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Abstract

Power aware computing has become popular recently and
many techniques have been proposed to manage the energy
consumption for traditional real-time applications. We have
previously proposed two greedy slack sharing scheduling al-
gorithms for such applications on multi-processor systems. In
this paper, we are concerned mainly with real-time applica-
tions that have different execution paths consisting of differ-
ent number of tasks. The AND/OR graph model is used to
represent the application’s data dependence and control flow.
The contribution of this paper is twofold. First, we extend our
greedy slack sharing algorithm for traditional applications to
deal with applications represented by AND/OR graphs. Then,
using the statistical information about the applications, we
propose a few variations of speculative scheduling algorithms
that intend to save energy by reducing the number of speed
changes (and thus the overhead) while ensuring that the ap-
plications meet the timing constraints. The performance of the
algorithms is analyzed with respect to energy savings. The re-
sults surprisingly show that the greedy scheme is better than
some speculative schemes and that the greedy scheme is good
enough when a reasonable minimal speed exists in the system.

1. Introduction

Power aware computing has recently become popular not
only for general purpose systems but also for real time sys-
tems. For the traditional applications in real-time systems,
where a task isreadyto execute when all its predecessors com-
plete execution, many techniques have been proposed to man-
age the energy consumption. Such applications are modeled
by AND-graphs and the relationship over their tasks is known
as AND-only precedence constraints [10]. But this traditional
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AND model cannot describe many applications encountered
in practice, where a task isreadyto execute when oneor more
of its predecessors finish execution, and oneor moreof its suc-
cessors are ready to be executed after the task finishes execu-
tion. A real life example that falls within this AND/OR model
is an automated target recognition (ATR) application, in which
the number of regions of interests (ROI) in one frame varies
substantially. For some frames, the number of detected ROIs
may be maximum and all the tasks need to be executed, while
in most cases, the number of detected ROIs in a frame is less
than the maximum and part of the application can be skipped.
The control flow of most practical applications also have OR
structures, where execution of the sub-paths depends on the
results of previous tasks. In some applications, the probability
of the paths to be executed is also known a priori.

In this paper, we modify the greedy slack sharing algorithm
developed in [20] to incorporate the AND/OR features and
prove its correctness on meeting the timing constraints. While
it achieves some energy savings, the greedy slack sharing al-
gorithm may perform many voltage/speed changes. Consid-
ering the timing and energy overhead of voltage/speed adjust-
ment, along with the statistical information about the applica-
tion and the intuition that minimal energy can be obtained by
running all tasks with the same speed, we study a few vari-
ations of the speculative scheduling algorithms that intend to
save more energy by reducing the number of voltage/speed
changes (and thus the overhead) while ensuring that the appli-
cation’s timing constraints will not be violated.

The performance, in terms of energy savings, is analyzed
for all the schemes. The results surprisingly show that the
greedy scheme is better than some speculative schemes espe-
cially when the system has a reasonable minimal speed. All
the dynamic schemes perform the best with moderateload
andα (the ratio of the tasks’ average case execution time over
worst case execution time).



1.1. Related Work

For uniprocessor systems, based on dynamic voltage scal-
ing (DVS) technique, Mosśe et al. proposed and analyzed sev-
eral schemes to dynamically adjust processor speed with slack
reclamation, and statistical information about task’s run-time
was used to slow down the processor speed evenly and save
more energy [14]. In [16], Shin et al. set the processor’s speed
at branches according to the ratio of the longest path to the
taken paths from the branch statement to the end of the pro-
gram. The granularity of the proposed schemes is the basic
block, which will impose a very high overhead due to too fre-
quent speed changes. Kumar et al. predict the execution time
of the task based on the statistics gathered about execution
time of previous instances of the same task [12]. Their algo-
rithm is adequate for soft real time operating systems. We note
that statistical schemes that predict execution times using his-
tory data are not eligible for hard real time systems where the
deadlines must be guaranteed. The best scheme is an adaptive
one that takes an aggressive approach while providing safe-
guards that avoid violating the application deadline [2, 13].

When considering the limited voltage/speed levels in the
real processors, Chandrakasan et al. have shown that, for peri-
odic tasks, a few voltage/speed levels are sufficient to achieve
almost the same energy savings as infinite voltage/speed levels
[6]. AbouGhazaleh et al. have studied the effect of the volt-
age/speed adjustment overhead on choosing the granularity of
inserting power management points in a program [1].

For multi-processor systems, with AND-model applica-
tions that have fixed task sets and predictable execution times,
static power management (SPM) can be accomplished by de-
ciding beforehand the best voltage/speed for each processor
[11]. For the system-on-chip (SOC) with two processors run-
ning at two different fixed voltage levels, Yang et al. proposed
a two-phase scheduling scheme that minimizes the energy
consumption while meeting the timing constraints by choos-
ing different scheduling options determined at compile time
[17]. Based on the idea ofslack sharing, for AND-model ap-
plications, we have studied the dynamic voltage/speed adjust-
ment schemes on multi-processor systems and proposed two
dynamic management algorithms for independent tasks and
dependent tasks, respectively [20].

In this paper, we consider the AND/OR model applications
that have different execution paths with different task sets tak-
ing into account overhead and discrete voltage/speed levels.
The paper is organized in the following way. The applica-
tion model, power model and system model are described in
Section 2. The greedy slack sharing algorithm is extended
for applications represented by AND/OR graphs in Section 3.
Section 4 proposes a few variations of speculative algorithms
using the applications’ statistical information. Simulation re-
sults are given and analyzed in Section 5 and Section 6 con-
cludes the paper.

2. Models

2.1. Application Model: AND/OR Graph

In this paper, we use the AND/OR model [10], which is
represented by a graphG(V, E), where the vertices inV repre-
sent tasks or synchronization nodes, and the edgesE ⊆ V ×V
represent the dependence between vertices. The graph rep-
resents both the control flow and data dependence between
tasks. Only whenvi is the direct predecessor ofvj , is there an
edgee :: vi → vj ⊆ E, which means thatvj depends onvi;
in other words, only aftervi finishes execution canvj become
ready for execution. The application also has a deadlineD.
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Figure 1. The AND/OR Structures

In the extended AND/OR model, there are three different
kinds of vertices: computation nodes, AND nodes and OR
nodes. A computation nodeTi is represented by acircle,
which has two attributes,ci andai, whereci is the worst case
execution time (WCET) ofTi andai is the average case ex-
ecution time ofTi, all based on maximum processor speed
(fmax). An AND synchronization node is represented by adi-
amond, which depends on all its predecessors and all its suc-
cessors depend on it. It is used to explore the parallelism in
the applications as shown in Figure 1a. An OR synchroniza-
tion node is represented by adouble circles, which depends on
only one of its predecessors and only one of its successors de-
pends on it. It is used to explore the different execution paths
in the applications as shown in Figure 1b. For simplicity, we
only consider the case where an OR node cannot be processed
concurrently with other paths. In other words, all the proces-
sors will synchronize at an OR node. The synchronization
nodes are considered asdummytasks with execution time as0
(c = a = 0).

In the figure, the computation node is labeled by its name
and (ci/ai). The AND/OR nodes are labeled correspondingly.
To represent the probability of taking each execution path after
the OR synchronization nodev, a number is associated with
each successor ofv.

Since there is no back edges in our AND/OR model, for the
loops in an application, we can treat a whole loop to be one
task with the execution time of maximal iterations asci and
average iterations asai. Alternatively, we can expand the loop
as several tasks if we know the maximal number of iterations
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and the corresponding probabilities to have specific number of
iterations.

2.2. Power Management Points

In [14], the insertion of power management points (PMP)
at the start of each program section is proposed. These points
are inserted by the user, or set by the compiler. At each PMP,
a new speed is computed based on the time taken so far and an
estimation of the time for the future tasks. If the new speed is
different from the current processor speed, the speed/voltage
setting is invoked.

For the AND/OR model proposed above, there is a PMP
before each node. Two values,Πc andΠa, are associated with
the PMP before the first node in the graph. The values repre-
sent the worst case execution time and average case execution
time of the application, respectively. For the PMP before an
OR node, two values,Πi

c andΠi
a, are associated with each

path pi after the OR node. The values represent the worst
case execution time and average case execution time for path
pi from the PMP to the end of the program, respectively. All
these values can be obtained from profiling and will be used
in speculation and computing the new speed. The details are
discussed in Sections 3 and 4.

2.3. Power and System Models

We assume that processor power consumption is domi-
nated by dynamic power dissipationPd, which is given by:
Pd = Cef × V 2

dd × f , whereCef is the effective switch ca-
pacitance,Vdd is the supply voltage andf is the processor
clock frequency. Processor speed, represented byf , is almost

linearly related to the supply voltage:f = k × (Vdd−Vt)
2

Vdd
,

wherek is constant andVt is the threshold voltage [4, 7].
The energy consumed by a specific taskTi can be given as
Ei = Cef × V 2

dd × C, whereC is the number of cycles
needed to execute the task. When decreasing processor speed,
we also reduce the supply voltage. This reduces processor
power consumption cubically and reduces task energy con-
sumption quadratically at the expense of linearly increasing
the execution time of the task. For example, consider a task
that, with maximum speedfmax, needs10 time units to fin-
ish execution. If we have20 time units allocated to this task,
we can reduce the processor speed by half while still finish-
ing the task on time. The new energy consumption would be:
E′ = Cef×(Vdd

2 )2× fmax

2 ×20 = 1
4×Cef×V 2

dd×fmax×10 =
1
4 × E, whereE is the energy consumption with maximum
processor speed. From now on, we refer tospeed changeas
both changing the CPU voltage and frequency.

We consider systems that have multiple identical proces-
sors with shared memory. The application characteristics and
state are kept in the shared memory. All the ready tasks are put

Table 1. Speed & Voltages of Transmeta 5400

f(MHz) 700 666 633 600
V(V) 1.65 1.65 1.60 1.60

f(MHz) 566 533 500 466
V(V) 1.55 1.55 1.50 1.50

f(MHz) 433 400 366 333
V(V) 1.45 1.40 1.35 1.30

f(MHz) 300 266 233 200
V(V) 1.25 1.20 1.15 1.10

into a global queue. Each processor executes the scheduler in-
dependently and fetches the tasks from the global queue as
needed. We assume that the shared memory is accessed in a
mutual exclusive way and access to the shared memory has no
extra cost (actually, the cost is part of context switch that we
do not consider in this paper).

In this paper, we consider two different power configura-
tions for the processors. First, in the Transmeta model, the
voltage/speed setting is given as in Table 1 [18]. There are 16
voltage/speed settings between 700MHz (1.65V) and 200MHz
(1.10V). The second power configuration is the Intel XScale
model [19], with the voltage/speed setting as shown in Table
2. Note that the speed and voltage do not obey a linear rela-
tion in either model, which is different from the assumptions
in many published papers.

Table 2. Speed & Voltages of Intel XScale

f(MHz) 1000 800 600 400 150
V(V) 1.80 1.60 1.30 1.00 0.75

3. Greedy Algorithm for AND/OR Graph

3.1. Scheduling for Multi-Processor Systems

Since list scheduling is a standard technique used to sched-
ule tasks with precedence constraints [8], we will focus on
list scheduling in this paper. List scheduling puts tasks into
a ready queue as soon as they become ready and dispatches
tasks from the front of the ready queue to processors. When
more than one task is ready at the same time, finding the op-
timal order of the tasks that minimizes execution time is NP-
hard [8]. In this paper, we use the same heuristic as in [20]
and put into the ready queue first the longest (based on tasks’
WCET) among the tasks that become ready simultaneously.

If there is some slack in the system and a task can be allo-
cated more time than its WCET, the system can slow down the
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CPU for the task appropriately save energy. Since tasks exhibit
a large variation in actual execution time, and in many cases,
only consume a small fraction of their worst case execution
time [9], any unused time can be considered asslack. Further-
more, the execution does not always follow the longest path,
and thus there may be some extra slack. For the AND-model
applications,greedy slack sharingalgorithms have been dis-
cussed for multi-processor systems, in which part of the slack
on processorPx will be shared with processorPy if Px’s ex-
pected finish time1 is later thanPy ’s but actually finishes ear-
lier thanPy. The remaining slack is given to the next task to
be run onPx. See [20] for details.

In the following, we will explore the application’s dynamic
characteristics both at the task set level (different execution
paths) and at the task level (different actual execution time
of each task). We extend the greedy slack sharing algorithm
for dependent tasks [20] to incorporate the characteristics of
AND/OR model and show how it is correct with respect to
meeting the timing constraints.

3.2. Greedy Algorithm

The algorithm consists of two phases: anoff-line phaseand
anon-line phase. The off-line phase is used to collect the exe-
cution information about the application with processor speed
asfmax and it is a two-round phase. In the first round, us-
ing list scheduling with longest task first (LTF) heuristics, a
canonical scheduleis generated for each program section sep-
arated by OR nodes, in which the tasks use their worst case
execution time. The time to finish the application along the
longest path (consisting of all the longest program section be-
tween OR nodes) is defined asΠc, which is stored in the PMP
at the very beginning. For the PMPs before the OR synchro-
nization nodes, the worst case execution time for remaining
tasks on pathj is gathered and stored asΠj

c. For the average
case,Πa andΠj

a are also analogously collected. The execu-
tion order of taskTi is recorded asEOi and we will maintain
the same execution order of tasks in the on-line phase to meet
the timing constraints. The execution order of an OR node
is the maximal execution order of its predecessors plus 1. For
tasks which are on different paths after an OR node and will be
executed at the same time, they may have the same execution
order.

If Πc > D, the algorithm fails to guarantee the deadline;
otherwise, the second round of the off-line phase shifts the
canonical schedules for all program sections to make them
finish exactly on time. Notice that the shifting is a recursive
process when there are embedded OR nodes. The start time of
Ti in the shifted schedules is calledlatest start timeLSTi and
is also recorded, it is the timeTi muststart execution for the

1More accurately, it is the estimated end time (EET) of the task running
on processorPx, as defined later.

remaining tasks in the shifted schedules to meet the deadline.
LSTi will be used to claim the slack forTi at run time.

Given any heuristic, if the off-line phase does not fail, the
following on-line phase can be applied under the same heuris-
tic. The following algorithm will assume that the longest path
in the worst case meets the deadline, that is,Πc ≤ D.

Before presenting the on-line phase of the algorithm, we
give some definitions. As in [20], we define theestimated end
time (EET)for a task executing on a processor as the time at
which the task is expected to finish execution if it consumes all
the time allocated for it. To determine thereadinessof tasks,
we define the number ofunfinished predecessors (UPi) for
each taskTi. UPi will decrease by 1 when any predecessor of
taskTi finishes execution. TaskTi is readywhenUPi = 0.

The speed to execute taskTi using greedy slack sharing
reclamation is denoted asf i

g. To maintain the execution order
of tasks as in the canonical schedules, the execution order of
the next expected task is defined asEONET . The current time
is represented byt.

Initially, all the root tasks are put into aReady-Q. For all
other tasks,UPi is initialized as the number of predecessors
of Ti if the corresponding vertex is not an OR node, and 1
otherwise. The current timet is set to0 and the execution
order of the next expected taskEONET is set to1.

1 Tk =Head(Ready-Q);
2 If (Tk is OR node‖ EONET ==EOk) && ( UPk == 0))

Goto Step 4;
3 wait(); Goto Step 1;
4 Tk =dequeue(Ready-Q);

EONET = EONET + 1;

5 If (Tk is Computation node)
EETk = LSTk + ck; /* Note thatLSTk ≥ t */
fk

g = fmax × ck
(EETk−t)

; /*compute the speed forTk*/
If(Py is sleep && Head(Ready-Q) is next expected and ready)

signal(Py);
ExecuteTk at speedfk

g ;
6 If (Tk is Computation node or AND node)

For each successorTj of Tk:
UPj = UPj − 1;
If (UPj == 0) enqueue(Tj , Read-Q);

Goto Step 1;
7 If ( Tk is OR node )

EONET = EOk + 1; /*update the next expected task*/
If selected pathpi /*the 1st task of pathpi is denoted byTi*/

UPi = 0;
PutTi into Ready-Q;

Goto Step 1;

Figure 2. The GSS Algorithm invoked by Pid

The greedy slack sharing (GSS) algorithm for AND/OR ap-
plications is shown in Figure 2. Remember that the execution
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order of tasks will be kept the same as in the canonical sched-
ules. From the algorithm, each idle processor tries to fetch
the next ready task (Step 1 and 2). If the next expected task
is not ready, the processor will go to sleep (Step 3; We use
the functionwait() to put an idle processor to sleep and an-
other functionsignal(P ) to wake processorP .). Otherwise, if
the task is a computation task, the processor computes a new
speed for the ready task, wakes up an idle processor if the task
expected after the one the processor is handling is ready and
changes the speed if necessary before executing the ready task
(Steps 4 and 5). If the task is a dummy task (AND/OR node),
the successors of the node are handled properly (Step 6 and 7).
The functionenqueue(T,Q)is used to put the ready taskT into
Q in the order of tasks’ execution order. The shared memory
holds the control information, such asReady-Q, UP values,
which must be updated within a critical section (not shown in
the algorithm for simplicity).

The slack sharing is implicit in the algorithm. In Step 4 and
5, when a processor picks a task that has a earlierLST than
the one it should pick, slack sharing happens implicitly.

3.3. Algorithm Analysis

Theorem 1 For an application represented by an AND/OR
graph with a deadlineD and for a given heuristic for assign-
ing priorities to tasks, the greedy slack sharing algorithm will
finish by timeD if the application can finish beforeD in the
canonical schedules.

From the off-line phase, after the canonical schedules are
shifted, for any execution path if every task uses up the time
that GSS algorithm allocates to it, the application will finish
just in time. DefineFTw

i as the finish time forTi in the worst
case for the shifted schedule. For any execution pathp, we
will have FTw

i ≤ D (Ti ∈ p). Notice thatEETi is the latest
time Ti should finish, following the same idea as in [20], it is
not hard to prove thatEETi = FTw

i (Ti ∈ p) for any path
p. That is, if the application can finish beforeD in canonical
schedules, the execution of all paths under GSS will finish in
time. The proof is omitted for lack of space.

While the greedy slack sharing algorithm is guaranteed to
meet the timing constraints, there may be many speed changes
during the execution since it computes a new speed for each
task. It is known that a clairvoyant algorithm can achieve min-
imal energy consumption for uniprocessor systems by running
all tasks at a single speed setting if the actual running time of
every task is known. Considering the speed adjustment over-
head, the single speed setting is even more attractive. From
this intuition, using the statistical information about applica-
tion, we propose the following speculative algorithms.

4. Speculative Algorithms

Based on different strategies, we developed two specula-
tive schemes. One is to statically speculate the speed for the
whole application, the other is to speculate the speedon-the-
fly to reflect actual behavior of the application, that is, dynam-
ically taking into account the remaining work. For the first
scheme, we can speculate a single speed if the speed levels are
fine grained, or two speeds otherwise. For the second scheme,
we speculate after each OR synchronization node since more
slack can be expected from different paths after the branch.

4.1. Static Speculative Algorithms

For static speculative (SS) algorithm, the speed,fss, at
which the application should run is decided at the very be-
ginning based on the statistical information about the whole
application, as follows:

fss = fmax × Πa

D

whereΠa is the average case finish time of the entire ap-
plication, which is calculated as2 Πa =

∑
p Πp

a × Pp, where
Πp

a is the average case finish time for pathp, andPp is the
probability of executing pathp.

If the speculated speed falls between two speed levels (fl <
fss < fl+1) and the speed levels are fine grained, single speed
static speculation will setfss = fl+1. But if the difference be-
tween two speed levels is large, two speeds will be speculated
for the application. At the beginning, the speculation speed,
fss, is set as the lower speed,fl. After a certain time point
(ttp), fss is changed to the higher speed level,fl+1. The value
of ttp can be statically computed as follows:

ttp =
fl+1 − fss

fl+1 − fl
×D

After fss is calculated, we will execute the application at
fss, but at the same time ensure that the application finishes
on time. This means that we choose the maximum speed be-
tweenfss andf i

g for taskTi, wheref i
g is computed from GSS,

guaranteeing temporal correctness.
It is easy to see that, when picking the speed to execute

a task, because the SS algorithms never sets a speed below
the speed determined by GSS, the SS algorithms will meet
the timing constraints if GSS can finish on time. Therefore,
from Theorem 1, the SS algorithms can meet the timing con-
straints if the longest path in canonical schedule under the
same heuristics finishes on time.

2If pathp contains OR nodes, the same formula is applied recursively.
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4.2. Adaptive Speculative Algorithm

If the statistical characteristics of tasks in the application
vary substantially, it may be better to speculate the speed on-
the-fly based on the statistical information about the remain-
ing tasks. Considering the speed adjustment overhead and ex-
pecting that different paths after the OR synchronization node
may result in more slack, the adaptive speculative (AS) algo-
rithm speculates the speed after each OR synchronization node
based on statistical information about the remaining tasks, and
sets the speculative speed as:

fas = fmax × Πr
a

D − t

wheret is the current time andΠr
a can be calculated dy-

namically as the summation of the weighted average of the
execution times of all the remaining tasks. Again, to guarantee
the deadline, the speedfi for Ti will be: fi = max(f i

g, fas).

5. Evaluation and Analysis

In the simulation, we account for both the overhead and
discrete speed levels. There are two kinds of overhead, the
new speed computation overhead and the voltage/speed ad-
justment overhead. A detailed discussion about accounting for
overheads and discrete speed levels can be found in [20]. The
new speed computation overhead used is300 cycles, obtained
by running the code to compute the new speed on the Sim-
pleScalar micro-architecture simulator [5]. With current tech-
nology, changing the voltage/speed needs between5µs and
150µs [3, 15], but we expect this overhead to drop with tech-
nological advances in the near future. We assume that speed
adjustment needs5µs (the time needed to change the speed
once). We assume that an idle processor consumes 5% of the
maximal power level [2].

We consider an application of automated target recognition
(ATR) (the dependence graph is not shown due to space limi-
tation) and a synthetic application shown in Figure 3. In ATR,
the regions of interest (ROI) in one frame are detected and
each ROI is compared with all the templates. For the synthetic
application, the time unit forci andai is in the order of10−4

second. The loops in the graph can be expanded as discussed
in Section 2. The numbers associated with each loop are the
maximal number of iterations paired with the probabilities to
have specific number of iterations. If there is only one num-
ber, it is the number of iterations during the execution. We
vary the parameters:load andα to see how they affect the en-
ergy consumption for each scheme. Theload is defined as the
length of the canonical schedule for the longest pathpl over
the deadline. The variability of the tasks’ execution timeα is
defined as the average case execution time over worst case ex-
ecution time for the tasks in the application, which indicates
how much dynamic slack there is during tasks’ execution. The
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Figure 3. An Example of AND/OR Graph

value ofαi for taskTi is generated from a normal distribution
aroundα and the actual execution time ofTi follows a normal
distribution aroundαi. Each point in each graph is an average
of 1000 runs.

We show results for the following schemes in the graph:
static power management (SPM), greedy slack sharing (GSS),
static speculation with single speed (SS1), static speculation
with two speeds (SS2) and adaptive speculation at each OR
node (AS). The energy consumption of each scheme is nor-
malized to the energy consumed by no power management
(NPM) where every task runs atfmax with idle state energy
set as 5% of the maximum power level.

5.1. The Effect ofLoad

When load increases, there is less static slack in the sys-
tem and therefore energy consumption should increase for all
the schemes (since the slowdown capability is smaller) ex-
cept NPM (since it will consume less idle energy). The re-
sults in Figure 4 show the normalized energy consumption for
ATR running on dual-processor systems (α ≈ 0.95, which
was measured and means that there is little slack from task’s
run-time behavior). Note that the normalized energy con-
sumption starts by decreasing withload. This is counter-
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Figure 4. Energy vs. Load for ATR running on Dual-Processor systems; α ≈ 0.95, overhead = 5µs.

intuitive since, without accounting for the idle energy, nor-
malized energy consumption would increase proportionally
with theload (since the slowdown capability is smaller). But,
at lower load, the idle energy consumption has a significant
effect: when the desired speed is less thanfmin, the CPU
speed is set to run atfmin; the normalized energy consump-
tion curves go down with increasedload (i.e. decrease in idle
time) and starts increasing withload when speed is set above
fmin. When the processors are simulated following the In-
tel XScale model (Figure 4b), where there are fewer speed
levels but wider speed range between levels, the normalized
energy for SPM incurs sharp changes. These changes cor-
respond to the upgrade of speed from one level to the next
level. For example, whenload = 0.35, SPM runs at 400MHz
and whenload = 0.4 SPM needs to run at 600MHz (rather
than 400MHz) because of speed adjustment overhead. While
whenload = 0.5, SPM still runs at 600MHz and the energy
consumption decreases because of less idle energy consumed.
For static speculation, whenload changes from0.3 to 0.35 or
from 0.8 to 0.85, the normalized energy for SS1 and SS2 has
a jump, the reason is that the speculative speed is upgraded
from one level to the next higher level3. Note that the figures
show the normalized energy and the energy consumption by
NPM decreases with load increasing since less idle energy is
consumed.

When ATR is executed on 4 or 6 processor systems, simi-
lar results are obtained with more energy consumed by each

3Note thatfss = fmax × Πa
D

= fmax × Πa
Πc

× Πc
D

and we defined

load = Πc
D

, so fss = fmax × load × Πa
Πc

. For ATR running on dual-

processor system,Πa
Πc

≈ 0.48, whenload = 0.3 the speculative speed is
150MHz, while whenload = 0.35 the speculative speed will increase one
level and be400MHz. It is the same forload change from0.8(400MHz) to
0.85(600MHz).

scheme and more sharp changes because of the idle time
forced by the scheduler between tasks for the sake of syn-
chronization. Due to the similarity of results, we only show
in Figure 5 the results for 6 processors.

We expected the speculative schemes to perform better than
the greedy scheme. The reason is that, typically, the greedy
behavior tends to run at the least possible speed to use up all
the slack for the current task, and consequently the future tasks
must run at very high speed [1, 20]. However, the minimum
speed is bounded byfmin, preventing the greedy scheme from
using all the available slack at the very beginning and forcing
some slack to be saved for future use. Fewer speed levels also
prevents the greedy scheme from using the slack by decreas-
ing the probability of speed changes. As a result, the greedy
scheme benefits from the presence offmin and speed levels.
The greedy scheme is better than some speculative algorithms
whenfmin is rather high or there are fewer speed levels.

To see howfmin and the speed levels affects the perfor-
mance of the schemes on energy savings, in our future work
we plan to experiment with different values offmax

fmin
and dif-

ferent number of speed levels betweenfmax andfmin.

5.2. The Effect ofα

For the synthetic application running on a dual-processor
system withload set at0.8 andoverhead at5µs, when chang-
ing α, the normalized energy consumed by each scheme is
shown in Figure 6. Since both changingload andα have the
same effect on the available slack in the system, the shapes of
the curves for dynamic schemes are similar to whenload was
changed (the curves for SPM are quite different since SPM
can only use static slack that related toload only). Notice
that, for the Intel XScale model, withload = 0.8, SPM runs

7



55

60

65

70

75

80

85

90

95

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y 

co
ns

um
pt

io
n 

no
rm

al
iz

ed
 to

 N
PM

Load

SPM
GSS
SS1
SS2
AS

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y 

co
ns

um
pt

io
n 

no
rm

al
iz

ed
 to

 N
PM

Load

SPM
GSS
SS1
SS2
AS

a. Transmeta Model b. Intel XScale Model

Figure 5. Energy vs. Load for ATR running on 6-Processor systems; α ≈ 0.95, overhead=5 µs.

at fmax = 1GHz rather than800MHz and consumes the
same energy as NPM since SPM does not take into account
the actual execution time behavior.

6. Conclusion

In this paper, we extend the AND/OR model by adding
probabilities to each execution path after each OR node. This
extended model can be used for applications, where a task is
ready to execute when oneor moreof its predecessors finish
execution and oneor moreof its successors will be ready af-
ter the task finishes execution. With the extended AND/OR
model, we modify the greedy slack sharing algorithm for de-
pendent tasks on multi-processor systems developed in [20].
Then, using statistical information about the application, we
proposed a few variations of speculative algorithms that in-
tend to save more energy by reducing the number of speed
change (and thus the overhead) while ensuring that the appli-
cation meet the timing constraints.

The performance of all the algorithms in terms of energy
savings is analyzed through simulations. The greedy algo-
rithm is surprisingly better than some speculative algorithms.
The reasons come from two points: one is the minimal speed
limitation that prevents the greedy algorithm from using up the
slack very aggressively; the other is fewer speed levels that
prevents the greedy algorithm from changing the speed fre-
quently. The greedy scheme is good enough when the system
has a reasonable minimal speed. The energy consumption for
all the power management schemes decreases unexpectedly
when theload increases at lowload because of the minimal
speed limitation and the idle energy consumption. The dy-
namic schemes become worse relative to static power manage-
ment (SPM) whenload becomes higher andα becomes larger,

since most of the slack will be used to cover the speed adjust-
ment overhead. All the dynamic algorithms perform the best
with moderateload andα. When the number of processors
increases, the performance of the dynamic schemes decreases
due to the limited parallelism and the frequent idleness of the
processors.
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