel 3 4 6 7 8 8 9 10 11 11 12 12 13 14 14 16
adaptive 3 6 10 14 18 22 26 30 34 38 42 46 50 54 58 78

p = 8 parallel 4 7 8 10 11 12 14 15 16 16 17 18 19 20 20 24
adaptive 4 10 17 24 31 39 47 55 63 71 79 87 95 103 111 151

Assuming that the number of requests w is a multiple of p and is more
than the number of available recovery sections, Table 1 gives the worst case
maximum number of faults that can be tolerated by a given number of servers
with different numbers of backup slots under the parallel and adaptive parallel
recovery schemes. From the table, we can see that the number of faults that
can be tolerated by the parallel recovery scheme may be less than what can
be tolerated by the restricted serial recovery scheme. For example, with p = 4,
restricted serial recovery scheme can tolerated 15 and 20 faults when b = 15 and
b = 20, respectively. However, parallel recovery can only tolerate 14 and 16 faults
respectively. The reason comes from the unwise decision of fixing allocation of all
recovery slots, especially for larger number of backup slots. When the number of
backup slots equals 1, the two parallel recovery schemes have the same behavior
and can tolerate the same number of faults.

From Table 1, we can also see that the adaptive parallel recovery scheme is
much more efficient than the restricted serial recovery and the simple parallel
recovery schemes, especially for higher levels of parallelism and larger number of
backup slots. Interestingly, for the adaptive parallel recovery scheme, the number
of faults that can be tolerated by p servers increases linearly with the number
of backup slots b when b is greater than a certain value that depends on p. For
example, with p = 8, after b is greater than 5, the number of faults that can
be tolerated using adaptive parallel recovery scheme increases by 8 when b is
incremented. However, for p = 4, when b > 2, the number of faults increases by
4 when b is incremented.

4 Optimal Number of Active Servers

In what follows, we consider two optimization problems. First, for a given per-
formability goal (e.g., k-fault tolerance), what is the optimal number of active
servers needed to minimize system energy consumption? Second, for a limited

energy budget, what is the optimal number of active servers needed to maximize
system performability (e.g., in terms of number of faults to be tolerated)? In
either case, we assume that the number of available servers is M and that after
determining the optimal number of servers p, the remaining M − p servers are
turned off to save energy.

4.1 Minimize Energy with Fixed Performability Goal

To achieve a k-fault tolerant system, we may use different number of servers that
consume different amount of energy. In the last section we have shown how to
compute the maximum number of faults, k, that can be tolerated by p servers
with b backup slots in the worst case. Here, we use the same analysis for the
inverse problem. That is, finding the least number of backup slots, b, needed by
p servers to tolerate k faults.

For a given recovery scheme, let b be the number of backup slots needed
by p servers (p ≤ M) to guarantee that any k faults can be tolerated. If b is
more than the available slack units (i.e., b > D −

⌈
w
p

⌉
), it is not feasible for

p servers to tolerate k faults during the processing of all requests within the
interval considered. Suppose that b ≤ D −

⌈
w
p

⌉
, the amount of remaining slack

time on each server is slack = D−
⌈

w
p

⌉
− b. Expecting that no faults will occur

(i.e., being optimistic), the slack can be used to scale down the primary execution
of requests while the recoveries are executed at the maximum frequency fmax if
needed. Alternatively, expecting that all faults will occur (i.e., being pessimistic),
we can use the slack to scale down the primary execution as well as all recovery
execution to minimize the expected energy consumption.

Expecting that ke (≤ k) faults will occur (i.e., ke-pessimism) and assuming
that be (≤ b) is the least number of backup slots needed to tolerate ke faults,
the slack time is used to scale down the primary execution as well as the re-
covery execution during the first be backup slots. The recovery execution during
the remaining backup slots is executed at the maximum frequency fmax if more
than ke faults occur. Here, optimistic analysis corresponds to ke = 0 and pes-
simistic analysis corresponds to ke = k. Thus, the ke-pessimism expected energy
consumption is:

E(ke) = p ·
[
PsD + (Pind + Ceffm(ke))

dw/pe+ be

f(ke)

]
(11)

where

f(ke) = min
{ dw/pe+ be

D − (b− be)
, fee

}
(12)

(13)

is the frequency to process all original requests and the recovery requests during
the first be backup slots. Recall that fee is the minimum energy efficient frequency
(see Section 2).

Searching through all feasible number of servers, we can get the optimal
number of servers to minimize the expected energy consumption while tolerating
k faults during the processing of all requests within the interval of D. Notice that,
finding the least number of backup slots b to tolerate k faults has a complexity
of O(k) and checking the feasibility of all possible numbers of servers has a
complexity of O(M). Therefore, the complexity of finding the optimal number
of servers to minimize the expected energy consumption is O(kM).

4.2 Maximize Performability with Fixed Energy Budget

When the energy budget is limited, we may not be able to power up all M
servers at the maximum frequency. The more servers are employed, the lower
the frequency at which the servers can run. Different numbers of active servers
will run at different frequencies and thus lead to different maximum number of
faults that can be tolerated within the interval considered. In this section, we
consider the optimal number of servers to maximize the number of faults that
can be tolerated with fixed energy budget.

Notice that, from the power model discussed in Section 2, it is the most
energy efficient to scale down all the employed servers uniformly within the
interval. With the length of the interval considered being D and with limited
energy budget, Ebudget, the maximum power level that a system can consume is:

Pbudget =
Ebudget

D
(14)

For active servers, the minimum power level is obtained when every server
runs at the minimum energy efficient frequency fee. Thus, the minimum power
level for p servers is:

Pmin(p) = p(Ps + Pind + Ceffm
ee) = p(α + β + κm)Pmax

d (15)

If Pmin(p) > Pbudget, p servers are not feasible in terms of power consumption.
Suppose that Pmin(p) ≤ Pbudget, which means that the servers may run at a
higher frequency than fee. Assuming that the frequency is fbudget(p), we have:

fbudget(p) = m

√
Pbudget

p · Pmax
d

− α− β (16)

The total time needed for executing all requests at frequency fbudget(p) is:

tprimary =
dw/pe

fbudget(p)
(17)

If tprimary > D, p servers cannot finish processing all requests within the
interval considered under the energy budget. Suppose that tprimary ≤ D. We
have D − tprimary units of slack time and the number of backup slots that can
be scheduled at frequency fbudget(p) is:

bbudget(p) = (D − tprimary)fbudget(p) = D · fbudget(p)−
⌈

w

p

⌉
(18)

From Section 3, the worst case maximum number of faults that can be tol-
erated by p servers using restricted recovery scheme is bbudget(p). For parallel
recovery schemes, from Equations 9 and 10, the maximum number of faults that
can be tolerated within the interval considered is either PRp,bbudget(p) (for the
parallel recovery scheme) or APRp,bbudget(p) (for the adaptive parallel recovery
scheme).

For a given recovery scheme, by searching all feasible numbers of servers, we
can get the optimal number of servers that maximizes the worst case maximum
number of faults to be tolerated within the interval D.

5 Analytical Results and Discussion

Generally, the exponent m for frequency-dependent power is between 2 and 3
[2]. We use m = 3 in our analysis. The maximum frequency is assumed to be
fmax = 1 and the maximum frequency-dependent power is Pmax

d = Ceffm
max =

1. Considering that processor and memory power can be reduced by up to 98%
of their active power when hibernating [4, 12], the values of α and β are assumed
to be 0.1 and 0.3 respectively. These values are justified by observing that the
Intel Pentium M processor consumes 25W peak power with sleep power around
1W [4] and a RAMBUS memory chip consumes 300mW active power with sleep
power of 3mW [17].

In our analysis, we focus on varying the size of requests, request arrival rate
(i.e., system load), the number of faults to be tolerated (k) and the recovery
schemes to see how they affect the optimal number of active servers. We consider
a system that consists of 6 servers. The interval considered is 1 second (i.e., worst
case response time is 2 seconds) and three different request sizes are considered:
1ms, 10ms and 50ms. The number of expected faults is assumed to be ke = bk

2 c.

5.1 Optimal Number of Servers for Energy Minimization

Define system load as the ratio of the total number of requests arrived in one
interval over the number of requests that can be handled by one server within
one interval. With 6 servers, the maximum system load that can be handled is
6. To get enough slack for illustrating the variation of the optimal number of
servers, we consider a system load of 2.6. Recall that the interval considered is
1 second, different request arrival rates are used for different request sizes to
obtain the system load of 2.6.

The left figures in Figure 4abc show the optimal number of active servers
used (the remaining servers are turned off for energy efficiency) to tolerate a
given number of faults, k, under different recovery schemes. The two numbers in
the legends stand for request size and request arrival rate (in terms of number of
requests per second), respectively. From the figure, we can see that the optimal
number of servers generally increases with the number of faults to be tolerated.
However, due to the effect of sleep power, the optimal number of servers does
not increase monotonically when the number of faults to be tolerated increases,
especially for the case of large request size where more slack time is needed as

temporal redundancy for the same number of backup slots. Moreover, for the
case of request size being 50ms, restricted serial recovery can only tolerate 12
faults and parallel recovery can tolerate 13 faults within the interval considered,
while adaptive parallel recovery can tolerate at least 15 faults.

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14

op
tim

al
 a

ct
iv

e
se

rv
er

s

k:number of faults

(1ms, 2600)
(10ms, 260)
(50ms, 52)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

a. Restricted serial recovery

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14

op
tim

al
 a

ct
iv

e
se

rv
er

s

k:number of faults

(1ms, 2600)
(10ms, 260)
(50ms, 52)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

b. Parallel recovery

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14

op
tim

al
 a

ct
iv

e
se

rv
er

s

k:number of faults

(1ms, 2600)
(10ms, 260)
(50ms, 52)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

c. Adaptive parallel recovery

Fig. 4. The optimal number of active servers and the corresponding expected minimum
energy consumption.

The right figures in Figure 4abc show the corresponding expected energy
consumption when the optimal number of servers are employed. Recall that the
normalized power is used. For each server, the maximum frequency-dependent
power is Pmax

d = 1, sleep power is Ps = 0.1 and frequency-independent power
is Pind = 0.3. From the figure, we can see that, when the request size is 1ms,
the minimum expected energy consumption is almost the same for different
numbers of faults to be tolerated. The reason is that, to tolerate up to 15 faults,
the amount of slack time used by the backup slots is almost negligible and the

amount of slack time used for energy management is more or less the same when
each backup slot is only 1ms. However, when the request size is 50ms, the size
of one backup slot is also 50ms and the minimum expected energy consumption
increases significantly when the number of faults to be tolerated increases. This
comes from the fact that each additional backup slot needs relatively more slack
time and less slack is left for energy management when the number of faults
to be tolerated increases. Compared with restricted serial recovery and parallel
recovery, to tolerate the same number of faults, the adaptive parallel recovery
scheme needs fewer backup slots and leaves more slack for energy management.
From the figure, we can also see that the adaptive parallel recovery scheme
consumes the least amount of energy, especially for larger requests.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ex
pe

ct
ed

 e
ne

rg
y

system load

k=16
k=8
k=4

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ex
pe

ct
ed

 e
ne

rg
y

system load

k=16
k=8
k=4

a. 1ms b. 10ms

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ex
pe

ct
ed

 e
ne

rg
y

system load

k=16
k=8
k=4

c. 50ms

Fig. 5. The minimum expected energy consumption under different system load for
different request sizes to tolerate given numbers of faults. The adaptive parallel recovery
scheme is used and ke = k

2
.

For different sizes of requests under adaptive parallel recovery scheme, Fig-
ure 5 further shows the expected energy consumption to tolerate given numbers
of faults under different system loads. For different request sizes, different re-
quest arrival rates are used to obtain a certain system load. When system load
increases, more requests need to be processed within one interval and the ex-
pected energy consumption to tolerate given numbers (e.g., 4, 8 and 16) of faults
increases. As before, when the request size is 1ms, the expected energy consump-
tion is almost the same to tolerate 4, 8 or 16 faults within the interval of 1 second.
The difference in the expected energy consumption increases for larger size of
requests.

5.2 Optimal Number of Servers for Performability Maximization

Assume that the maximum power, Pmax, corresponds to running all servers with
the maximum processing frequency fmax. When the energy budget for each inter-
val is limited, we can only consume a fraction of Pmax when processing requests
during a given interval. For different energy budgets (i.e., different fraction of
Pmax), Figure 6 shows the worst case maximum number of faults that can be
tolerated when the optimal number of active servers are used. The optimal num-
ber of active servers increases when energy budget increases but we did not show
the results due to space limitation. Here, we consider fixed system load of 2.6.
From the figure, we can see that the number of faults that can be tolerated
increases with increased energy budget. When the request size increases, there
are less available backup slots due to the large slot size and fewer faults can be
tolerated. When the number of backup slots is very large (e.g., for the case of
10ms with 260 requests/second), the same as shown in Section 3, parallel re-
covery performs worse than restricted serial recovery. Adaptive parallel recovery
performs the best and can tolerate many more faults than the other two recovery
schemes at the expense of more complex management of backup slots.

 0

 50

 100

 150

 200

 250

 300

 350

 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

im
um

 f
au

lts

energy budget

adaptive
parallel

serial

 0

 10

 20

 30

 40

 50

 60

 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

im
um

 f
au

lts

energy budget

adaptive
parallel

serial

a. 10ms and 260 requests/second b. 50ms and 52 requests/second

Fig. 6. The worst case maximum number of faults that can be tolerated with limited
energy budget for different sizes of requests.

6 Conclusions

In this work, we consider an event-driven application and a system that consists
of a fixed number of servers. To efficiently use slack time as temporal redundancy
for providing reliable service, we first propose an adaptive scheme that recovers
requests from faults in parallel. Furthermore, we show that this scheme leads to
higher reliability than serial or non-adaptive parallel recovery schemes.

Assuming self-detection mechanisms in each server, we consider two problems
that exhibit trade-offs between energy consumption and system performability.

The first problem is to determine the optimal number of servers that minimizes
the expected energy consumption while guaranteeing k-fault tolerance. The sec-
ond problem is to maximize the number of faults that can be tolerated with
limited energy budget. As expected, our analysis results show that more energy
is needed if more faults are to be tolerated. Due to static power consumption
in servers, the optimal number of servers needed for k-fault tolerance does not
increase monotonically when the number of faults to be tolerated increases.
For the same number of faults, large requests will need more slack for recovery
and thus is expected to consume more energy. Parallel recovery schemes with a
fixed recovery schedule may perform worse than serial recovery. However, adding
adaptivity to the parallel recovery process requires less slack to tolerate a given
number of faults, leaving more slack for energy management and thus results in
less energy being consumed.

When self-detection mechanisms are not available in the system considered,
we can further combine modular redundancy and parallel recovery to obtain
reliable service. In our future work, we will explore the optimal combination of
modular redundancy and parallel recovery to minimize energy consumption for
a given performability goal or to maximize performability for a given energy
budget.

References

1. P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and
R. Rajamony. The case for power management in web servers, chapter 1. Power
Aware Computing. Plenum/Kluwer Publishers, 2002.

2. T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design. In
Proc. of The HICSS Conference, Jan. 1995.

3. X. Castillo, S. McConnel, and D. Siewiorek. Derivation and calibration of a tran-
sient error reliability model. IEEE Trans. on computers, 31(7):658–671, 1982.

4. Intel Corp. Mobile pentium iii processor-m datasheet. Order Number: 298340-002,
Oct 2001.

5. E. (Mootaz) Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clus-
ters. In Proc. of Power Aware Computing Systems, 2002.

6. E. (Mootaz) Elnozahy, R. Melhem, and D. Mossé. Energy-efficient duplex and tmr
real-time systems. In Proc. of The IEEE Real-Time Systems Symposium, 2002.

7. http://developer.intel.com/design/intelxscale/.
8. http://www.transmeta.com.
9. T. Ishihara and H. Yauura. Voltage scheduling problem for dynamically variable

voltage processors. In Proc. of The 1998 International Symposium on Low Power
Electronics and Design, Aug. 1998.

10. K. M. Kavi, H. Y. Youn, and B. Shirazi. A performability model for soft real-
time systems. In Proc. of the Hawaii International Conference on System Sciences
(HICSS), Jan. 1994.

11. R. Koo and S. Toueg. Checkpointing and rollback recovery for distributed systems.
IEEE Trans. on Software Engineering, 13(1):23–31, 1987.

12. A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation. In
Proc. of the 9th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Nov. 2000.

13. H. Lee, H. Shin, and S. Min. Worst case timing requirement of real-time tasks with
time redundancy. In Proc. of Real-Time Computing Systems and Applications,
1999.

14. C. Lefurgy, K. Rajamani, Freeman Rawson, W. Felter, M. Kistler, and T. W.
Keller. Energy management for commercial servers. IEEE Computer, 36(12):39–
48, 2003.

15. R. Melhem, D. Mossé, and E. (Mootaz) Elnozahy. The interplay of power man-
agement and fault recovery in real-time systems. IEEE Trans. on Computers,
53(2):217–231, 2004.

16. D. K. Pradhan. Fault Tolerance Computing: Theory and Techniques. Prentice Hall,
1986.

17. Rambus. Rdram. http://www.rambus.com/, 1999.
18. K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast: Frequency-aware

static timing analysis. In Proc. of the IEEE Real-Time System Symposium, 2003.
19. V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Power-aware

qos management in web servers. In Proc. of the 24th IEEE Real-Time System
Symposium, Dec. 2003.

20. K. G. Shin and H. Kim. A time redundancy approach to tmr failures using fault-
state likelihoods. IEEE Trans. on Computers, 43(10):1151 – 1162, 1994.

21. A. Sinha and A. P. Chandrakasan. Jouletrack - a web based tool for software
energy profiling. In Proc. of Design Automation Conference, Jun 2001.

22. S. Thompson, P. Packan, and M. Bohr. Mos scaling: Transistor challenges for the
21st century. Intel Technology Journal, Q3, 1998.

23. O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware software-based
fault tolerance in real-time systems. In Proc. of The International Symposium on
Low Power Electronics Design (ISLPED), Aug. 2002.

24. M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu
energy. In Proc. of The First USENIX Symposium on Operating Systems Design
and Implementation, Nov. 1994.

25. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In
Proc. of The 36th Annual Symposium on Foundations of Computer Science, 1995.

26. Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in embedded
real-time systems. In Proc. of IEEE/ACM Design, Automation and Test in Europe
Conference(DATE), 2003.

27. Y. Zhang and K. Chakrabarty. Task feasibility analysis and dynamic voltage scaling
in fault-tolerant real-time embedded systems. In Proc. of IEEE/ACM Design,
Automation and Test in Europe Conference(DATE), 2004.

28. D. Zhu, R. Melhem, D. Mossé, and E.(Mootaz) Elnozahy. Analysis of an energy
efficient optimistic tmr scheme. In Proc. of the 10th International Conference on
Parallel and Distributed Systems (ICPADS), Jul. 2004.

