Proc. of the Int. Conference on Parallel Processing, Aug. 2002
Power Aware Scheduling for AND/OR Graphs in Multi-Processor Real-Time
Systems*

Dakai Zhu, Nevine AbouGhazaleh, Daniel Més:d Rami Melhem
Computer Science Department
University of Pittsburgh
Pittsburgh, PA 15260
{zdk, nevine, mosse, melhem @cs.pitt.edu

Abstract AND model cannot describe many applications encountered
in practice, where a task isadyto execute when onar more
Power aware computing has become popular recently andof its predecessors finish execution, and oneoreof its suc-
many techniques have been proposed to manage the energgessors are ready to be executed after the task finishes execu-
consumption for traditional real-time applications. We have tion. A real life example that falls within this AND/OR model
previously proposed two greedy slack sharing scheduling al-is an automated target recognition (ATR) application, in which
gorithms for such applications on multi-processor systems. Inthe number of regions of interests (ROI) in one frame varies
this paper, we are concerned mainly with real-time applica- substantially. For some frames, the number of detected ROIs
tions that have different execution paths consisting of differ- may be maximum and all the tasks need to be executed, while
ent number of tasks. The AND/OR graph model is used toin most cases, the number of detected ROIs in a frame is less
represent the application’s data dependence and control flow.than the maximum and part of the application can be skipped.
The contribution of this paper is twofold. First, we extend our The control flow of most practical applications also have OR
greedy slack sharing algorithm for traditional applications to structures, where execution of the sub-paths depends on the
deal with applications represented by AND/OR graphs. Then,results of previous tasks. In some applications, the probability
using the statistical information about the applications, we of the paths to be executed is also known a priori.
propose a few variations of speculative scheduling algorithms
that intend to save energy by reducing the number of speed
changes (and thus the overhead) while ensuring that the ap-d Inlth|s gqperééve m9d|fy the gree:y slack/shar;ng algonthr(rj]
plications meet the timing constraints. The performance of the eveloped in [20] to incorporate the AND/OR features an

algorithms is analyzed with respect to energy savings. The rePTOvVe Its correctness on meej[ing the timing constraints. While
sults surprisingly show that the greedy scheme is better than't achieves some energy savings, the greedy slack sharing al-

some speculative schemes and that the greedy scheme is gogé).mhm may perform many voltage/speed changes. Con_sid-
ering the timing and energy overhead of voltage/speed adjust-

enough when a reasonable minimal speed exists in the systent, ; 27 = . :
ment, along with the statistical information about the applica-
tion and the intuition that minimal energy can be obtained by
running all tasks with the same speed, we study a few vari-
1. Introduction ations of the speculative scheduling algorithms that intend to
save more energy by reducing the number of voltage/speed
Power aware computing has recently become popular notchanges (and thus the overhead) while ensuring that the appli-
only for general purpose systems but also for real time sys-cation’s timing constraints will not be violated.

tems. For the traditional applications in real-time systems,

where atask_ igeadyto execut_e when all its predecessors com- The performance, in terms of energy savings, is analyzed
pleteﬂ?xecunon, many tectr_mlqugs h;ave bleerlt_proposed to dmlar?'or all the schemes. The results surprisingly show that the
age the energy consumption. such applications are mode e%reedy scheme is better than some speculative schemes espe-
by AND-graphs and the relationship over their tasks is known cially when the system has a reasonable minimal speed. Al
as AND-only precedence constraints [10]. But this traditional the dynamic schemes perform the best with modekate

“This work has been supported by the Defense Advanced Researct@Ndc (the ratio of t_he t?.SkS’ average case execution time over
Projects Agency through the PARTS project (Contract F33615-00-C-1736). WOrst case execution time).

1.1. Related Work 2. Models

For uniprocessor systems, based on dynamic voltage scal2-1. Application Model: AND/OR Graph
ing (DVS) technique, Mogset al. proposed and analyzed sev-
eral schemes to dynamically adjust processor speed with slack [N this paper, we use the AND/OR model [10], which is
reclamation, and statistical information about task’s run-time represented by a grajgh(V, E), where the vertices iif repre-
was used to slow down the processor speed evenly and savéent tasks or synchronization nodes, and the efigesl’ x V/
more energy [14]. In [16], Shin et al. set the processor’s speed€present the dependence between vertices. The graph rep-
at branches according to the ratio of the longest path to the'€Sents both the control flow and data dependence between
taken paths from the branch statement to the end of the profasks. Only whem; is the direct predecessor of, is there an
gram. The granularity of the proposed schemes is the basi€dgee :: v; — v; € E, which means that; depends om;;
block, which will impose a very high overhead due to too fre- in other words, only after; finishes execution carny become
quent speed changes. Kumar et al. predict the execution timéeady for execution. The application also has a deadline
of the task based on the statistics gathered about execution

time of previous instances of the same task [12]. Their algo- 0

rithm is adequate for soft real time operating systems. We note i
that statistical schemes that predict execution times using his-
tory data are not eligible for hard real time systems where the @ @ @ @ @
deadlines must be guaranteed. The best scheme is an adaptive
one that takes an aggressive approach while providing safe-
guards that avoid violating the application deadline [2, 13].

When considering the limited voltage/speed levels in the
real processors, Chandrakasan et al. have shown that, for peri- Figure 1. The AND/OR Structures
odic tasks, a few voltage/speed levels are sufficient to achieve
almost the same energy savings as infinite voltage/speed levels |n the extended AND/OR model, there are three different
[6] AbouGhazaleh et al. have studied the effect of the volt- kinds of vertices: Computation nodes, AND nodes and OR
age/speed adjustment overhead on choosing the granularity ofiodes. A computation nod€; is represented by aircle,
inserting power management points in a program [1]. which has two attributes; anda;, wherec; is the worst case

For multi-processor systems, with AND-model applica- execution time (WCET) of/; anda; is the average case ex-
tions that have fixed task sets and predictable execution timesgcution time of7;, all based on maximum processor speed
static power management (SPM) can be accomplished by de¢f,,...). An AND synchronization node is represented lji-a
ciding beforehand the best voltage/speed for each processaimond which depends on all its predecessors and all its suc-
[11]. For the system-on-chip (SOC) with two processors run- cessors depend on it. It is used to explore the parallelism in
ning at two different fixed voltage levels, Yang et al. proposed the applications as shown in Figure 1a. An OR synchroniza-
a two-phase scheduling scheme that minimizes the energyion node is represented byauble circleswhich depends on
consumption while meeting the timing constraints by choos- only one of its predecessors and only one of its successors de-
ing different scheduling options determined at compile time pends on it. It is used to explore the different execution paths
[17]. Based on the idea alack sharingfor AND-model ap- in the applications as shown in Figure 1b. For simplicity, we
plications, we have studied the dynamic voltage/speed adjustonly consider the case where an OR node cannot be processed
ment schemes on multi-processor systems and proposed tweoncurrently with other paths. In other words, all the proces-
dynamic management algorithms for independent tasks andsors will synchronize at an OR node. The synchronization
dependent tasks, respectively [20]. nodes are considered dsmmytasks with execution time ds

In this paper, we consider the AND/OR model applications (¢ = a = 0).
that have different execution paths with different task sets tak- In the figure, the computation node is labeled by its name
ing into account overhead and discrete voltage/speed levelsand ¢;/a;). The AND/OR nodes are labeled correspondingly.
The paper is organized in the following way. The applica- To represent the probability of taking each execution path after
tion model, power model and system model are described inthe OR synchronization node a number is associated with
Section 2. The greedy slack sharing algorithm is extendedeach successor of
for applications represented by AND/OR graphs in Section 3. Since there is no back edges in our AND/OR model, for the
Section 4 proposes a few variations of speculative algorithmsloops in an application, we can treat a whole loop to be one
using the applications’ statistical information. Simulation re- task with the execution time of maximal iterations@sand
sults are given and analyzed in Section 5 and Section 6 con-average iterations as. Alternatively, we can expand the loop
cludes the paper. as several tasks if we know the maximal number of iterations

¢

a. AND structure b. OR structure

and the corresponding probabilities to have specific number of
ponding p m ve spectiicnu Table 1. Speed & Voltages of Transmeta 5400

iterations.
f(MHz) 700 | 666 | 633 | 600
2.2. Power Management Points V(V) 165 | 165 |[1.60 | 1.60
f(MHz) 566 | 533 | 500 | 466
In [14], the insertion of power management points (PMP) V(V) 155 | 155 | 150 | 150
at the start of each program section is proposed. These points f(MHz) 433 400 366 333
are inserted by the user, or set by the compiler. At each PMP,) 145 | 1.40 | 1.35 | 1.30
cetmation of (e e ot the fuure acks. Il e now speed s | 10Fz) | 300 | 266 | 733 | 200
: b V() || 1.25 | 120 | 115 | 1.10

different from the current processor speed, the speed/voltage
setting is invoked.

For the AND/OR model proposed above, there is a PMP
before each node. Two valud$, andIl,, are associated with into a global queue. Each processor executes the scheduler in-
the PMP before the first node in the graph. The values repre-dependently and fetches the tasks from the global queue as
sent the worst case execution time and average case executiameeded. We assume that the shared memory is accessed in a
time of the application, respectively. For the PMP before an mutual exclusive way and access to the shared memory has no
OR node, two valuesll’ andIl’, are associated with each extra cost (actually, the cost is part of context switch that we
path p; after the OR node. The values represent the worstdo not consider in this paper).
case execution time and average case execution time for path In this paper, we consider two different power configura-

p; from the PMP to the end of the program, respectively. All tions for the processors. First, in the Transmeta model, the
these values can be obtained from profiling and will be usedvoltage/speed setting is given as in Table 1 [18]. There are 16
in speculation and computing the new speed. The details arevoltage/speed settings between 700MHz (1.65V) and 200MHz

discussed in Sections 3 and 4. (1.10V). The second power configuration is the Intel XScale
model [19], with the voltage/speed setting as shown in Table
2.3. Power and System Models 2. Note that the speed and voltage do not obey a linear rela-

tion in either model, which is different from the assumptions

L . in many published papers.
We assume that processor power consumption is domi-

nated by dynamic power dissipatidP;, which is given by:

Py = Cey x VI x f, whereC.; is the effective switch ca- Table 2. Speed & Voltages of Intel XScale
pacitance,Vy, is the supply voltage and is the processor

clock frequency. Processor speed, representef] yalmost f(MHz) || 1000 | 800 | 600 | 400 | 150
linearly related to the supply voltagef = & x M, v(v) 1.80 |1.60 |1.30 |1.00 |0.75

where k is constant and/; is the threshold voltage [4 7.

The energy consumed by a specific tdskcan be given as

E; = C.p x VI x C, whereC is the number of cycles

needed to execute the task. When decreasing processor speed, Greedy Algorithm for AND/OR Graph

we also reduce the supply voltage. This reduces processor

power consumption cubically and reduces task energy con-3.1. Scheduling for Multi-Processor Systems

sumption quadratically at the expense of linearly increasing

the execution time of the task. For example, consider a task Since list scheduling is a standard technique used to sched-

that, with maximum speed,,..., needsl0 time units to fin- ule tasks with precedence constraints [8], we will focus on

ish execution. If we haveo time units allocated to this task, list scheduling in this paper. List scheduling puts tasks into

we can reduce the processor speed by half while still finish-a ready queue as soon as they become ready and dispatches

ing the task on time. The new energy consumption would be:tasks from the front of the ready queue to processors. When

E' = Copx(Ya1)2x Imaz 520 = L O\ x V2 X frnae X 10 = more than one task is ready at the same time, finding the op-

i x F, whereE is the energy consumpuon with maximum timal order of the tasks that minimizes execution time is NP-

processor speed. From now on, we refespeed changes hard [8]. In this paper, we use the same heuristic as in [20]

both changing the CPU voltage and frequency. and put into the ready queue first the longest (based on tasks’
We consider systems that have multiple identical proces-WCET) among the tasks that become ready simultaneously.

sors with shared memory. The application characteristics and If there is some slack in the system and a task can be allo-

state are kept in the shared memory. All the ready tasks are putated more time than its WCET, the system can slow down the

CPU for the task appropriately save energy. Since tasks exhibiremaining tasks in the shifted schedules to meet the deadline.
a large variation in actual execution time, and in many cases,LST; will be used to claim the slack fdF; at run time.

only consume a small fraction of their worst case execution Given any heuristic, if the off-line phase does not fail, the
time [9], any unused time can be consideredlask Further- following on-line phase can be applied under the same heuris-
more, the execution does not always follow the longest path,tic. The following algorithm will assume that the longest path
and thus there may be some extra slack. For the AND-modelin the worst case meets the deadline, thallis< D.

applications greedy slack sharinglgorithms have been dis- Before presenting the on-line phase of the algorithm, we
cussed for multi-processor systems, in which part of the slackgive some definitions. As in [20], we define tastimated end
on processo¥’, will be shared with processdr, if P,’s ex- time (EET)for a task executing on a processor as the time at

pected finish timkis later thanP,’s but actually finishes ear- which the task is expected to finish execution if it consumes all
lier than P,. The remaining slack is given to the next task to the time allocated for it. To determine theadinesof tasks,
be run onP,. See [20] for details. we define the number ainfinished predecessor® ;) for
In the following, we will explore the application’s dynamic each taskl;. U P; will decrease by 1 when any predecessor of
characteristics both at the task set level (different executiontaskT; finishes execution. Task; is readywhenU P; = 0.
paths) and at the task level (different actual execution time The speed to execute tagk using greedy slack sharing
of each task). We extend the greedy slack sharing algorithmreclamation is denoted r—f§ To maintain the execution order
for dependent tasks [20] to incorporate the characteristics ofof tasks as in the canonical schedules, the execution order of
AND/OR model and show how it is correct with respect to the next expected task is definedi&® v . The current time
meeting the timing constraints. is represented by
Initially, all the root tasks are put into Ready-Q For all
other tasks[J P, is initialized as the number of predecessors
of T; if the corresponding vertex is not an OR node, and 1
otherwise. The current timeis set to0 and the execution
The algorithm consists of two phases:dfiline phaseand order of the next expected ta&lO y g is set tol.
anon-line phaseThe off-line phase is used to collect the exe-
cution information about the application with processor speed 1 T, =Head(Ready-Q)
as fmae and it is a two-round phase. In the first round, us- 2 If (Tx is OR nodé| EOnpr==EOy) && (U Py == 0))
ing list scheduling with longest task first (LTF) heuristics, a Goto Step 4;
canonical schedulis generated for each program section sep- 3 wait(); Goto Step 1;
arated by OR nodes, in which the tasks use their worst case 4 T, =dequeueReady-Q,

3.2. Greedy Algorithm

execution time. The time to finish the application along the EONEgT = EONET + 15

longest path (consisting of all the longest program section be- 5 If (T} is Computation node)

tween OR nodes) is defined Hs, which is stored in the PMP EFETy = LSTy, + ck; I* Note thatLSTy, >t */

at the very beginning. For the PMPs before the OR synchro- fo = Fmaz % mET—7y [*compute the speed fdf.*/

nization nodes, the worst case execution time for remaining If(Py is sleep && Head(Ready-Q) is next expected and ready)

tasks on path is gathered and stored 8. For the average signal®,);

case,ll, andIl/ are also analogously collected. The execu- ExecuteT}, at speedf);

tion order of taskl; is recorded a0, and we will maintain 6 If (T} is Computation node or AND node)

the same execution order of tasks in the on-line phase to meet For each success@ of T

the timing constraints. The execution order of an OR node UP; =UP; — 1;

is the maximal execution order of its predecessors plus 1. For If (UP; == 0) enqueu€l);, Read-Q;

tasks which are on different paths after an OR node and will be Goto Step 1;

executed at the same time, they may have the same execution 7 If (7 is OR node)

order. EOnEeT = EOy + 1; [*fupdate the next expected task*/
If TI, > D, the algorithm fails to guarantee the deadline; If selected patfp; /*the 1** task of pattp; is denoted byf*/

otherwise, the second round of the off-line phase shifts the UP; =0;

canonical schedules for all program sections to make them PutT; into Ready-Q

finish exactly on time. Notice that the shifting is a recursive Goto Step 1;

process when there are embedded OR nodes. The start time of
T; in the shifted schedules is call&test start timel.ST; and

is also recorded, it is the timE& muststart execution for the Figure 2. The GSS Algorithm invoked by~ F;

More accurately, it is the estimated end time (EET) of the task running Th.e gre_edy SlaCK Sh?-ring (GSS) algorithm for AND/OR ap-
on processoP;, as defined later. plications is shown in Figure 2. Remember that the execution

order of tasks will be kept the same as in the canonical sched4. Speculative Algorithms
ules. From the algorithm, each idle processor tries to fetch
the next ready task (Step 1 and 2). If the next expected task
is not ready, the processor will go to sleep (Step 3; We use

the functionwait() to put an idle processor to sleep and an- S .
other functionsignal(P) to wake processaP.). Otherwise, if whole application, the other S to spec.ulat'e the SF‘L“‘*“‘G'

. . fly to reflect actual behavior of the application, that is, dynam-
the task is a computation task, the processor computes a new

s . I|<cally taking into account the remaining work. For the first
speed for the ready task, wakes up an idle processor if the tas) .

. o cheme, we can speculate a single speed if the speed levels are
expected after the one the processor is handling is ready an . .

X : ne grained, or two speeds otherwise. For the second scheme,
changes the speed if necessary before executing the ready task o .
. we speculate after each OR synchronization node since more
(Steps 4 and 5). If the task is a dummy task (AND/OR node), lack can be expected from different paths after the branch
the successors of the node are handled properly (Step 6 and 7?. P P '
The functionenqueue(T,Qs used to put the ready tagkinto _ _ _
Q in the order of tasks’ execution order. The shared memory4.1. Static Speculative Algorithms
holds the control information, such &eady-Q U P values,
which mL_Jst be uanteq ywthm a critical section (not shown in For static speculative (SS) algorithm, the spegd, at
the algorithm for simplicity). which the application should run is decided at the very be-
The slack sharing is implicit in the algorithm. In Step 4 and ginning based on the statistical information about the whole

5, when a processor picks a task that has a eallf&F than application, as follows:
the one it should pick, slack sharing happens implicitly.

Based on different strategies, we developed two specula-
tive schemes. One is to statically speculate the speed for the

II

fss = fmaw X 6@

3.3. Algorithm Analysis
wherell,, is the average case finish time of the entire ap-
plication, which is calculated &d1, = >, 11§ x P, where
Theorem 1 For an application represented by an AND/OR TI? is the average case finish time for pathand P, is the
graph with a deadlineD and for a given heuristic for assign- probability of executing path.

ing priorities to tasks, the greedy slack sharing algorithm will if the speculated speed falls between two speed leyels (
finish t_)y timeD if the application can finish befor® in the fss < f141) and the speed levels are fine grained, single speed
canonical schedules. static speculation will set,, = f,1. But if the difference be-

tween two speed levels is large, two speeds will be speculated
for the application. At the beginning, the speculation speed,
From the off-line phase, after the canonical schedules aref, is set as the lower speed}, After a certain time point
shifted, for any execution path if every task uses up the time(ttp), fss is changed to the higher speed levkl,,. The value
that GSS algorithm allocates to it, the application will finish of t:, can be statically computed as follows:
justin time. DefineF"T}* as the finish time foff; in the worst
case for the shifted schedule. For any execution patie fion — fos
will have FT < D (T; € p). Notice thatE ET; is the latest tp = o — 11 x D
time T; should finish, following the same idea as in [20], it is A
not hard to prove thab ET; = FT;" (I; € p) for any path

L o & . : After f,, is calculated, we will execute the application at
p. That is, if the application can finish befofe in canonical J: PP

. . fss, but at the same time ensure that the application finishes
schedules, the execution of all paths under GSS will finish in on time. This means that we choose the maximum speed be-
time. The proof is omitted for lack of space. tweenf,, andf; for task7;, wherefi is computed from GSS,
While the greedy slack sharing algorithm is guaranteed to guaranteeing temporal correctness.
meet the timing constraints, there may be many speed changes |t s easy to see that, when picking the speed to execute
during the execution since it computes a new speed for eachy task, because the SS algorithms never sets a speed below
task. Itis known that a clairvoyant algorithm can achieve min- the speed determined by GSS, the SS algorithms will meet
imal energy consumption for uniprocessor systems by runningthe timing constraints if GSS can finish on time. Therefore,
all tasks at a single speed setting if the actual running time offrom Theorem 1, the SS algorithms can meet the timing con-

every task is known. Considering the speed adjustment oversiraints if the longest path in canonical schedule under the
head, the single speed setting is even more attractive. Fronggme heuristics finishes on time.

this intuition, using the statistical information about applica-
tion, we propose the following speculative algorithms. 2|f path p contains OR nodes, the same formula is applied recursively.

4.2. Adaptive Speculative Algorithm

If the statistical characteristics of tasks in the application
vary substantially, it may be better to speculate the speed on-
the-fly based on the statistical information about the remain-
ing tasks. Considering the speed adjustment overhead and ex-
pecting that different paths after the OR synchronization node
may result in more slack, the adaptive speculative (AS) algo-
rithm speculates the speed after each OR synchronization node
based on statistical information about the remaining tasks, and
sets the speculative speed as:

T
a

D—t

wheret is the current time andll] can be calculated dy-
namically as the summation of the weighted average of the
execution times of all the remaining tasks. Again, to guarantee
the deadline, the spegffor T; will be: f; = maa:(fg, fas)-

fas = fmar X

5. Evaluation and Analysis

In the simulation, we account for both the overhead and
discrete speed levels. There are two kinds of overhead, the
new speed computation overhead and the voltage/speed ad-
justment overhead. A detailed discussion about accounting for
overheads and discrete speed levels can be found in [20]. The
new spged computation overhead usetDiscycles, obtained _ Figure 3. An Example of AND/OR Graph
by running the code to compute the new speed on the Sim-
pleScalar micro-architecture simulator [5]. With current tech-
nology, changing the voltage/speed needs betwigenand value ofa; for taskT; is generated from a normal distribution
150us [3, 15], but we expect this overhead to drop with tech- arounda and the actual execution time 6f follows a normal
nological advances in the near future. We assume that speedistribution aroundy;. Each point in each graph is an average
adjustment needsus (the time needed to change the speed of 1000 runs.
once). We assume that an idle processor consumes 5% of the We show results for the following schemes in the graph:
maximal power level [2]. static power management (SPM), greedy slack sharing (GSS),

We consider an application of automated target recognitionstatic speculation with single speed (SS1), static speculation
(ATR) (the dependence graph is not shown due to space limi-with two speeds (SS2) and adaptive speculation at each OR
tation) and a synthetic application shown in Figure 3. In ATR, node (AS). The energy consumption of each scheme is nor-
the regions of interest (ROI) in one frame are detected andmalized to the energy consumed by no power management
each ROl is compared with all the templates. For the synthetic(NPM) where every task runs d},., with idle state energy
application, the time unit for; anda; is in the order ofl0—* set as 5% of the maximum power level.
second. The loops in the graph can be expanded as discussed
in Section 2. The numbers associated with each loop are thés.1. The Effect of Load
maximal number of iterations paired with the probabilities to
have specific number of iterations. If there is only one num- When load increases, there is less static slack in the sys-
ber, it is the number of iterations during the execution. We tem and therefore energy consumption should increase for all
vary the parametergoad anda to see how they affect the en- the schemes (since the slowdown capability is smaller) ex-
ergy consumption for each scheme. Toadis defined asthe cept NPM (since it will consume less idle energy). The re-
length of the canonical schedule for the longest patbver sults in Figure 4 show the normalized energy consumption for
the deadline. The variability of the tasks’ execution times ATR running on dual-processor systems £ 0.95, which
defined as the average case execution time over worst case exvas measured and means that there is little slack from task’s
ecution time for the tasks in the application, which indicates run-time behavior). Note that the normalized energy con-
how much dynamic slack there is during tasks’ execution. The sumption starts by decreasing witbad. This is counter-

Y ~ ~ @ @ ©
a =) a S} a S
T T T
%)
T
=

Energy consumption normalized to NPM
P
3

Energy consumption normalized to NPM

o
a
T

a
S

N

S

L L L L L L L L L L L
0.2 03 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

o
e

a. Transmeta Model b. Intel XScale Model
Figure 4. Energy vs. Load for ATR running on Dual-Processor systems; a = 0.95, overhead = bus.

intuitive since, without accounting for the idle energy, nor- scheme and more sharp changes because of the idle time
malized energy consumption would increase proportionally forced by the scheduler between tasks for the sake of syn-
with theload (since the slowdown capability is smaller). But, chronization. Due to the similarity of results, we only show
at lowerload, the idle energy consumption has a significant in Figure 5 the results for 6 processors.

effect: when the desired speed is less tifan,, the CPU We expected the speculative schemes to perform better than
speed is set to run d,;,; the normalized energy consump- the greedy scheme. The reason is that, typically, the greedy
tion curves go down with increasédld (i.e. decrease inidle behavior tends to run at the least possible speed to use up all
time) and starts increasing withad when speed is set above the slack for the current task, and consequently the future tasks
fmin- When the processors are simulated following the In- must run at very high speed [1, 20]. However, the minimum
tel XScale model (Figure 4b), where there are fewer speedspeed is bounded by,.;,,, preventing the greedy scheme from
levels but wider speed range between levels, the normalizedusing all the available slack at the very beginning and forcing
energy for SPM incurs sharp changes. These changes corsome slack to be saved for future use. Fewer speed levels also
respond to the upgrade of speed from one level to the nextprevents the greedy scheme from using the slack by decreas-
level. For example, whelvad = 0.35, SPM runs at 400MHz ing the probability of speed changes. As a result, the greedy
and whenload = 0.4 SPM needs to run at 600MHz (rather scheme benefits from the presencefgf,, and speed levels.
than 400MHz) because of speed adjustment overhead. WhiléThe greedy scheme is better than some speculative algorithms
whenload = 0.5, SPM still runs at 600MHz and the energy wheny,,;, is rather high or there are fewer speed levels.
consumption decreases because of less idle energy consumed. To see howf,,;, and the speed levels affects the perfor-
For static speculation, whénad changes fronf.3 to 0.35 or mance of the schemes on energy savings, in our future work
from 0.8 to 0.85, the normalized energy for SS1 and SS2 has we plan to experiment with different values &f«= and dif-

a jump, the reason is that the speculative speed is upgradeéerent number of speed levels betwegn,, and friy..

from one level to the next higher levelNote that the figures

show the normalized energy and the energy consumption bys 2. The Effect ofa

NPM decreases with load increasing since less idle energy is

consumed. For the synthetic application running on a dual-processor

When ATR is exgcuted.on 4 or 6 processor systems, Simi'system withoad set at.8 andoverhead at5us, when chang-
lar results are obtained with more energy consumed by eachng , the normalized energy consumed by each scheme is
shown in Figure 6. Since both changitgd anda have the
same effect on the available slack in the system, the shapes of

3Note thatfes = fmar X J& = fmaz X §% x 2 and we defined
load = Ze, sofos = x load x Ze. For ATR running on dual- : o
b . Jaa fgz; hen! dHC 03 h | t.g di the curves for dynamic schemes are similar to whei was
1 r mhe ~ 0.48, when = 0.3 the speculative speed is N .
processor System, whenfoa) pectiatve sp changed (the curves for SPM are quite different since SPM
150MHz, while whenload = 0.35 the speculative speed will increase one . .
level and bet0OMHz. It is the same fotoad change fromD.8(400MHz) to can only use static slack that relateditad only). Notice

0.85(600MHz). that, for the Intel XScale model, wittbad = 0.8, SPM runs

100

VoA
)
i

Energy consumption normalized to NPM
Energy consumption normalized to NPM

0.9

Load

a. Transmeta Model b. Intel XScale Model
Figure 5. Energy vs. Load for ATR running on 6-Processor systems; « ~ 0.95, overhead=5 us.

at fiae = 1GHz rather than800M H =z and consumes the since most of the slack will be used to cover the speed adjust-
same energy as NPM since SPM does not take into accountent overhead. All the dynamic algorithms perform the best

the actual execution time behavior. with moderatdoad and . When the number of processors
increases, the performance of the dynamic schemes decreases

6. Conclusion due to the limited parallelism and the frequent idleness of the
processors.

In this paper, we extend the AND/OR model by adding
probabilities to each execution path after each OR node. ThisReferences
extended model can be used for applications, where a task is
ready to execute when ome moreof its predecessors finish 3)
execution and oner moreof its successors will be ready af- [1] N. AbouGhazaleh, D. Moss B. Childers and R. Mel-

ter the task finishes execution. With the extended AND/OR hem. Toward the Placement of Power Management
model, we modify the greedy slack sharing algorithm for de- Points in Real Time ApplicationsVorkshop on Com-
pendent tasks on multi-processor systems developed in [20]. pilers and Operating Systems for Low Power (COLP)

Then, using statistical information about the application, we Barcelona, Spain, 2001.

proposed a few variations of speculative algorithms that in- [2] H. Aydin, R. Melhem, D. Mosg and P. M. Alvarez. Dy-
tend to save more energy by reducing the number of speed namic and Aggressive Scheduling Techniques for Power-
change (and thus the overhead) while ensuring that the appli- Aware Real-Time SystemBroc. of the22!" IEEE Real-
cation meet the timing constraints. Time Systems Symposiumndon, UK, Dec. 2001.

The performance of all the algorithms in terms of energy .
savings is analyzed through simulations. The greedy algo- [31 T. D. Burd, T. A. Permg, A J. Stratakog and R. W.
rithm is surprisingly better than some speculative algorithms. Brodersen. A Dynamic Voltage Scaled _Mlc_roprocessor
The reasons come from two points: one is the minimal speed System, [EEE Journal of Solid-State Circuits/ol.35,
limitation that prevents the greedy algorithm from using up the no.11, Nov. 2000.
slack very aggressively; the other is fewer speed levels that [4] T.D. Burd and R. W. Brodersen. Energy Efficient CMOS
prevents the greedy algorithm from changing the speed fre- Microprocessor DesignProc. HICSS Conferencepp.
guently. The greedy scheme is good enough when the system 288-297, Maui, Hawaii, January 1995.
has a reasonable minimal speed. The energy consumption for>L5] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
all the power management schemes decreases unexpected| . .
when theload increases at lovioad because of the minimal version 2.0. Tech.. ReporF 13423 Computer Science De-
speed limitation and the idle energy consumption. The dy- partment, University of Wisconsin-Madison, Jun. 1997.
namic schemes become worse relative to static power manage-[6] A. Chandrakasan, V. Gutnik and T. Xanthopoulos. Data
ment (SPM) wheioad becomes higher andbecomes larger, Driven Signal Processing: An Approach for Energy Ef-

Figure 6. Energy vs.

100

95t 4
g g
Zz Or 1 z
2 2
85 | SPM ——
§ GSS === E
3 SS1 ¥ =
L SS2 v
£ ® AS - £
2 2
758
§ "% §
8 8
£ oF N\ £
g N\ 3
TN 5
& LN &
T 60| N o
= . &
w - w

55

\.___ - A E

50
0.1

L L L L
0.5 0.6 0.7 0.8

Alpha

L L L
0.2 0.3 0.4 0.9

a. Transmeta Model

overhead = bus.

(7]

(8]

El

[10]

[11]

[12]

[13]

ficient Computing,Proc. Int'ISymp. Low-Power Elec-
tronic DevicessMonterey, CA 1996.

A. Chandrakasan, S. Sheng and R. Brodersen. Low-
power CMOS Digital DesignlEEE Journal of Solid-
state circuit pp. 473-484, April 1992.

M. L. Dertouzos and A. K. Mok. Multiprocessor on-line
scheduling of hard-real-time taskEEE Trans. On Soft-
ware EngineeringSE-15 (12): 1497-1505, 1989.

[16]

R. Ernstand W. Ye. Embedded Program Timing Analysis
based on Path Clustering and Architecture Classification.
In Computer-Aided Design (ICCAD)9f@p. 58-604. San
Jose, CA, November 1997.

D. W. Gillies and W.-S. Liu, Scheduling Tasks With
AND/OR Precedence ConstraintSIAM J. Compy.
24(4): 797-810, 1995.

100

90

80

70

30
0.1

« for the synthetic application of running on 2-Processor systems;

[15]

[17]

05 06 0.8
Alpha

b. Intel XScale Model

L L
0.2 0.3 0.9

load = 0.8,

[14] D. Mos%®, H. Aydin, B. Childers and R. Melhem.

Compiler-Assisted Dynamic Power-Aware Scheduling
for Real-Time ApplicationsyWorkshop on Compiler and
OS for Low PowerPhiladelphia , PA, October 2000

P. Pillai and K. G. Shin. Real-Time Dynamic \oltage
Scaling for Low-Power Embedded Operating Systems,
18" ACM Symposium on Operating Systems Principles
(SOSP’01)Banff, Canada, Oct. 2001

D. Shin, J. Kim and S. Lee, Intra-Task Voltage Schedul-
ing for Low-Energy Hard Real-Time Application&EE
Design and Test of Computeidarch 2001.

P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet,
D. Kerkest and R. Lauwereins. Energy-Aware Runtime
Scheduling for Embedded-Multiprocessor SOGEE
Design and Test of Computer®l. 18, no. 5, Sep. 2001.

[18] http://www.transmeta.com

F. Gruian. System-Level Design Methods for Low- [19] http://developer.intel.com/design/intelxscale/

Energy Architectures Containing Variable Voltage Pro-
cessors.The Power-Aware Computing Systems 2000
Workshop at ASPLOS 200C@ambridge, MA, Novem-
ber 2000.

P. Kumar and M. Srivastava, Predictive Strategies for
Low-Power RTOS Schedulingroceedings of the 2000
IEEE International Conference on Computer Design:
VLSI in Computers and Processors

R. Melhem, N. AbouGhazaleh, H. Aydin and D. Méss
Power Management Points in Power-Aware Real-Time
Systems. IPower Aware Computinded. by R.Graybill
and R.Melhem, Plenum/Kluwer Publishers, 2002.

[20] D. Zhu, R. Melhem and B. Childers. Scheduling with

Dynamic Voltage/Speed Adjustment Using Slack Recla-
mation in Multi-Processor Real-Time Systersaibmit-
ted to IEEE Trans. on Parallel and Distributed Systems
Nov. 2001.A preliminary version appeared in tHz2t"
IEEE Real-Time System Symposium, 2001.

