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ABSTRACT

While Dynamic Voltage Scaling (DVS) remains as a pop-
ular energy management technique for real-time embedded
applications, recent research has identified significant and
negative impact of voltage scaling on system reliability. For
this reason, a number of reliability-aware power manage-
ment (RA-PM) schemes were recently proposed to preserve
the system reliability when DVS is used. In this paper, we
propose a new approach, called the shared recovery (SHR)
technique, to minimize the system-level energy consumption
while still preserving the system’s original reliability. The
main idea of the SHR technique is to avoid the offline al-
location of separate recovery tasks to the scaled tasks by
assigning a global/shared recovery block that can be used
by any task at run-time. Our simulation results show that,
compared to the existing RA-PM schemes, our scheme can
achieve up to 35% energy savings. Further, this performance
is shown to be comparable to the maximum energy savings
that can be achieved by any algorithm. Interestingly, our ex-
tensive evaluation indicates that SHR offers also non-trivial
gains over the previous algorithms on the reliability side.
Further, a dynamic extension is proposed to improve energy
and reliability management at run-time by reducing the size
of the recovery block and re-using the slack that arises from
early completions.

Categories and Subject Descriptors

H.4.1 [Operating Systems]: Process Management—Schedul-
ing ; D.4.7 [Operating Systems]: Organization and De-
sign—Real-time systems and embedded systems

General Terms

Algorithms, Performance
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1. INTRODUCTION

Dynamic voltage scaling (DVS) [19,20] is one of the most
important energy management techniques for computing sys-
tems with limited power. DVS achieves energy savings by
scaling down the CPU supply voltage and frequency at run-
time. Recently, many research studies explored the use of
DVS to minimize energy consumption while meeting the ap-
plications’ performance requirements, in particular for real-
time embedded systems [3,6, 13,15,17,18,27].

In another front, the transient faults that can occur at
run-time have attracted the attention of the researchers for
decades [5, 11], leading to the design of several fault toler-
ance solutions for safety-critical systems [16]. Further, re-
cent research reported significant reliability degradation for
systems that use the DVS feature [8,25]. In fact, the proba-
bility of failure for an application executed at low voltage and
processing frequency levels can increase by several orders of
magnitude [8,25,26]. As a result, a number of recent research
articles promoted the so-called reliability-aware power man-
agement (RA-PM) framework, where the aim is to minimize
the system-wide energy consumption through DVS while
maintaining the original system reliability.

The central idea behind RA-PM is to schedule a recovery
task that may be invoked at run-time, in case that the ap-
plication, whose execution frequency is scaled down through
DVS, incurs a transient fault [22]. Specifically, when a tran-
sient fault is detected at the end of task execution, a recov-
ery takes place in the form of re-execution at the maximum
frequency before the task deadline. Based on this princi-
ple, several schemes are proposed for frame-based [23] and
general periodic [24] tasks. A main feature of the existing
RA-PM schemes is that the algorithms first reserve some
portion of the system slack (CPU time) for potential re-
covery of the tasks that may be subject to transient faults
when executed with voltage scaling. Only then, the remain-
ing slack is used to determine the task-level low processing
frequencies for energy management.

This research effort is motivated by the observation that
the existing RA-PM schemes are conservative, in the sense
that statically allocating the available slack for multiple re-
covery blocks of a pre-determined set of tasks reduces the
prospects for energy savings by decreasing the available slack
for DVS. Instead, our novel solution is based on allocating
a shared recovery block/slack that can be used by any
faulty task at run-time. This, in turn, improves energy sav-
ings.

To illustrate this point, we present a concrete example.
Consider a frame-based real-time application that consists of
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Figure 1: The motivational example

five tasks and a common period/deadline of 13. The worst-
case execution times of T1, T2, T3 and T5 under maximum
frequency are given as 1 time unit each, while that of T4

is 2. As can be seen in Figure 1(a), the system potentially
has access to 13 − 6 = 7 units of slack when all tasks exe-
cute at the maximum frequency. If we consider one of the
existing RA-PM schemes (e.g. the greedy (GRE) scheme
proposed in [23]), three separate recovery tasks (denoted by
{Bi}) will be statically allocated to T1, T2 and T3, leaving
4 units of total slack for voltage scaling of these three tasks
and yielding the RA-PM schedule depicted in Figure 1(b).
Applying the power model from [23] indicates that the en-
ergy consumption of the GRE solution is 0.74 · E where E

is the energy consumed when all tasks run at the maximum
frequency (no power management (NPM) case). It can be
also shown that since all tasks that are scaled down have
recovery tasks, each task’s reliability is no worse than the
one in the NPM case (Figure 1(a)). One may further ver-
ify that the system reliability, which is the product of the
individual task reliabilities [23,24], actually improves in the
GRE solution to a level of 99.99998% when using the fault
rate model from [23].

On the other hand, our solution in this paper is based
on assigning a shared recovery block that can be used for
any fault detected in any scaled task. That is, instead of
reserving slack for separate recovery tasks in advance, our
new scheme (called shared recovery (SHR) scheme) will only
provision for any single recovery that may be needed at run-
time. The amount of CPU time reserved for this recovery
will be set to that of the largest recovery/re-execution time
that may be needed for any scaled task. Just like the orig-
inal RA-PM schemes [22, 26], we assume that the recovery,
if needed, will take place at the maximum frequency. As
a result, with the new SHR scheme, the system will typi-
cally have access to a larger slack for slowdown and energy
savings, after the CPU time reservation for the shared re-
covery. Re-visiting the motivational example, we note that
the SHR scheme will reserve a recovery slack of only 2 time
units, which is the maximum needed by any recovery. This
essentially gives the system an opportunity to use 5 units
of slack for, and further, manage all the five tasks through,
DVS. It can be verified that the SHR solution given in Fig-
ure 1(c) will result in an energy consumption of 0.51 ·E, an
improvement of 31% over the traditional GRE scheme.

Obviously, another important objective is still to preserve
the original system reliability. It is clear that as long as
faults do not occur, each scaled task will have access to a
recovery slack that is large enough for re-execution at its
dispatch time, in our scheme. However, one can see that af-
ter a fault occurs and the shared recovery block has been

executed, if all the remaining tasks are still executed at
the originally-computed reduced frequency levels, their task-
level reliability will not be preserved. For this reason, our
SHR scheme switches to the maximum CPU frequency until
(and only until) the end of the frame/period for the remain-
ing tasks once a recovery takes place. In fact, in Section
2.3, we will formally prove that the SHR scheme preserves
the system’s original reliability by maintaining the task-level
reliability.

Figure 1(d) shows a scenario where the shared recovery is
dynamically allocated to the re-execution of T4 at fmax after
the detection of a transient fault in this task. As a result,
T5 is executed at the maximum frequency. Interestingly, in
this example, the reliability achieved by SHR (computed as
99.999999%) turns out to be even better than that of GRE.
This is essentially due to the fact that the GRE schedule
in Figure 1(b) could not allocate any recovery tasks for T4

and T5, whereas SHR improved reliability for all the tasks
through the shared recovery. While it is true that the GRE
solution can recover from some multiple-fault scenarios (af-
fecting, for example, T1 and T2), an important system design
principle is to optimize more common cases. In our exam-
ple, covering all single-fault scenarios turns out to be more
important than covering some multiple-fault scenarios that
can occur with very low probability. Our simulation results
will further confirm this trend.

Our proposal also includes a dynamic extension to our
base SHR scheme, that adjusts the size of the shared re-
covery and processing frequencies at run-time, by taking
into account the early completions as well as large tasks
that complete successfully without a fault at run-time. Our
extensive experimental evaluation indicates our scheme of-
fers not only significant energy gains over existing RA-PM
schemes, but a markedly close performance to optimal (but
reliability-oblivious) DVS schemes that reserve the entire
slack for slow-down.

2. SYSTEM MODELS

2.1 Application Model
We consider a real-time embedded application that con-

sists of a set Γ of n independent tasks T1, T2, . . . , Tn. All
the tasks have the common deadline D, which also corre-
sponds to the period (or, frame) for periodic applications.
Each task Ti is characterized by its worst case number of
execution cycles ci.

We consider a system with DVS capability where the clock
frequency can vary from a minimum available frequency
fmin to a maximum frequency fmax (normalized to 1.0).
The execution time of task Ti under the frequency fi is given



by ci

fi
. As a result, for task Ti, ci can also be viewed as its

worst-case execution time when it is executed at the maxi-
mum speed fmax = 1.

2.2 Power and Energy Model
DVS exploits the fact that there is an almost linear rela-

tionship between the supply voltage and operating frequency
[4], and the supply voltage is reduced alongside the process-
ing frequency [14]. In this paper, we focus on DVS technique
and adopt the system-level power model proposed in [25] and
subsequently used in prior RA-PM research [22–24]. Hence,
the system power consumption P is given by:

P = Ps + ~(Pind + Pd) = Ps + ~(Pind + Ceff
m) (1)

Here Ps is the static power, which includes the power to
maintain basic circuits, and keep the clock running and
the memory in sleep modes [9]. It can be removed only
by powering off the whole system. Pind is the frequency-
independent active power and Pd is the frequency-dependent
active power. Pind is a constant independent of processing
frequencies (i.e. the power consumed by off-chip devices such
as main memory and external devices) and can be efficiently
removed by putting systems into sleep states [1,4]. As tasks
may use different off-chip devices, in general, Pind may show
some variation from task to task. Pd is the power mainly
consumed by the CPU, in addition to any power that de-
pends on the frequencies [4]. ~ represents system states and
indicates whether active powers are currently consumed in
the system. Specifically, when the system is active, ~ = 1;
otherwise, the system is in sleep modes or turned off and ~ =
0. The effective switching capacitance Cef and the dynamic
power exponent m (which is, in general, no smaller than
2) are system-dependent constants and f is the processing
frequency.

Since there exists an excessive overhead associated with
turning on/off a system [7], we assume that the system is
always active while our periodic application is running. As
Ps is not manageable, we will ignore the sleep power Ps and
concentrate on the frequency-independent active power Pind

and frequency-dependent active power Pd in our analysis.
Consequently, the overall energy consumption expression

for a task with execution cycles c at the frequency f can
be obtained by considering both the frequency-independent
and frequency-dependent power components as in [22]:

E(f) = (Pind + Ceff
m) ·

c

f
= Pind ·

c

f
+ Cef · c · fm−1 (2)

Although DVS can reduce energy consumption because
of the reduced frequency-dependent active power Pd at re-
duced processing frequencies, the application will take more
time to complete at low frequencies. As a result, more en-
ergy may be consumed because of the prolonged device ac-
tive times (due to frequency-independent active power Pind).
Therefore, considering the system-level power, lower fre-
quencies may not be always best for energy savings and it
is shown that there exists a minimum energy-efficient volt-
age/frequency pair [9, 13, 27]. In [26], the energy-efficient
frequency for our power model is given as:

fee = m

√

Pind

(m − 1)Cef

(3)

Hence, it is not energy-efficient to run any task at a fre-
quency below fee even when the timing constraints allow;

doing otherwise would result in higher energy consumption.
In fact, if fee exceeds the maximum available frequency level
fmax, then the system should not reduce its speed below
fmax [2].

2.3 Fault and Reliability Models
During the execution of an application, a fault may occur

due to various reasons, such as hardware failure, software
errors and the effect of electromagnetic interference and cos-
mic ray radiations. Since transient faults occur much more
frequently than permanent faults [5, 11, 12], in this paper,
we focus on transient faults, especially the ones caused by
cosmic ray radiations and electromagnetic interference.

Traditionally, transient faults have been modeled by Pois-
son distributions with the average arrival rate λ [21]. How-
ever, considering the effects of voltage scaling on transient
faults [8, 25], the average rate λ will depend on system pro-
cessing frequency and supply voltage. In our analysis and
simulations, we focus on the exponential fault rate model
proposed in [25] and again used in prior RA-PM research
[22–25]:

λ(f) = λ0 10
d(1−f)
1−fmin (4)

where the exponent d (> 0) is a constant, indicating the
sensitivity of fault rates to voltage scaling, while λ0 is the
average fault rate corresponding to the maximum frequency
fmax = 1 (and supply voltage Vmax). That is, reducing the
supply voltage and frequency for energy savings results in
exponentially increased fault rates. The maximum average
fault rate is assumed to be λmax = λ010d, which corresponds
to the lowest frequency fmin (and the supply voltage Vmin).

The reliability of a task is defined as the probability of
completing the task successfully (i.e. without encountering
errors triggered by transient faults) [22, 23, 25]. Assuming
that the transient faults follow a Poisson distribution, the
reliability of the task Ti with the worst-case number of cycles
ci at the frequency level fi is [25]:

Ri(fi) = e
−λ(fi)·

ci
fi

where λ(fi) is defined as in (4). The system’s original reli-
ability is the one observed when the voltage and frequency
scaling is disabled (i.e when each task executes at the maxi-
mum frequency level fmax) [22–24,26]. The overall reliabil-
ity of a real-time system depends on the correct execution of
all tasks in the application [26]. As a result, for n indepen-
dent tasks in our application model, the system original reli-
ability is given as

∏n

i=1 R0
i , where R0

i = Ri(fmax) = e−λ0ci

represents the original reliability of Ti (also called original
task-level reliability). Note that if a scheme maintains all
the original task-level reliabilities, the system’s original re-
liability will be automatically preserved.

Problem Description. In this work, our objective is to
minimize the system energy consumption as much as pos-
sible for multiple frame-based tasks through DVS while still
preserving system original reliability and meeting the dead-
line constraints. In what follows, we present the details of
our new RA-PM scheme, which offers significant advantages
over existing schemes. In accordance with the prior RA-PM
research [22–26], we assume that the recovery takes the form
of re-execution and is executed at the maximum frequency
when a fault is detected.



3. THE SHARED RECOVERY TECHNIQUE

The reliability-aware power management (RA-PM) frame-
work is based on maintaining the original reliability of the
real-time embedded application even in DVS settings. The
existing schemes [22–24, 26] achieve this objective by allo-
cating, in the offline analysis phase, a separate recovery task
with any task that will be executed through voltage and fre-
quency scaling. However, both the recovery and DVS mech-
anisms essentially compete for the available system slack.
Our novel solution is motivated by the observation that such
an explicit, static and separate recovery task allocation in
the offline phase severely limits the slow-down opportunities.
In fact, to maintain the task-level reliabilities, it is sufficient
to ensure that, at the dispatch time of any scaled task Ti,
there will be sufficient time to execute a recovery in case
that Ti incurs a transient fault. Moreover, the system can
even reserve the CPU time only for a shared recovery block
that may be used by any task if need arises: since transient
fault probabilities are typically low, any CPU time reserved
but not needed for the recovery can be immediately be made
available to the use of the next scaled task. Consequently,
the SHR scheme has the potential of maximizing the slack
available for DVS while still maintaining the system relia-
bility.

It is, however, important to determine the size of the CPU
time reserved for the shared recovery carefully. Let us define
the available system slack as L = D −

∑n

i=1 ci. Observe
that any task Tj where cj ≥ L cannot be managed by any
RA-PM solution, since there is simply no sufficient slack for
possible recovery, should Tj be scaled and subsequently fail.
As a result, only the tasks in Γ1 = {Ti | ci < L} will be
managed through DVS. Further, the shared recovery should
be large enough to allow the re-execution of any scaled task,
suggesting that α = max{ci |Ti ∈ Γ1} units of CPU time
should be reserved. Now, the problem of determining the
processing frequency assignments for the managed tasks to
minimize the energy consumption can be formulated as a
convex program:

minimize
∑

Tj∈Γ1

Ej(fj) (5)

subject to:
∑

Tj∈Γ1

cj

fj

+
∑

Ti∈ (Γ−Γ1)

ci + α ≤ D (6)

fmin ≤ fj ≤ fmax(∀j : Tj ∈ Γ1) (7)

where the inequality (6) encodes the deadline constraint and
(7) gives the available speed constraints. Since

∑

(ci)+α in
(6) is a constant, this problem can be seen to be an instance
of the system-wide energy optimization problem that can
be solved in polynomial-time (for example, in time O(n3) by
the algorithm given in [2]). The offline frequency assignment
phase of the SHR scheme can be found in Figure 2.

The online operation of SHR is relatively simple and pre-
sented in Figure 2 as well. The tasks are executed at the pre-
computed and optimal frequency levels as long as transient
faults do not occur. Once a fault has been detected, the re-
covery is executed at fmax. Then, since the shared recovery
slack may be partially or fully used for the current period,
our scheme simply disables voltage scaling and executes all
the remaining tasks at fmax until the next frame (period)
boundary. Not only does this have only a minimal impact
on the expected energy savings (because the transient faults

Offline Phase:
1. Compute the available slack L = D −

∑n

i=1 ci;
2. Determine Γ1 = {Ti|ci < L};
3. Compute the optimal frequency assignments f∗

i for
all tasks Ti ∈ Γ1, by solving the non-linear optimization
problem given by (5), (6) and (7);
4. Set f∗

i = fmax for tasks Ti ∈ (Γ − Γ1).

Online Phase:
1. At every frame (period) boundary: set flag = true ;
2. At dispatch time of task Ti:
. - If (flag = true) set the CPU frequency to f∗

i

. else set the CPU frequency to fmax;
3. At completion time of task Ti with fi < fmax:
. - Check whether a transient fault has occurred
. - If the fault is detected, execute its recovery
. with fmax and set flag = false.

Figure 2: Steps of the SHR scheme

occur rarely), but also, as we formally show below, makes
sure that no task reliability is worse than its original reliabil-
ity level (when executed without voltage scaling). One can
easily verify that the online overhead of SHR is minimal.

Before formally proving the reliability-preserving feature
of SHR, we recall from [26] that the overall reliability of a
task Ti executed at frequency fi < fmax is given by:

Ri(fi) + (1 − Ri(fi)) · Ri(fmax) (8)

when a recovery task of size ci is guaranteed to execute
at fmax in case of a transient fault incurred by Ti. The
first term in (8) is the probability that the main scaled task
will complete successfully. The second term captures the
probability that the recovery executed at fmax will succeed
when the main task fails (which can occur with probability
(1 − Ri(fi)).

Lemma 1. The SHR scheme preserves the system’s orig-
inal reliability in every period.

Proof. We will prove the statement by showing that
SHR preserves the original reliability of each task individu-
ally, in each period. Consider the first task T1 executed by
SHR. If f1 = fmax, its reliability is exactly R0

1 = R1(fmax),
hence no reliability degradation occurs. On the other hand if
f1 < fmax, its reliability is given by (8) since SHR must have
assigned a shared recovery of size at least ci. But the expres-
sion (8) is guaranteed to be greater than Ri(fmax) = R0

1 [26],
implying that T1’s reliability does not decrease.

For the second task T2, if T1 fails and the shared recovery
slack is used, T2 and all the remaining tasks are executed at
fmax until the period boundary, which maintains the original
reliability of the entire application during that period. Oth-
erwise, if T1 does not fail, the recovery slack is not used and
the same argument can be repeated for T2 to demonstrate
that a large enough recovery slack will preserve its reliability
in case that it is executed at a low frequency level. Continu-
ing in this way, we can show that the reliability of a task set
executed by SHR is never worse than its original reliability
while meeting the deadline.



3.1 Experimental Evaluation
To assess the performance of the new SHR technique on

both energy efficiency and system reliability, we designed a
discrete-event simulator in C programming language. The
following schemes are considered in the evaluation:

• The Greedy (GRE) algorithm (from [23]): In this
scheme, the tasks are selected for reliability-aware power
management in greedy fashion. That is, for the first
task, a separate recovery is allocated and its frequency
is reduced as much as possible (up to the energy-efficient
frequency fee). The process of selecting tasks for man-
agement continues in this manner until all available
slack is depleted.

• The SUEF algorithm (from [23]): In this scheme, first,
the slack usage efficiency factors (SUEFs) of all tasks
are computed and the slack is allocated in decreasing
order of SUEF values. The SUEF value for task Ti run-

ning at the frequency f is defined as
E0

i −Ei(f)

si(f)
, where

E0
i and Ei(f) are the energy consumption of task Ti at

fmax and f , respectively, and si(f) is the total amount
of slack needed (including the slack reserved for recov-
ery) [23].

• The Static Power Management (SPM) solution
that computes the optimal system-level DVS slow-down
factors to minimize the overall energy consumption [2].
Note that SPM neither reserves any slack for recovery
nor considers reliability preservation. SPM is included
in our comparison simply because it yields the maxi-
mum energy savings that can be achieved by any al-
gorithm – reliability-aware or not.

Transient faults are assumed to follow Poisson distribution
with an average fault rate of λ0 = 10−6 at fmax, which is a
realistic fault rate as reported in [10,28]. We model a DVS-
enabled CPU where the normalized processing frequencies
can change from fmin = 0.1 to fmax = 1.0. We use a cubic
frequency-dependent power component Pd which is equal to
unity at fmax. The frequency-independent power compo-
nent Pind for each task is normalized with respect to Pd.
All results are normalized with respect to the No Power
Management (NPM) scheme that executes all the tasks
without any frequency and voltage scaling at fmax. Note
that the reliability level achieved by NPM corresponds to
the original reliability of the system (Section 2.3).

Within a task set, the worst-case number of cycles ci for
each task is randomly generated through a uniform distribu-
tion, in such a way that the worst-case execution time under
maximum frequency falls in the range [1ms, 10ms]. Each
task set contains 10 tasks. Each point in the presented plots
is obtained by averaging the values obtained through 1000
different task sets.

First, we evaluate the performance of the schemes from
energy consumption point of view. Figure 3 shows the re-
lationship between the available slack and the energy con-
sumption. In these experiments, the exponent d in the fault
rate function (4) is set to 2 and the frequency-independent
power is 0.05. Let C =

∑

ci. The available slack is repre-
sented by L = D − C. Naturally, the larger the slack, the
more opportunities for dynamic voltage scaling and energy
reduction; and all schemes achieve lower energy consump-
tion with increasing L. We observe that the SHR scheme can

achieve significant (up to 35%) energy savings over the pre-
vious RA-PM algorithms, GRE and SUEF. This is because,
unlike SUEF and GRE that allocate separate recovery tasks
statically, SHR reserves only a minimal amount of slack as
a shared recovery and is able to allocate much larger slack
for energy-efficient slow-down. Moreover, we notice that as
the available slack gets larger (e.g. when L ≥ 0.7), the per-
formance of SHR becomes remarkably close to that of the
SPM, which is the upper bound for any DVS-based energy
management algorithm.
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Figure 3: The impact of the available slack on sys-
tem energy consumption

Figure 4 illustrates the effects of having different frequency-
independent active power Pind on the system energy con-
sumption when the available slack L = 0.8 C and d = 2. The
minimum value of Pind is set to Pind,min = 0.05. Pind for
each task is generated randomly and separately in the range
[Pind,min, Pind,max]. The energy consumption figures of all
the schemes increase with increasing Pind,max. This is be-
cause, as Pind,max increases, the frequency-independent en-
ergy consumption increases and further, the energy-efficient
frequency thresholds for tasks become higher, limiting the
voltage scaling opportunities (Section 2.2). Again we ob-
serve that the SHR scheme dominates over GRE and SUEF
and further, its performance is extremely close to the ideal
bound obtained by SPM.

Next, we investigate the system reliability dimension for
these schemes. For convenience, we present the probabil-
ity of failure (PoF) (defined as 1− reliability) achieved by
all schemes. Again, all results are normalized with respect
to the PoF achieved by NPM. Obviously, any reliability-
preserving scheme should achieve a normalized PoF value
that does not exceed 1.0. Figure 5(a) and Figure 5(b) show
the reliability performance when the fault rate exponent d is
2 and 5, respectively. Pind is set to 0.05 for all tasks. Consis-
tent with previous research, the findings indicate that SPM
is not able to maintain the original reliability; further, it ex-
periences PoF increases of several orders of magnitude. As
expected, SHR, GRE and SUEF are all able to maintain
the system’s original reliability. Moreover, the simulation
results point to a somewhat counter-intuitive result: SHR
has a clear advantage also on the reliability side through
most of the evaluated spectrum, despite the fact that it uses
a shared recovery block for all the tasks. The main reason
behind this phenomenon is that GRE and SUEF choose to
allocate statically the recovery tasks to individual tasks. As
a result, except when the slack is very large, only a subset of
tasks can be managed by SUEF and GRE while the remain-
ing tasks do not receive any recovery. On the other hand,
SHR allocates a single recovery block that can be used by
any task in the case of a fault. In essence, SHR provides
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Figure 4: The impact of Pind on the
system energy consumption
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Figure 5: The impact of slack on system reliability

a better protection for single-fault scenarios that are typ-
ically much more likely than some multiple-fault scenarios
that SUEF and GRE provision for, at the expense of some
entire tasks. With increasing slack, the PoF of SHR rela-
tively increases as the system can use more aggressive volt-
age scaling. When d = 5, the fault rate is very sensitive to
the voltage scaling and normalized PoF of SHR approaches
(but never exceeds) 1.0.

4. DYNAMIC EXTENSIONS

While the basic SHR scheme provides a powerful mecha-
nism to increase energy savings while maintaining the sys-
tem reliability, some run-time optimizations can further im-
prove the performance. In fact, there are two main oppor-
tunities that can be exploited at run-time:

• Initially, the SHR scheme is forced to reserve CPU time
for the potential recovery of the largest task. Thus, as
tasks complete within a frame, the system can dynam-
ically reduce the amount of CPU time for shared re-
covery when faults are not encountered. For example,
when the largest task completes successfully (without a
fault), the system can further slow down the remaining
tasks by using some part of the recovery block which
is no longer needed. This can be repeated for other
large tasks in the same frame.

• Typically, real-time embedded applications complete
early, without consuming their worst-case number of
cycles. In fact, many DVS frameworks [3, 15, 18] were
proposed in the past to detect and use the dynamic
slack that can arise from early completions to further
reduce the CPU processing frequency. The same ap-
proach can be incorporated to our framework.

Thus, the Dynamic Shared Recovery (DSHR) tech-
nique is based on determining the initial frequency assign-
ments as in the base SHR scheme presented in Section 3.
At run-time, when a task completes early and/or without
a fault, frequency assignments are updated by taking into
account the time to deadline, the size of the recovery slack
needed, and worst-case workload of the remaining tasks in
that frame.

4.1 Experimental Evaluation
In this section, we evaluate the performance of the dy-

namic scheme experimentally. The experimental settings
are essentially the same as those in Section 3.1; however,
in order to model the variations in the actual workload, we

use the ratio WCC
BCC

, which denotes the ratio of the worst-
case number of cycles (WCC) to the best-case number of
cycles (BCC). For each task set, first the worst-case number
of cycles for each task is determined as before. At run-
time, the actual workload (number of cycles) of each task
is determined between its BCC and WCC, using a uniform
probability distribution. Clearly, the higher this ratio, the
more the actual workload deviates from the worst-case. In
the simulations, the fault rate exponent d is set to 2.

To obtain a fair comparison, though they were originally
proposed only as static algorithms in [23], we extended GRE
and SUEF algorithms to use dynamic reclaiming in case of
early completions and not needed recovery tasks. These dy-
namic extensions are named as DGRE and DSUEF, respec-
tively. Essentially, at every task completion point, GRE
and SUEF are re-invoked to allow the re-adjustment of the
processing frequency, just like DSHR. Finally, we imple-
mented the scheme that invokes the static power manage-
ment (SPM) algorithm to compute optimal frequency as-
signments using the knowledge of the actual workload in ad-
vance. This algorithm, named simply Bound in the follow-
ing discussion, is not a practical scheme since it assumes the
knowledge about the future workload; but its performance
is used again as a natural bound on the energy consumption
of any algorithm. Again, in the provided results, all results
are normalized with respect to that of the NPM scheme.

First, we evaluate the energy savings of the schemes. Fig-
ure 6 shows how the energy consumption changes as a func-
tion of the available slack L when WCC

BCC
= 4 and Pind = 0.05.

As before, the more slack available, the higher the energy
savings. Notice that DSHR provides again clear advantages
over DGRE and DSUEF. However, at very small slack values
(e.g. when L = 0.3 C), the difference between the clairvoy-
ant algorithm Bound and DSHR is more significant since the
former is able to adopt low processing frequencies with the
pre-knowledge of the actual task workloads, while the latter
is forced to base its offline decisions on the worst-case work-
load information, as every practical real-time algorithm. An
interesting observation is the greatly enhanced performance
of DGRE (compared to worst-case settings). In fact, when
WCC
BCC

= 4 not only it outperforms SUEF but also offers a
performance reasonably close to DSHR. This is because, at
this high workload variability settings, many tasks complete
early, and as previous DVS research suggests [3,15], re-using
the slack as early as possible typically pays off. This con-
trasts with DSUEF that chooses to re-allocate the slack ac-
cording to slack usage efficiency factors, possibly excluding
the next tasks that would immediate benefit. Note that
when L is very large, DGRE, DSHR and Bound converge to
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system energy consumption

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 1  2  3  4  5

N
o
rm

a
liz

e
d
  
E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

WCC/BCC

DGRE
DSUEF
DSHR
Bound

Figure 7: The impact of WCC
BCC

ratio
on system energy consumption

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

N
o
rm

a
liz

e
d
  
E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Pind,max

DGRE
DSUEF
DSHR
Bound

Figure 8: The impact of Pind on
system energy consumption

the same level since all frequencies are naturally limited by
the energy-efficient frequency level.

Figure 7 illustrates the impact of the variability in the
actual workload by the ratio of WCC

BCC
on the energy con-

sumption when L = 0.8 · C and Pind = 0.05. Again, as ex-
pected, the system energy consumption generally decreases
with decreasing actual workloads (with increasing WCC

BCC
ra-

tios), since more dynamic slack enables the system to scale
down the frequency and then further improve the energy
savings. Among all three schemes, DSHR achieves the best
energy savings, which is close to the yardstick algorithm
Bound by at most a margin of 7%. Further, we observe
an interesting phenomenon: when WCC

BCC
≤ 2, DGRE’s per-

formance quickly deteriorates. This is because, when the
actual workload does not exhibit high variability, DSUEF’s
approach of assigning slack according to slack usage effi-
ciency factors yields typically better results, as opposed the
DGRE’s strategy that consists in greedily making available
the slack to the next task. However, with increasing WCC

BCC
,

DGRE performs better and better due to higher dynamic
slack resulting from tasks’ earlier completions.

Figure 8 shows the effects of frequency-independent active
power on the system energy consumptions for L = 0.8·C and
WCC
BCC

= 4. We observe that energy consumptions increase
with increasing the value of Pind,max and that DSHR, DGRE
and Bound converge to the same value when Pind,max ≥ 0.2.
Again, the main reason is that higher Pind values result in
significantly high energy-efficient frequency values that force
the system to run at high frequencies regardless of the actual
workload.
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Next, the reliability performance of the schemes is eval-
uated. Figure 9 shows the impact of available slack on the
probability of failure when Pind = 0.05 and WCC

BCC
= 5.

We observe that, while DSHR is the best, now DGRE and

DSUEF greatly benefit from higher slack values. Essentially,
DGRE and DSUEF can allocate more recovery tasks dynam-
ically by recycling the slack of unused recoveries at run-time,
which is reflected in PoF values. Another interesting obser-
vation is that, just like the energy dimension, DGRE ap-
pears to outperform DSUEF because of re-assigning recov-
ery tasks in greedy fashion. Also note that when L ≥ 1.1,
once again almost all the tasks are effectively executed at
the energy-efficient frequencies by DGRE and DSHR, which
gives similar PoF values.
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Figure 10 illustrates the impact of the variability in the
actual workload on the system reliability when L = 0.8 · C
and all Pind values are set to 0.05. In general, with fixed
available slack, the probability of failure for all schemes de-
creases as we reduce the actual workload (i.e. as we increase
the ratio of WCC

BCC
) since more slack becomes available due

to early completions of tasks. Because of its greedy nature
(i.e. aggressive allocation of dynamic slack to the next task),
DGRE’s reliability tends to degrade with small WCC

BCC
ratios.

Once WCC
BCC

≥ 3, DSHR can execute almost all the tasks at
the energy-efficient frequencies and also almost every task
can have a recovery to be executed if a fault occurs.

5. CONCLUSIONS

In this paper, we proposed and evaluated a new RA-PM
scheme, called the shared recovery (SHR) technique. In the
offline phase, SHR allocates CPU time only for the largest
recovery that may be needed by any task, essentially mak-
ing available to the DVS mechanism the valuable slack that
would be typically reserved for the recoveries of separate
tasks in the previous RA-PM solutions. The energy sav-
ings of the new scheme are shown to approach those of the
optimal (but not reliability-aware) DVS solutions. Further,



SHR is formally shown to preserve the original system relia-
bility. The experimental evaluation indicates that SHR has
also a clear advantage on the reliability dimension for most
of the spectrum that we considered. Finally, we proposed a
dynamic extension of the scheme, called DSHR, that is able
to reclaim any dynamic slack that results from early com-
pletions or not needed recovery operations. This dynamic
reclamation enables the system to further improve the en-
ergy savings, effectively approaching the performance of a
potentially clairvoyant algorithm.
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