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~ Abstract—The Dynamic Voltage Scaling (DVS) technique dynamically schedules a recovery job at task dispatch time
is the basis of numerous state-of-the-art energy managemen whenever DVS is applied, preserving the overall (original)
schemes proposed for real-time embedded systems. However, rq|iahjlity. The scheme is further extended to multiplektas

recent research has illustrated the alarmingly negative irpact . . - .
of DVS on task and system reliability. In this paper, we congler with a common deadline [10] and to periodic real-time tasks

the problem of processing frequency assignment to a set of [11].
real-time tasks in order to maximize the overall reliability, Previous research mostly focused on saving energy as

under given time and energy constraints. First, we formulaeé the  mych as possible through DVS whiteaintaining original

problem as a non-linear optimization problem and show how i ahili ; ;
to obtain the static optimal solution. Then, we propose onihe system reliability typically by scheduling recovery tasks for

(dynamic) algorithms that detect early completions and adjist potential fault scgnarios. He_re, we consider a totallyedéht _
the task frequencies at run-time, to improve overall reliablity. ~ case by addressing the settings where the system has a given

Our simulation results indicate that our algorithms perform  fixed energy budgdor its operation. The system is allowed

comparably to a clairvoyant optimal scheduler that knows tre to consume energy within this allowance. Our objective is to

exact workload in advance. determine the task frequency (speed) assignments in order
I. INTRODUCTION to maximize the system reliability (i.e. the probability of

. . . completing the application successfully) within the given
With the proliferation of battery-powered embedded com- ergy budget and timing constraint. Or equivalently, we

: : oo en
puting devices, energy management has become C”t'caﬁ%nsider determining optimal energy allocations for each

important with the prospects of extending the battery life : : . o
which is typically limited. TheDynamic Voltage Scaling ;e;sg,vévr:)n:tﬁ(ree;:)l/ssilaymcreallir:gﬁﬁ;zmg/quantlfylng theeefs

(DVS) technique [1], [2] is recognized as the basis o . .
. : In this research effort, after presenting our system models
numerous energy management solutions. DVS exploits the

: T . anhd assumptions in Section Il, we first address and solve
fact that the dynamic power consumption is a strictly CONVER o static version of the problem, where all tasks execute

by reducing the supplv voltage and frequency at run-time%¥8ir worst-case workload (Section IIlI). Then, we extend

y 9 pply voltag q y ﬁyr framework to dynamic settings and propose three on-

schemes that target real-time embedded systems with timirllré(.a reclaiming algonthm; that detect_ early _compleﬂorysl a
adjust the task frequencies at run-time, with the objective

constraints [3], [4], [5], [6]. . ; T o .
On the ier and, recent research (7, 18] s shoff OIS S a0t telably by g e
that DVS has a significant and negative effect on $ie- 9y ) P

L I o ) imental evaluation (presented in Section V) indicates that
tem reliability, primarily because of significantly increased . . .
. our dynamic algorithms perform comparably to a clairvoyant
transient fault ratesat low supply voltage and frequency

. . l(.?gtimal scheduler that knows the exact workload in advance.
levels. Therefore, there is a growing awareness about t

need to apply DVS only after careful evaluation, especiall To the best of our knowledge, this research effort is
; 10 apply L Y 1on, esp ¥he first to address the problem of maximizing the overall
or mission-critical real-time embedded applications vehe =~ = L L o

: S . reliability of a real-time embedded application within the
both high level of reliability and low energy consumption iven enerav and time constraints
are important. Nevertheless, at present, there are onlwa 8 9y '
studies investigating the system reliability and enerdi ef
ciency requirements simultaneously [8], [9], [10], [11h&
trade-off between system reliability and energy consuompti A. Power Model

is first studied by Zhu et al. in [8]. In [8], two fault rate \\up DVS, the clock frequency is reduced by reducing
m<|)_dke)_II§ for DVS settings are also suggested. [9] ﬂmposiql’?e supply voltage [12] since there is an almost linear rela-
reliability-aware power management (RA-PM) scheme thaf, i hetween the supply voltage and operating frequenc

This work is supported by US National Science Foundatiomtgr&NS- [13]' In this paper, we focus on the DVS tEChr."que and
0720647, CNS-0720651 and CNS-546244 (CAREER Award) adopt the system-level power model proposed in [8] and

Il. MODELS AND PROBLEM DESCRIPTION



subsequently used in [9], [10]. Hence, the system poweolutions with a given energy budget to maximize overall
consumptiorP is given by: reliability.
m Traditionally, transient faults have been modeled through

P =Ps+N(Ping + Fy) = Ps+ N(Pna + Cer T7) (1) Ppoisson distribution with an average arrival ratf22]. How-
where Ps is the static power,Png is the frequency- €Ver considering the effects pf voltage.scaling on tramsie
independent active power amy is the frequency-dependent faults [7], [8], the average arrival rate will depend on the
active power. The static power, which may be removedYStem processing frequency and supply voltage. Therefore
only by powering off the whole system, includes the powe?he fault rate at frequency (and its corresponding voltage
to maintain basic circuits, keep the clock running and th&Vel) can begenerallymodeled as
memory in sleep modes [14R,q iS a constant independent A(f) = Ao-g(f) ©)
of processing frequencies (i.e. the power consumed by off-
chip devices such as main memory and external deviceshere Ao is the average fault rate corresponding to the
and can be efficiently removed by putting systems into slegpaximum frequencyfmax = 1 (and supply voltag&/may).
states [13], [15]Py is the power mainly consumed by CPU, That is,g( fmax) = 1.
in addition to any power that depends on the frequenciesIn general, transient fault rates are exponentially-eelat
[13]. h represents system states and indicates whether actigethe circuit'scritical charge (which is the smallest charge
powers are currently consumed in the system. Specificallsgquired to cause a soft error in a circuit node) [23]. In our
when the system is activdy = 1; otherwise, the system analysis and simulations, we focus on the exponential fault
is in sleep modes or turned off arfd= 0. The effective rate model proposed in [8]:
switching capacitanc€e; and the dynamic power exponent d(1-1)
m (which is, in general, no smaller than 2) are system- A(f)=20-9(f) = Ag- 10 Tmin (4)
degﬁ,liegeﬁgnjiifaimgfctehsesisreoﬁfnsj'gﬁ dfreerc]]g:ancy. wHere the exponentl (> 0) is a constant, indicating the

gy overhea

associated with turning on/off a system [16], we assume ths?gssﬁvmll O\‘;Jﬁ;“ga;ﬁj ;?evzlt;%e ?g?g%r-rhzgl\ihringsults
the system is always active. & is not manageable, we will PPl 9 9 Y 9y 9

. . in exponentially incr fault r . The maximum r
ignore the static power and concentrate on the frequenc exponentially increased fault rates. The maximum averag

independent active powét,q and frequency-dependent ac-fél“'tlrt]éaltoevvlzsﬁfgrzz(:]é; l?e,lz(r;/\t?]to‘;,uwhllcr:/gﬁgrespo)nds
tive powerPy in our analysis. q min PPy Y8min)-

Although DVS can reduce energy consumption becausg. Application Model
of the IO.W frequency_—dependent "."Ct“./e pO\_/Ferat reduced_ In this work, we consider a real-time application that
processing frequencies, the application will take morestim

. ; consists of a set oh independent tasksly, To, ..., Th. All
to complete at low frequencies. As a result, increased totef

sks in the application should complete their executions
energy may be consumed because of the prolonged devw the common deadlinB. Note that, if the application is
active times (due to the frequency-independent active pow '

P Y Theref idering th tem-level I ﬁeriodic,D can also represent the period (same length.
ina). Therefore, considering the system-level power, loWer o o1t case execution cycles (WCC) of tasks de-

frequ_e_nmes may be not be always_ best fo_r_energy SAVMBted byci. We consider a system with DVS capability where
and it is shown in [14] that there exists a minimum ENCTY%he clock frequency can vary from a minimum available

efficient voltage/frequency pair. .In [.17], the energy-effit frequency fmin to @ maximum frequencyimax (normalized
frequency for our power model is given as: to 1.0). The execution time of task under the frequency

P fi is given by%. The utilization U of the task set is given
fee= m=1Cer (2)  asy gf— =y g in other words, it corresponds to thead

under maximum frequency.

Hence, it is not energy-efficient to run any task at a In our model, each task; is allowed to have a different
frequency belowfee doing otherwise will result in more frequency-independent power figuRsg,, since each task
energy consumption. Note that ife exceeds the maximum may require access to different subsets of external devices
available frequency levefmax then the system should not We assume that the systerreisergy-constraineh the sense
reduce its speed belofihax [18]. In the following discussion, that it has a fixed energy budget which is not replenishable

we use the dynamic power exponentas 3. during execution and cannot be exceeded in any interval of
length D.
B. Fault Model The reliability of a task is defined as the probability of

During the execution of an application, a fault may occugompleting the task successfully (i.e. without encountgri
due to various reasons, such as hardware failure, softwe&ors triggered by transient faults) [8], [9], [10]. Assing
errors and the effect of electromagnetic interference arfhat the transient faults follow a Poisson distributione th
cosmic ray radiations. Sinceansient faults occur much reliability of the taskT; with its WCCg; is Ri(fi):e*A(m*Ti
more frequently thapermanenfaults [19], [20], [21], in this  [8], where f; is its execution frequency amd(f;) is defined

paper, we focus on transient faults, and develop feasibl® D\as in (4). The reliability of a real-time system depends on



the correct execution of all tasks in an application [17]. IrAlso, let Emax= S|, Ei(fmax) be the energy consumption
our application model, which consists otasks, the system of the task set when all tasks run &tax As another

reliability is thereforeR= [, Ri(fi). boundary condition, wherE > Emax executing all tasks
at the maximum frequency is the optimal solution (since
[1l. RELIABILITY -AWARE DVS: STATIC SOLUTION Ri(fi) is monotonically increasing witHf; and the system

has sufficient energy to run &t,ax continuously). Therefore,
In this section, we formalize and optimally solve the probin the remaining of the paper, we will focus exclusively on
lem of finding task-level frequency assignments to maximizeettings wheréimir < E < Emax
the system reliability, with a given energy bud@etiuring a Lemma 1:In the optimal solution to ECRMYi fj > feq,

periodD. Recall that, the probability of completing the taskynere foq = (%)% is the energy-efficient frequency far.
T; without a fault (that is, itseliability) at the processing f

frequency f; is R(f)) = e M , where A(f;) is given Proof: This follows from the observation that executing
by (4). Hence,R (fi) is a strictly concave and increasingT; at a speed lower thafieg would result inmore energy
function of f;. consumption fofT; (Section Il.A). As a result, if a task were

The total (i.e. frequency-dependent and frequencye execute at a speed lower th&s in the optimal solution,
independent) energy consumption Bfat the frequencyfi  then increasing its speed faq would actuallydecreasets

can be expressed as [9]: energy consumption (still satisfying (8)) andcreasethe
Ci 9 overall reliability considering the positive impact of higy
Ei(fi) = Pig T +CerCif; ®) speeds on task reliability — giving a contradiction. m

. . i i ... Thanks to Lemma 1, the constraint (9) can be re-written as:
Notice thatE;(f;) is a strictly convex function and is mini-

mized whenf; = feq (Section II-A). flow, < fi < fmax (1 <1< n) (11)
Let ¢i(f)) =A(fi)- % Our problem can be formally stated \ynere fiow 1S Max fin, feq )-
asto find § (1<i<n) values so as to maximize Lemma 2:1f Ejimit < E < Emax in the optimal solution
n I to ECRM, the total energy consumptign._, E;(fj) must be
R= ”Ra = e 2 i) (6)  exactly equal tcE.

1= Proof: Assume that the statement is false. Sifitec

Subject to: Emax by assumption, there must be a spded fyax In this
4 G <D @) case, it should be possible to incredsdy € > 0 such that

G i~ (fi+e) < fmaxandy . Ej(fj) +E(fi+¢&) <E. Itis clear

n that the deadline and energy constraints are still satisfied
ziEi(fi) <E (8) after this modification. Further, the overall system religb
i= has obviously improved, due to the executiorTioat a speed
fnin < fi < fmax (1 <1 < 1) (9) higher thanf;. Thus, the p_ro_posed solution cannot be optimal
and we reach a contradiction. ]

Above, the inequality (7) corresponds to the deadline con-emma 2 allows us to conclude that B < E < Emax
straint, while (8) encodes the hard energy constraint. Thteen we can re-write the constraint (8) as an equality.
constraint set (9) gives the range of feasible frequency

n
assignments. ZlEi(fi) =E (12)
Considering the well-known features of the exponential i=
functions, we can re-express our objective asniaimize Consequently, we obtain a new non-linear (convex) opti-
n mization problem ECRM’, defined as find § (1 <i<n)
Zl(pi(fi) (10) values so as to minimize
i= n
subject to the constraints (7), (8) and (9). In the rest of i;(p'(f') (13)
the paper, this optimization problem will be call&shergy- Subject to:
Constrained Reliability Manageme(ECRM) problem. ’ n g
Now, let E;mit be the minimum energy that must be — <D (14)

allocated to the given task system to allow their completion =1

before or at the deadline (period boundafy) Given the n E(f)—E 15
task parameters;imii can be computed by the polynomial- i; i(fi) = (15)
time algorithm developed in [18]. As a by-product, the .
same algorithm yields also the optimal task-level freqyenc flow < fi < fmax (1 <i <) (16)

assignments(fly, fl, ..., fln) when the total energy con- The problem ECRM' can be solved, for instance, by
sumption isexactly Emi. Obviously, if E < Ejimit, then Quasi-Newtontechniques developed for constrained non-
there is no solution to our problem, since the system wouléhear optimization [24]. The technique exploits the well-
lack the minimum energy needed for timely completionknown Kuhn-Tucker optimality conditions for non-linear



programs [25] in an iterative fashion by transforming thd3], [26], [27], [5]. A similar opportunity exists here: the
original problem to a quadratic programming problem [24]excess energyhat arises from early completions of tasks,
A theoretical complication with this approach is that it iscan be used tincreasethe speeds of tasks at run-time, to
practically impossible teexpressthe maximum number of improve the system reliability. Clearly, utmost care must b
iterations as a function of the number whknownswhich, exercised to make sure that the system remain within its
in this case, corresponds to the number of taskdowever, energy allowance (budget), before making such adjustments
in our experience, the algorithm is rather fast: for instaon In this section, we develop on-line (dynamic) reliability-
a 1 GHz CPU with 1 GB memory, our implementation wasaware schemes for reclaiming the excess energy at run-time.

able to return the optimal solution in less tha® $econds In the following algorithms, we assume thattasks in the

even for task sets with 1000 tasks.

real-time embedded application are executed in the order

However, we also developed a heuristic algorithm thafy, T, ..., T,. The three dynamic algorithms that we developed

runs in polynomial-time. This algorithm, named ECRM-gre:
LU, satisfies the deadline, energy and frequency range con-

straints. Further, it yields solutions that are extremébse

to the optimal solution. ECRM-LU proceeds as follows.
We temporarily ignore the deadline constraint (14) and
solve the problem ECRM’ only by considering the energy
constraint (15) and frequency range constraints (16).deoti
that, by excluding the deadline constraint, the problem is
transformed to a separable convex optimization probler wit
n unknowns, B inequality constraints and a single equality
constraint. This problem, in turn, can be solved in ti@@®)
through iteratively manipulating the Kuhn-Tucker optiial
conditions in a way similar to the technique illustrated in
algorithm given in [18]. Now, if this solution satisfies also
the deadline constraint (14), obviously, it is also the gotu

to ECRM’. Otherwise, we re-write the constraint set (16) as:

fli < fi < fmax (1< <n) (17)

where fl; is the frequency assignment to ta3k in the
solution where all tasks completa exactly Dand with
energy allocatiorEini;. Recall that{ fl;} values can be also
computed in timeO(n3). By enforcing the constraint set
(17), we make sure that the final speed assignments satisfy
also the deadline constraint. Once again, this version ®f th
problem where the deadline constraint is handled impjicitl
by enforcing the lower bounds on frequency assignments can
be solved in timed(n3). Hence, the overall time complexity

of ECRM-LU is also O(n®). Interestingly, our extensive
simulation studies show that ECRM-LU performs very well
compared to the optimal solution through the almost entire
spectrum: the reliability figures yielded by ECRM-LU are
close to the optimal one by a margin of 0.03%, when
=E_>1.02. In a tiny portion of the interval whered<

Ejjmit —
e < 1.02, we observed a difference of at most 1%.

IV. DYNAMIC RELIABILITY -AWARE SCHEDULING

The static solution presented in the previous section is
optimal under the assumption that all tasks will preserit the
worst-case workload (i.e. their WCCs). While provisioning
for worst-case scenarios is imperative in real-time system
in practice, many real-time tasks complete early without
consuming their WCCs. In fact, numerous DVS studies pub-
lished in recent past were based on detecting and reclaiming

BR dynamicbasic reclaimingalgorithm. In this solu-
tion, an initial speed assignment is made by solving
the static problem presented in the preceding section,
assuming worst-case workload for each task. However,
at task completion points, the excess energy that may
be available (due to early completions) is effectively
re-cycled within the system: a new speed (frequency)
assignment is made for thremainingtasks by consid-
ering the remaining (updated) energy budget and time
to deadline. This new assignment is again obtained by
invoking our optimal solution to the problem ECRM.

« GRE dynamicgreedyalgorithm. AlthoughBR satisfies

the energy and deadline constraints, it is pessimistic in
the sense that it assumes WCCs for all tasks when re-
distributing the excess energy. An alternative approach
may be to allocate the excess enemgytirely to the
next task Thex at task completion points, relying on
the fact thatThex: is also likely to complete early and
release excess energy for the use of the remaining
tasks. In the mean time, the reliability Gfex will

be significantly improved due to execution at higher
speedsGREstill preserves feasibility in terms of timing
and energy constraints: compared to the initial static
solution obtained by ECRM, the task speeds never
decrease (guaranteeing the timely completion) and only
the excess energy that is obtained at run-time is re-
assigned.

« AGR dynamicaggressivealgorithm. This scheme rep-

resents the most speculative solution, in the sense that it
counts orprobableearly completions before execution,
and makes speed assignments accordingly. The main
idea is to aggressively give sufficient energy to the
current task by still leaving minimum required energy
for the tasks to follow, based on their WCQs is
speculative, because under a worst-case scenario (where
most of the tasks present high workload), many tasks
in the chain would be forced to execute at low speeds
to guarantee the completion within the energy budget,
significantly lowering the overall reliability. Howeven i
settings where the actual workload is likely to deviate
from the worst-case with high probability, this strategy

Note that if the next task cannot be assigned the entire sxeesrgy

unulsed CPU Ume'("e' the dynanﬂl_aCk) to enhance energy due to the maximum frequency limitations, then the follagviask(s) will
savings by reducing the processing frequency at run-time able to reclaim energy at the next task completion points.



will (and, as we show in the performance evaluationworkload, we use the rati@%cc, which denotes the ratio of
section,doeg pay off. SpecificallyAGRis implemented the average-case number of cycles (AQG)the worst-case
through the following steps: FirsEimit (which is de- number of cycles. The lower this ratio, the more the actual
fined as the minimum energy needed to complete allorkload deviates from the worst-case. For each task set
the tasks by their deadline (Section IIl)) is computedand utilization value,v’\*,%% is changed from 0.2 to 1.0. The
Next, a speed assignmeffly, flo,..., fln) based on actual number of cycles of each task is generated randomly,
WCCs of all tasks but with energy allocation equal tausing normal distribution with meaACC. For each point in
Eimit is computedTy,..., T, aretentativelyassigned the the graphs, 1000 task sets are used and the results that are
frequencieg fl,,..., fl,) and their energy consumption shown are the average of all runs.

with these assignments and WCOSefervd are evalu- We model a DVS-enabled CPU where the normalized pro-
ated. Then, the entire remaining energy (Ee- Ereservd ~ CeSSiNg frequencies can change frépn = 0.1 to fnax=1.0.

is allocated to the first tasky, allowing it to execute We use a cubic frequency-dependent power compoRgnt

as fast as possible within the given constraints. Awnhich is equal to unity afmax The frequency-independent
task completion points, the above steps are repeated pgwer componen®,q for each task is normalized with
considering the early completions aadtualremaining respect toPy and is generated according to uniform distri-
energy for remaining tasks. The fact that this solutiotoution in the rang€0,2]. To analyze the impact of system’s
preserves the energy and deadline constraints follovemergy budgeE on the performance, we variédfrom Ejjmit

from the properties of the speed assignments that cqminimum energy needed to meet the deadline, see Section
responds tdEimit, which corresponds to the minimum Ill) to Emax (energy consumption afynay). The ratio E

energy needed for a feasible solution. shown in the plots, is a measure of the available energy in
the system; for example, whe@l— = 1.2 the system has
V. SIMULATION RESULTS AND DISCUSSION 20% more energy than the minimum needed to meet the

deadline. We assume that the transient faults’ occurresice i

To evaluate the performance of our dynamic algorithmgetermined by P0|sson distribution and given by Equation

under varying workload conditions, we designed a dlscreteez‘) whereAg = 102 andd = 3.
event simulator in C. In our simulator, we implemented five Fig. 1 shows the relationship between the probability of
schemes: failure when £<& = 0.5 andU = 0.4. As expected, the

« The static scheme which computes the processing freprobability of failure (defined as 4 reliability) generally
quencies using the optimal solution to problem ECRMjecreases with increasing energy budgfﬁ—( ratio), since
assuming the worst-case workload for each t&tktic more energy enables the system to use higher processing
does not use any on-line component in the sense thgteeds with improved reliability. The clairvoya®ound
no dynamic speed adjustment is performed, regardlessheme achieves a constant probability of failure, because
of the actual workload. even whenE /Ejimit = 1, all tasks can be executed fax

« The basic reclaiming scheme (BRJ}hat re-allocates thanks to a priori knowledge of actual execution times,
unused energy at task completion points, by re-invokinghich are, on the average, half of the worst-case in these
the algorithm to optimally solve the problem ECRM forexperiments — since processing speeds beyadare not
the remaining tasks. available, giving more energy Bounddoes not further help.

« The greedy reclaiming scheme (GREpat re-allocates We observe that, among the other schemes, the static scheme
unused energy entirely to the next task whenever pogwhich does not perform any dynamic energy reclamation)
sible, at task completion points. performs worst and\GRis the best, with very close perfor-

+ The aggressive scheme (AGRpat aggressively allo- mance taBoundwhen (EL > 1.2). This result indicates that
cates the maximum possible amount of energy for thgggressively giving maximum energy to the tasks that will
current task, while still leaving a minimal energy forexecute early typically pays off in these settings, sines¢h
the remaining tasks to allow timely completion. tasks are also likely to generate excess energy due to early

« Theclairvoyant scheme (Boundhat knows theactual completions, which can be allocated to the later taBliis
workload of each task in advance and computes thglittle worse tharGRE but both perform consistently better
optimal speed assignments to maximize the reliabilityhan Statig verifying the benefits of dynamic reclaiming.
by solving the problem ECRM accordingly. Obviously,Observe that once the available energy is 30% or more
Boundis not a practical scheme (since it assumes theompared tcEimit, all dynamic schemes perform almost the
knowledge of the actual workload in advance); howevegame.
it characterizes the upper bound on the performance of Fig. 2 illustrates how the probability of failure changes as
any static or dynamic algorithm. a function of task utilizatio, for £%< = 0.5 andE /Ejimir =

We considered task sets with 8 tasks, with the frame/peridd15. Again, the relative ordering of the schemes remains the

length of D = 1000. The totaltilization (U) of each task set same. However, we observe an interesting phenomenon: as
under maximum frequency is varied from 0.2 to 1.0 (fullwe increase the utilization towards the range &f-00.6, the
load). The worst-case number of cycl®CC)of each task probability of failure first increases. After that thresthoit
is randomly generated. To model the variations in the actuatarts to decrease. This pattern can be explained as follows
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increasing the utilization has direct effects on two imporis slightly higher at that point. This is because, when all
tant factors on system reliability, but ieversedirections; tasks take their WCC, the expected early completions do not
first, increasing the utilization results in increased estien  occur, while the aggressive nature AGR still forces the
times, which means increased probability of being subjeédter tasks to execute at relatively low speeds, causingsa lo
to transient faults (under comparable fault rates). In,fast in reliability.

U approaches .8, this factor dominates and the probability These patterns can be also usedestablish guidelines

of failure increases. However, higher utilization valuesce ~ for system designers who need to figure out th@imum

the system to adopt higher frequencies in order to meet tiggnhount of energy supptiiat must be provided to the system,
deadline and the positive impact of this on reducing thetfaulo achieve a certain target probability of failure. Fig. 4
rates becomes the primary factor after a certain point.d fa establishes these thresholds 8z = 0.5 andU = 0.4.
afterU = 0.8, all tasks are executed at speeds closétg For example, the figure suggests that 15% additional energy
and then the probability of failure drops sharply to a minima(beyondE;mit) must be provided to the system to achieve
value. a probability of failure of 108, if Staticis the scheme to

Fig. 3 shows the impact of the variability in the actualP® used. However, if dynamic schemes (B or GRE

workload (i.e. the2SS ratio) on the probability of failure, are available, then 7% additional energy is sufficient. It
& HEWee . . :
with E/Ejimit = 1.2 andU = 0.4. In general, we find that i also worthwhile to note that the difference between the

the probability of failure increases with the increasedorat SChemes becomes very importaniat values for the target
of &C_ This is to be expected, because with the increasdtiobability of failure (e.g. smaller than 18); indicating that
ratio of ASC, at run-time, tasks execute longer and they arl! Safety- or time-critical applications, the availableeegy

subject \tA(/)C'gansient faults with higher probabilities. Hwer, budget may be a prime factor for the achievable reliability.
observe that the dynamic schemes are able to significantly
reduce the probability of failure compared &tatic thanks

to online reclaiming features, especially at I@%% ratios. In this paper, we considered a real-time application con-
When \ﬁ%cc = 1.0, the probabilities of failure oftatic BR  sisting of multiple tasks and showed how to compute energy
and GRE converge to that oBound since there are no allocations (which translate to frequency assignments) to
early completions or excess energy at run-time. But, it immaximize overall reliability, while considering a hard en-
interesting to note that the probability of failure 8GR ergy constraint. Both static optimal and on-line (dynamic)

VI. CONCLUSIONS



schemes are developed in this paper. Our simulation resuits] X. Castillo, S. McConnel, and D. Siewiorek, “Derivatiand calibra-
indicate that our algorithms perform comparably to a clair-
voyant optimal scheduler that knows the exact workload iQo]
advance. To the best of our knowledge, this problem was not
addressed in the research literature in the past.

In the past DVS research, it has been shown [28] thé%l]
executing tasks in different orders may give rise to diffiiere
energy savings, because of the different workload vaitgbil [22]
exhibited by tasks. In a similar vein, it is likely that the

execution order will also have an impact on overall religpil

(23]

in dynamic settings. We will consider this as a future resiear

direction.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

(20]

[11]

(12]

[13]

(14]

(18]

[16]

[17]

(18]

[24]
REFERENCES

M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheuulffor [25]
reduced cpu energyProceedings of the 1st USENIX conference on[26]
Operating Systems Design and Implementation (OSD|’2894.

F. Yao, A. Demers, and S. Shenker, “A scheduling modelréatuced

cpu energy,’Proceedings of the 36th Annual Symposium on Founda[27]
tions of Computer Science (FOCS'93p95.

H. Aydin, R. Melhem, D. Mossg, and P. Mejia-Alvarez, “Bgmic

and aggressive power-aware scheduling techniques fotingalsys-
tems,” Proceedings of the 22th IEEE Real-Time Systems Symposium
(RTSS’01,) 2001. 28]
D. Mossé, H. Aydin, B. R. Childers, and R. Melhem, “Cotepi
assisted dynamic power-aware scheduling for real-timdicgiopns,”
Proceedings of Workshop on Compiler and OS for Low Pp2@00.

P. Pillai and K. G. Shin, “Real-time dynamic voltage s$ogl for
lowpower embedded operating systemBjoceedings of the ACM
Symposium on Operating Systems Principles (SOSPZTD1.

S. Saewong and R. Rajkumar, “Practical voltage scaliag fixed
priority rt-systems,” Proceedings of the 9th |IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAZ0G3.

D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, S\ Kim,
and K. Flautner, “Razor: circuit-level correction of tingirerrors for
low-power operation,'EEE Micro, vol. 24, no. 6, pp. 10-20, 2004.
D. Zhu, R. Melhem, and D. Mossé, “The effects of energynage-
ment on reliability in real-time embedded systemBroceedings of
the IEEE/ACM International Conference on Computer Aidedige
(ICCAD’04), 2004.

D. Zhu, “Reliability-aware dynamic energy managemendépendable
embedded real-time system®toceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAR06§.

D. Zhu and H. Aydin, “Energy management for real-timebeuded
systems with reliability requirements?roceedings of the IEEE/ACM
International Conference on Computer Aided Design (ICCE)Y
2006.

——, “Reliability-aware energy management for perimdeal-time
tasks,”Proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’'0Z907.

T. Pering, T. Burd, and R. Brodersen, “The simulatiord a&valua-

tion of dynamic power-aware scheduling for real-time amgilons,”
Proceedings of the 2000 International Symposium on Low Powe
Electronics and Design (ISLPLED’002000.

T. Burd and R. Brodersen, “Energy efficient cmos micomassor
design,”Proceedings of the 28th Hawaii International Conference on
System Sciences (HICSS'9%995.

X. Fan, C. Ellis, and A. Lebeck, “The synergy between poaware
memory systems and processor voltagafceedings of Workshop on
Power-Aware Computer Systems (PACS'@)03.

“Mobile pentium iii processor-m datasheet,” Order Nogn 298340-
002,0ct 2001.

E. M. Elnozahy, M. Kistler, and R. Rajamony, “Energyigént
server clusters,Proceedings of Workshop on Power-Aware Computer
Systems (PACS’022002.

D. Zhu, R. Melhem, D. Mossé, and E. Elnozahy, “Analysisan
energy efficient optimistic tmr schemeProccedings of International
Conference on Parallel and Distributed Systems (ICPAD)’'2804.

H. Aydin, V. Devadas, and D. Zhu, “System-level energgmagement

for periodic real-time tasksProceedings of the 27th IEEE Real-Time
Systems Symposium (RTSS'G8)06.

tion of a transient error reliability modellEEE Trans. on Computers
vol. 31, no. 7, pp. 658-671, 1982.

R. K. lyer and D. J. Rossetti, “A measurement-based mdoe
workload dependence of cpu errordEEE Trans. on Computers
vol. 33, pp. 518-528, 1984.

R. K. lyer, D. J. Rossetti, and M. Hsueh, “Measuremert armodeling
of computer reliability as affected by system activithCM Trans. on
Computer Systemsol. 4, no. 3, pp. 214-237, Aug. 1986.

Y. Zhang and K. Chakrabarty, “Energy-aware adaptiveckipointing
in embedded real-time system&toceedings of Design, Automation
and Test in Europe (DATE’032003.

P. Hazucha and C. Svensson, “Impact of cmos technolagying
on the atmospheric neutron soft error rat&EE Trans. on Nuclear
Sciencevol. 47, no. 6, pp. 2586-2594, 2000.

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, “Nonlinpeogram-
ming: Theory and algorithms (third edition)X John Wiley and Sons,
INC., pp. 576-585, 2005.

D. Luenberger, “Linear and nonlinear programminggdison- Wesley,
Reading Massachusett$984.

H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, otier-
aware scheduling for periodic real-time task€EE Transactions on
Computersvol. 53, no. 10, pp. 584-600, 2004.

K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamittage
and frequency scaling for precise energy and performarame toff
based on the ratio of off-chip access to on-chip computdimes,”
Proceedings of Design, Automation and Test in Europe (DAZE’
2004.

F. Gruian and K. Kuchcinski, “Uncertainty-based salledy: energy-
efficient ordering for tasks with variable execution timBfbceedings
of the 2003 International Symposium on Low Power Elect®mriod
Design (ISLPED’03)2003.



