
IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 1

Reliability-Aware Energy Management for

Periodic Real-Time Tasks

Dakai Zhu, Member, IEEE, Hakan Aydin, Member, IEEE,

Abstract

Dynamic Voltage and Frequency Scaling (DVFS) has been widely used to manage energy in real-

time embedded systems. However, it was recently shown that DVFS has direct and adverse effects on

system reliability. In this work, we investigate static and dynamic reliability-aware energy management

schemes to minimize energy consumption for periodic real-time systems while preserving system

reliability. Focusing on earliest deadline first (EDF) scheduling, we first show that the static version

of the problem is NP-hard and propose two task-level utilization-based heuristics. Then, we develop

a job-level online scheme by building on the idea of wrapper-tasks, to monitor and manage dynamic

slack efficiently in reliability-aware settings. The feasibility of the dynamic scheme is formally proved.

Finally, we present two integrated approaches to reclaim both static and dynamic slack at run-time. To

preserve system reliability, the proposed schemes incorporate recovery tasks/jobs into the schedule as

needed, while still using the remaining slack for energy savings. The proposed schemes are evaluated

through extensive simulations. The results confirm that all the proposed schemes can preserve the

system reliability and the ordinary (but reliability-ignorant) energy management schemes will result in

drastically decreased system reliability. For the static heuristics, the energy savings are close to what

can be achieved by an optimal solution by a margin of 5%. By effectively exploiting the run-time slack,

the dynamic schemes can achieve additional energy savings while preserving system reliability.

Index Terms

Real-time systems, periodic tasks, earliest deadline first (EDF) scheduling, dynamic voltage and

frequency scaling (DVFS), reliability, transient faults, backward recovery.

A preliminary version of this paper appeared in IEEE RTAS 2007; Dr. Zhu (dzhu@cs.utsa.edu) is with the University of

Texas at San Antonio and Dr. Aydin (aydin@cs.gmu.edu) is with George Mason University.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 2

I. INTRODUCTION

The phenomenal improvements in the performance of computing systems have resulted in

drastic increases in power densities. For battery-operated embedded devices with limited energy

budget, energy is now considered a first-class system resource. Many hardware and software

techniques have been proposed to manage power consumption in modern computing systems and

power-aware computing has recently become an important research area. One common strategy

to save energy is to operate the system components at low-performance (thus, low-power) states,

whenever possible. For example, Dynamic Voltage and Frequency Scaling (DVFS) technique is

based on scaling down the CPU supply voltage and processing frequency simultaneously to save

energy [34], [35].

For real-time systems where tasks have stringent timing constraints, scaling down the clock

frequency (i.e. processing speed) may cause deadline misses and special provisions are needed. In

the recent past, several research studies explored the problem of minimizing energy consumption

while meeting all the deadlines for various real-time task models. These include a number of

power management schemes which exploit the available static and/or dynamic slack in the system

[4], [11], [27], [30], [10], [31]. For instance, the optimal static power management scheme for a

set of periodic tasks would scale down the execution of all tasks uniformly at a speed proportional

to the system utilization and employ the Earliest-Deadline-First (EDF) scheduling policy [4],

[27].

Reliability and fault tolerance have always been major factors in computer system design. Due

to the effects of hardware defects, electromagnetic interferences and/or cosmic ray radiations,

faults may occur at run-time, especially in systems deployed in dynamic/vulnerable environments.

Several research studies reported that the transient faults occur much more frequently than the

permanent faults [9], [21]. With the continued scaling of CMOS technologies and reduced design

margins for higher performance, it is expected that, in addition to the systems that operate in

electronics-hostile environments (such as those in outer space), practically all digital computing

systems will be remarkably vulnerable to transient faults [15].

The backward error recovery techniques, which restore the system state to a previous safe

state and repeat the computation, can be used to tolerate transient faults [29]. It is worth noting

that both DVFS and backward recovery techniques are based on (and compete for) the active

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 3

use of the system slack. Thus, there is an interesting trade-off between energy efficiency and

system reliability. Moreover, DVFS has been shown to have a direct and adverse effect on

the transient fault rates, especially for those induced by cosmic ray radiations [12], [15], [42],

further complicating the problem. Hence, for safety-critical real-time embedded systems (such

as satellite and surveillance systems) where reliability is as important as energy efficiency,

reliability-cognizant energy management becomes a necessity.

Fault tolerance through redundancy and energy management through DVFS have been ex-

tensively (but, independently) studied in the context of real-time systems. Only recently, few

research groups began to investigate the implications of having both fault tolerance and energy

efficiency requirements [14], [26], [33], [36]. However, none of them considers the negative

effects of DVFS on system reliability. As the first effort to address the effects of DVFS on

transient faults, we previously studied a reliability-aware power management (RA-PM) scheme.

The central idea of the scheme is to exploit the available slack to schedule a recovery task at the

dispatch time of a task before utilizing the remaining slack for DVFS to save energy, thereby

preserving the system reliability [38]. The scheme has been extended to consider various task

models and reliability requirements [39], [41], [44], [45].

In this paper, we investigate both static and dynamic RA-PM schemes for a set of periodic

real-time tasks scheduled by the preemptive EDF policy. Specifically, we consider the problem

of exploiting the system’s static and dynamic slack to save energy while preserving system

reliability. We show that the optimal static RA-PM problem is NP-hard and propose two efficient

heuristics for selecting a subset of tasks to use static slack (i.e., spare CPU capacity) for energy

and reliability management. Moreover, we develop a job-level dynamic RA-PM algorithm that

monitors and manages the dynamic slack which may be generated at run-time, again for these

dual objectives. The latter algorithm is built on the wrapper-task mechanism: the key idea is

to conserve the dynamic slack allocated to scaled tasks for recovery across preemption points,

which is essential for preserving reliability. Integrated schemes for effectively exploiting both

static and dynamic slack in a uniform manner are also presented. To the best of our knowledge,

this is the first research effort that provides a comprehensive energy and reliability management

framework for periodic real-time tasks.

The remainder of this paper is organized as follows. The related work is summarized in

Section II. Section III presents the system models. Section IV focuses on the task-level static

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 4

RA-PM schemes. The wrapper-task mechanism and the job-level dynamic RA-PM scheme

are studied in Section V. Section VI presents the integrated slack reclamation mechanisms.

Simulation results are discussed in Section VII and we conclude in Section VIII.

II. RELATED WORK

In [33], Unsal et al. proposed a scheme to postpone the execution of backup tasks to minimize

the overlap of primary and backup execution and thus, the energy consumption. The optimal

number of checkpoints, evenly or unevenly distributed, to achieve minimal energy consumption

while tolerating a single fault was explored by Melhem et al. in [26]. Elnozahy et al. proposed

an Optimistic Triple Modular Redundancy (OTMR) scheme that reduces the energy consumption

for traditional TMR systems by allowing one processing unit to slow down provided that it can

catch up and finish the computation before the application deadline [14]. The optimal frequency

settings for OTMR was further explored in [43]. Assuming a Poisson fault model, Zhang et al.

proposed an adaptive checkpointing scheme that dynamically adjusts checkpoint intervals for

energy savings while tolerating a fixed number of faults for a single task [36]. The work is

further extended to a set of periodic tasks [37].

For the existing DVFS-based research efforts, most of the research either focused on tolerating

fixed number of faults [14], [26] or assumed constant fault rate [36], [37]. However, it was shown

that there is a direct and negative effect of voltage scaling on the rate of transient faults [12],

[15], [42]. Taking such effects into consideration, Ejlali et al. studied schemes that combine the

information (about hardware resources) and temporal redundancy to save energy and to preserve

system reliability [13]. Recently, Pop et al. studied the problem of energy and reliability trade-

offs for distributed heterogeneous embedded systems [28]. The main idea is to tolerate transient

faults by switching to pre-determined contingency schedules and re-executing processes. A novel,

constrained logic programming-based algorithm is proposed to determine the voltage levels,

process start time and message transmission time to tolerate transient faults and minimize energy

consumption while meeting the timing constraints of the application.

In our recent work, to address the problem of reliability degradation under DVFS, we have

studied a reliability-aware power management (RA-PM) scheme based on a single-task model.

The central idea of RA-PM is to reserve a portion of the available slack to schedule a recovery

task for the task whose execution is scaled down, to recuperate the reliability loss due to the

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 5

energy management [38]. The idea has been extended later to consider various task models [39],

[44] as well as different reliability requirements [45].

The work reported in this paper is different from all previous work in that, focusing on

preemptive EDF scheduling, we study the reliability-aware power management problem for a

set of periodic real-time tasks. Both task-level static schemes and job-level dynamic schemes are

proposed. In addition, integrated approaches with a uniform static and dynamic slack reclamation

mechanism are also explored.

III. SYSTEM MODELS AND PROBLEM DESCRIPTION

A. Application Model

We consider a set of independent periodic real-time tasks Γ = {T1, . . . , Tn}. The task Ti

is characterized by the pair (pi, ci), where pi represents its period (which is also the relative

deadline) and ci denotes its worst case execution time (WCET). The first job of each task is

assumed to arrive at time 0. The jth job of Ti, which is referred to as Jij , arrives at time (j−1)·pi

and has a deadline of j · pi.

In DVFS settings, it is assumed that the WCET ci of task Ti is given under the maximum

processing speed fmax. For simplicity, we assume that the execution time of a task scales linearly

with the processing speed1. That is, at the scaled speed f (≤ fmax), the execution time of task

Ti is assumed to be ci · fmax

f
.

The system utilization is defined as U =
∑n

i=1 ui, where ui = ci

pi
is the utilization for task Ti.

The tasks are to be executed on a uni-processor system according to the preemptive EDF policy.

Considering the well-known feasibility condition for EDF [25], we assume that U ≤ 1.

B. Power Model

The operating frequency for CMOS circuits is almost linearly related to the supply voltage

[7]. DVFS reduces supply voltage for lower frequency requirements to save power/energy [34]

and, in what follows, we will use the term frequency change to stand for both supply voltage

1A number of studies have indicated that the execution time of tasks does not scale linearly with reduced processing speed

due to accesses to memory [32] and/or I/O devices [6]. However, exploring the full implications of this observation is beyond

the scope of this paper and is left as our future work.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 6

and frequency adjustments. Considering the ever-increasing static leakage power due to scaled

feature size and increased levels of integration [23], as well as the power-saving states provided in

modern power-efficient components (e.g., CPU [2] and memory [24]), in this work, we adopt the

system-level power model originally proposed in [42] (similar power models have been adopted

in several previous work [3], [11], [19], [23], [30]), where the power consumption P (f) of a

computing system at frequency f is given by:

P (f) = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceff
m) (1)

Above, Ps is the static power, which includes the power to maintain basic circuits and to keep the

clock running. It can be removed only by powering off the whole system. Pind is the frequency-

independent active power, which is a constant and corresponds to the power that is independent

of CPU processing speed. It can be efficiently removed (typically, with acceptable overhead)

by putting the system components (e.g. main memory) into sleep state(s) [2], [24]. Pd is the

frequency-dependent active power, which includes the processor’s dynamic power and any power

that depends on system processing frequency f (and the corresponding supply voltage) [7], [24].

When there is computation in progress, the system is active and h̄ = 1. Otherwise, when the

system is turned off or in power-saving sleep modes, h̄ = 0. The effective switching capacitance

Cef and the dynamic power exponent m (in general, 2 ≤ m ≤ 3) are system-dependent constants

[7]. Despite its simplicity, this power model captures the essential components for system-wide

energy management.

Note that, even though the switching capacitance Cef may show some variation for different

tasks, accurate information about these variations may not be always available. Consequently,

following also recent research work [4], [11], [27], [31], [30], we assume a common Cef for

all tasks, which can be also seen as the average system capacitance. This also allows us to

focus primarily on the main problem of this paper, which is managing reliability and energy

simultaneously.

We assume that the normalized processing frequency is used with the maximum frequency as

fmax = 1 and the frequency f can be varied continuously from the minimum available frequency

fmin to fmax. The implications of having discrete speed levels are discussed in Section VII-C.

In addition, the overhead of frequency adjustment is assumed to be negligible or such overhead

can be incorporated into the WCET of tasks.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 7

Minimum energy-efficient frequency: Considering that energy is the integral of power over

time, the energy consumption for executing a given job at the constant frequency f will be

E(f) = P (f) · t(f) = P (f) · c
f

, where t(f) = c
f

is the execution time of the job at frequency f .

From Equation (1), intuitively, lower frequencies result in less frequency-dependent active energy

consumption. But with reduced speeds, the job runs longer and thus consumes more static and

frequency-independent active energy. Therefore, a minimal energy-efficient frequency fee, below

which DVFS starts to consume more total energy, does exist [19], [23], [30]. Considering the

prohibitive overhead of turning on/off a system (e.g., tens of seconds), we assume that the system

will is on and Ps is always consumed during the operation interval considered (but it can be put

into power-saving sleep states). From the above equations, one can find that [42]:

fee = m

√
Pind

Cef · (m− 1)
(2)

Consequently, for energy efficiency, we limit the processing frequency to be fee ≤ f ≤ fmax.

C. Fault and Recovery Models

At run-time, faults may occur due to various reasons, such as hardware failures, electromag-

netic interferences as well as the effects of cosmic ray radiations. The transient faults occur much

more frequently than permanent faults [9], [21], especially with the continued scaling of CMOS

technology sizes and reduced design margins for higher performance [15]. Consequently, in this

paper, we focus on transient faults, which in general follow a Poisson distribution [36], [37].

Note that, DVFS has been shown to have a direct and negative effect on system reliability due

to increased number of transient faults (especially the ones induced by cosmic ray radiations) at

lower supply voltages [12], [15]. Therefore, the average transient fault arrival rate for systems

running at scaled frequency f (and corresponding supply voltage) can be expressed as [42]:

λ(f) = λ0 · g(f) (3)

where λ0 is the average fault rate corresponding to fmax. That is, g(fmax) = 1. With reduced

processing speeds and supply voltages, the fault rate generally increases [42]. Therefore, we

have g(f) > 1 for f < fmax.

It is assumed that transient faults are detected by using sanity (or consistency) checks at the

completion of a job’s execution [29]. When faults are detected, backward recovery techniques

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 8

will be employed for fault tolerance and the recovery task is dispatched, in the form of re-

execution [26], [36], [38]. Again, for simplicity, the overhead for fault detection is assued to be

incorporated into the WCETs of tasks.

D. Problem Description

Our primary objective in this paper is to develop power management schemes for periodic

real-time tasks executing on a uni-processor system and to preserve system reliability at the

same time. The reliability of a real-time system generally depends on the correct execution of

all jobs. Although it is possible to preserve the overall system reliability while sacrificing the

reliability for some individual jobs, for simplicity, we focus on maintaining the reliability of

individual jobs in this work. Here, the reliability of a real-time job is defined as the probability

of its being correctly executed (considering the possible recovery, if any) before its deadline.

Therefore, the problem to be addressed in this paper is, for a periodic real-time task set

with utilization U , how to efficiently use the spare CPU utilization (1− U), as well as the

dynamic slack generated at run-time, in order to maximize energy savings while keeping

the reliability of any job of task Ti no less than R0
i (i = 1, . . . , n), where R0

i = e−λ0ci (from

Poisson fault arrival pattern with the average fault rate λ0 at fmax [38]) represents the original

reliability for Ti’s jobs, when there is no power management and the jobs use their WCETs.

Here, to simplify the discussion, we assume that the achieved system reliability is satisfactory

when there is no pre-scheduled recovery and no power management scheme is applied (i.e.,

all tasks are executed at fmax). We underline that the schemes to be studied in this paper can

be applied to systems where higher levels of reliability are required as well. Without loss of

generality, suppose that a recovery task RT needs to be pre-scheduled intentionally to achieve

the desired high level of reliability. Consider the augmented task set Γ′ = Γ ∪ {RT}. From the

discussion in the next two sections, applying the proposed schemes to Γ′ (where the recovery

task RT is treated as a normal task) will ensure that the reliabilities for all tasks in Γ′ will be

preserved, which will in turn preserve the required high level of system reliability.

In increasing level of sophistication and implementation complexity, we first introduce the

task-level static RA-PM schemes and then job-level dynamic RA-PM schemes in the next two

sections. The integration of static and dynamic schemes is further addressed in Section VI.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 9

IV. TASK-LEVEL STATIC RA-PM SCHEMES

A. Reliability-Aware Power Management (RA-PM)

Before presenting the proposed schemes, we first review the concept of reliability-aware power

management (RA-PM) [38]. Instead of utilizing all the available slack for DVFS to save energy

as in ordinary power management schemes which are reliability-ignorant (in the sense that no

attention is paid to the potential effects of DVFS on task reliabilities), the central idea of RA-PM

is to reserve a portion of the slack to schedule a recovery task (in the form of re-execution [29])

for any task whose execution is scaled down, to recuperate the reliability loss due to energy

management [38].

Here, for reliability preservation, the recovery task is dispatched only if transient fault(s) is

detected at the end of the scaled task’s execution. The recovery task is executed at the maximum

frequency fmax. With the help of the recovery task, the overall reliability for a task will be the

summation of the probability of the scaled task being executed correctly and the probability of

having transient fault(s) during the task’s scaled execution and the recovery task being executed

correctly. We have shown that, if the available slack is more than the WCET of a task, by

scheduling a recovery task (in the form of re-execution), the RA-PM scheme can guarantee

to preserve the reliability of a real-time job while still obtaining energy savings using the

remaining slack, regardless of increased fault rates and scaled processing speeds [38].

B. Task-Level RA-PM

We start with considering static RA-PM schemes that make their decisions at the task-level.

In this approach, for simplicity, all the jobs of a task have the same treatment. That is, if a

given task is selected for energy management, all its jobs will run at the same scaled frequency;

otherwise, they will run at fmax. From the above discussion, to recuperate reliability loss due to

scaled execution, each scaled job2 will need a corresponding recovery job within its deadline,

should a fault occur.

To provide the required recovery jobs, we construct a periodic recovery task (RT) by exploiting

the spare CPU capacity (i.e., static slack). The recovery task will have the same timing parameters

2We use the expression scaled job to refer to any job whose execution is slowed down through DVFS, for energy management

purposes.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 10

(i.e., WCET and period) as those of the task to be scaled. Therefore, with the recovery task,

for each primary job, a recovery job can be scheduled within its deadline. Note that a recovery

job is activated only when the corresponding primary job incurs a fault and that it is executed

always at the maximum processing speed for preserving the primary job’s reliability.

7

J11 J31 J21

0 14

tJ12 J32 J21

(a) the optimal ordinary SPM

7

J11 J21
J12

0 14

t
RJ

11
J31 RJ

12
J21 J32

(b) task-level RA-PM when managing task T1

RJ
11

RJ
12

J12J21J11

70 14

tJ31 J
21

RJ 21 J32

(c) task-level RA-PM when managing tasks T1 and T2

Fig. 1. Static schemes for a task set with three tasks {T1(1, 7), T2(2, 14), T3(2, 7)}.

As a concrete example, suppose that we have a periodic task set of three tasks Γ = {T1(1, 7),

T2(2, 14), T3(2, 7)} with system utilization U = 4
7
. Without considering system reliability, the

optimal ordinary static power management (SPM) under EDF will scale down all tasks uniformly

at the speed f = U · fmax = 4
7

as shown in Figure 1(a) [4], [27]. In the figure, the X-axis

represents time and the height of task boxes represents processing speed. Due to the periodicity,

only the schedule within the least common multiple (LCM) of tasks’ periods is shown. However,

by uniformly scaling down the execution in this way, the reliability figures of all the tasks (and

that of the system) would be significantly reduced [42].

Instead of scaling down the execution of all tasks using all the available slack, suppose that the

static RA-PM scheme chooses task T1 for management. That is, after constructing the recovery

task RT1(1, 7), which has the same WCET and period as those of T1 with the utilization ru1 = 1
7
,

the augmented system utilization will become U ′ = U + ru1 = 5
7
. Then, the remaining spare

capacity sc = 1 − U ′ = 2
7

will be allocated to task T1 and all its jobs can be scaled down

to the speed of 1
3
. With the recovery task RT1 and the scaled execution of T1, the effective

system utilization is exactly 1 and the modified task set is schedulable under EDF as shown in

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 11

Figure 1(b). From the figure, we can see that every scaled job of task T1 has a corresponding

recovery job within its deadline. Therefore, all T1’s jobs could preserve their reliability R0
1. Since

the jobs of tasks T2 and T3 run at fmax, their reliability figures are maintained at the levels of

R0
2 and R0

3, respectively.

Therefore, by incorporating a recovery task for the task to be managed, the task-level utilization-

based static RA-PM scheme could preserve system reliability while obtaining energy savings. In

[39], we reported that it is not optimal (in terms of energy savings) for the RA-PM scheme to

utilize all the slack for a single task in case of aperiodic tasks. Similarly, we can use the spare

capacity for multiple periodic tasks for better energy savings. For instance, Figure 1(c) shows

the case where both tasks T1 and T2 are scaled to speed 2
3

after constructing the corresponding

recovery tasks RT1 and RT2. For illustration purposes, if we assume that the system power is

given by a cubic function, simple algebra shows that managing only task T1 could save 8
9
E,

where E is the energy consumed by all jobs of task T1 within LCM under no power management.

In comparison, the energy savings would be 11
9
E if both tasks T1 and T2 are managed, which

is a significant improvement.

Intuitively, when more tasks are to be managed, more computation can be scaled down for

more energy savings. However, more spare capacity will be reserved for recovery tasks, which, in

turn, reduces the remaining spare capacity for DVFS to save energy. A natural question to ask is,

for a periodic task set with multiple real-time tasks, whether there exists a fast (i.e. polynomial-

time) optimal solution (in term of energy savings) for the problem of task-level utilization-based

static RA-PM.

C. Intractability of Task-Level RA-PM

The inherent complexity of the optimal static RA-PM problem warrants an analysis. Suppose

that the system utilization of the task set is U and the spare capacity is sc = 1 − U . If a

subset Ψ of tasks are selected for management with total utilization X =
∑

Ti∈Ψ ui < sc, after

accommodating all recovery tasks, the remaining CPU spare capacity (i.e., sc − X) can be

used to scale down the selected tasks for energy management. Considering the convex relation

between power and processing speed (see Equation 1), the solution that minimizes the energy

consumption will uniformly scale down all jobs of the selected tasks, where the scaled processing

speed will be f = X
X+(sc−X)

= X
sc

. Since the probability of recovery jobs being activated is rather

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 12

small, by ignoring the energy consumed by recovery jobs, the total energy consumption for all

primary jobs (i.e., the total fault-free energy consumption) within LCM is found as:

ELCM = LCM · Ps + LCM(U −X)(Pind + cef · fm
max)

+LCM · sc
(
Pind + cef ·

(
X

sc

)m
)

(4)

where the first part is the energy consumption due to static power, the second part captures

the energy consumption of unselected tasks, and finally, the third part represents the energy

consumption of the selected tasks. Simple algebra shows that, when Xopt = sc ·
(

Pind+Cef

m·Cef

) 1
m−1 ,

ELCM will be minimized.

If sc > Xopt ≥ U , all tasks should be scaled down appropriately to minimize energy

consumption. Otherwise, the problem becomes essentially a task selection problem, where the

summation of the utilization for the selected tasks should be exactly equal to Xopt, if possible. In

other words, such a choice would definitely be the optimal solution. In what follows, we formally

prove that the task-level utilization-based static RA-PM problem is NP-hard by transforming the

PARTITION problem, which is known to be NP-hard [17], to a special case of the problem.

Theorem 1: For a set of periodic tasks, the problem of the task-level utilization-based static

RA-PM is NP-hard.

Proof: We consider a special case of the problem with m = 2, Cef = 1 and Pind = 0;

that is, Xopt = sc
2

. We show that even this special instance is intractable, by transforming the

PARTITION problem, which is known to be NP-hard [17], to that special case.

In the PARTITION problem, the objective is to find whether it is possible to partition a set

of n integers a1, . . . , an (where
∑n

i=1 ai = S) into two disjoint subsets, such that the sum of

numbers in each subset is exactly S
2

.

Given an instance of the PARTITION problem, we construct the corresponding static RA-PM

instance as follows: we have n periodic tasks, where ci = ai and pi = 2 · S. Note that, in this

case, U =
∑ ci

pi
= 1

2
, sc = 1 − U = 1

2
. Observe that, the energy savings will be maximized if

it is possible to find a subset of tasks whose total utilization is exactly Xopt = sc
2

= 1
4
. Since

pi = 2S ∀i, this is possible if and only if one can find a subset of tasks Ψ such that
∑

i∈Ψ ci = S
2

.

But this can happen only if the original PARTITION problem admits a YES answer. Therefore, if

the static RA-PM problem had a polynomial-time solution, one could also solve the PARTITION

problem in polynomial-time, by constructing the corresponding RA-PM problem, and checking

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 13

if the maximum energy savings that can be obtained correspond to the amount we could gain

through managing exactly Xopt = sc
2

= 25% of the periodic workload.

D. Heuristics for Task-Level RA-PM

Considering the intractability of the problem, we propose two simple heuristics for selecting

tasks for energy management: largest-utilization-first (LUF) and smallest-utilization-first (SUF).

Suppose that the tasks in a given periodic task set are indexed in the non-decreasing order of

their utilizations (i.e., ui ≤ uj for 1 ≤ i < j ≤ n). SUF will select the first k tasks, where k is

the largest integer that satisfies
∑k

i=1 ui ≤ Xopt. Similarly, LUF selects the task with the largest

utilization first and, in the reverse order of task’s utilization, tasks with smaller utilization are

added to the selected subset Ψ one by one as long as
∑

Tk∈Ψ uk ≤ Xopt.

Here, SUF tries to manage as many tasks as possible. However, after selecting the first few

tasks, if the task with the next smallest utilization cannot fit into Xopt, SUF may be forced

to use a significant portion of the spare capacity (i.e., much more than necessary) for energy

management, which may not be optimal. On the contrary, LUF tries to select larger utilization

tasks first, and the difference between Xopt and the total utilization of the selected tasks is less

than the smallest utilization among all tasks. The potential drawback of LUF is that, relatively

few tasks might be managed for energy savings. These heuristics are evaluated in Section VII.

V. JOB-LEVEL DYNAMIC RA-PM ALGORITHM

In our backward recovery framework, the recovery jobs are executed only if their correspond-

ing scaled primary jobs fail. Otherwise, the CPU time reserved for recovery jobs is freed and

becomes dynamic slack at run-time. Moreover, it is well-known that real-time tasks typically

take a small fraction of their WCETs [16]. Therefore, significant amount of dynamic slack can

be expected at run time, which should be exploited to further save energy and/or to enhance

system reliability.

For ease of discussion, in this section, we first focus on the cases where no recovery task

is statically scheduled. That is, for the task set with system utilization U ≤ 1, we exploit

only the dynamic slack that comes from the early completion of real-time jobs for energy and

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 14

reliability management. The integrated approaches, which combine static and dynamic schemes

and collectively exploit spare capacity and dynamic slack, will be discussed in Section VI.

Unlike the greedy RA-PM scheme which allocates all available dynamic slack for the next

ready task when the tasks share a common deadline [38], in periodic execution settings, the run-

time dynamic slack will be generated at different priorities and may not be always reclaimable

by the next ready job [4]. Moreover, possible preemptions that a job could experience after it has

reclaimed some slack further complicate the problem. This is because, in RA-PM framework,

once a job’s execution is scaled through DVFS, additional slack must be reserved for the potential

recovery operation to preserve system reliability. Hence, conserving the reclaimed slack until

the job completes (at which point it may be used for recovery operation if faults occur, or freed

otherwise) is essential in reliability-aware settings.

A. Dynamic Slack Management with Wrapper-Tasks

The slack management problem for periodic tasks has been studied extensively (e.g., CASH-

queue [8] and α-queue [4] approaches) for different purposes. By borrowing and also extend-

ing some fundamental ideas from these studies, we propose the wrapper-task mechanism to

track/manage dynamic slack, which guarantees the conservation of the reclaimed slack, thereby

maintaining the reliability figures.

Here, wrapper-tasks are used to represent dynamic slack generated at run-time. At the highest

level, we can distinguish three rules for managing dynamic slack with wrapper-tasks:

• Rule 1 (slack generation): When new slack is generated due to early completion of jobs

or removal of recovery jobs, a new wrapper-task is created with the following two timing

parameters: a size that equals the amount of dynamic slack generated and a deadline that

is equal to that of the job whose early completion gave rise to this slack. Then, the newly

created wrapper-task will be put into a wrapper-task queue (i.e., WT-Queue), which is used

to track/manage available dynamic slack. Here, the wrapper-tasks in WT-Queue are kept in

the increasing order of their deadlines and all wrapper-tasks in WT-Queue represent slack

with different deadlines. Thus, the newly created wrapper-task may be merged with an

existing wrapper-task in WT-Queue if they have the same deadline.

• Rule 2 (slack reclamation): The slack is reclaimed when: (a) a non-scaled job has the

highest priority in Ready-Q and its reclaimable slack is larger than the WCET of the job’s

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 15

task (which ensures that a recovery, in the form of re-execution, can be scheduled to preserve

reliability); or, (b) the highest priority job in Ready-Q has been scaled (i.e., its recovery

job has already been reserved) but its speed is still higher than fee and there is reclaimable

slack. After reclamation, the corresponding wrapper-tasks are removed from WT-Queue and

destroyed.

• Rule 3 (slack forwarding/wasting): After slack reclamation, the remaining wrapper-tasks

in WT-Queue compete for CPU along with ready jobs. When a wrapper-task has the highest

priority (i.e., the earliest deadline) and is “scheduled”: (a) if there are jobs in the ready queue

(Ready-Q), the wrapper-task will “fetch” the highest priority job in Ready-Q and “wrap”

that job’s execution during the interval when the wrapper-task is “executed”. In this case,

the corresponding slack is actually lended to the ready job and pushed forward (i.e. it is

preserved with a later deadline); (b) otherwise, if there is no ready job, the CPU will become

idle, and the wrapper-task is said to “execute no-ops” where the corresponding dynamic

slack is consumed/wasted during this time interval. Note that, when wrapped execution

is interrupted by higher priority jobs, only part of slack will be pushed forward (if it is

consumed by the wrapped execution) or wasted, while the remaining part has the original

deadline.

B. An Example with Wrapper-Tasks

Before formally presenting the dynamic RA-PM algorithm, in what follows, we first illustrate

the idea of wrapper-tasks through a detailed example. We consider a task-set with four periodic

real-time tasks Γ = {T1(1, 6), T2(6, 10), T3(2, 15), T4(3, 30)}. For jobs within time 30 (the LCM

of tasks’ periods), suppose that J21, J22, J23 and J41 take 2, 3, 4 and 21
3

time units, respectively,

and all other jobs take their WCETs.

Recall that preemptive EDF scheduling is used. For jobs with the same deadline, the one with

the smaller task index is assumed to have higher priority. When J21 completes early at time

3, 4 units of dynamic slack is generated and the system state is shown in Figure 2(a). Here, a

wrapper-task (shown as a dotted rectangle) is created to represent the slack (Rule 1), which is

labeled by two numbers: its size (e.g., 4) and deadline (e.g., 10). The job deadlines in Ready-Q

are given by the numbers at the bottom of the job boxes.

It is known that, the slack that a job Jx can reclaim (i.e. the reclaimable slack) should have a

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 16

5 10 15 30

t

0

J11 21J

15
31J

30

J41 4,10Ready−Q WT−Queue

(a) J21 completes early at time 3;

5 10 15 30

t

0

J11 21J

Ready−Q WT−QueueJ41
30

RJ31
15

J31

15

(b) J31 reclaims the slack;

5 10 15 30

t

0

21J J3111J

Ready−Q WT−Queue

J12 J31

2,15J41
30

(c) Scaled J31 finishes correctly, RJ31 is freed as slack;

5 10 15 30

t

0

21J J3111J

Ready−Q WT−Queue

J12 J31

2,30

J41

41J
30

J22
20

(d) At time 10, the slack is pushed forward;

5 10 15 30

t

0

21J J3111J

Ready−Q

J12 J31
J41 J1322J J22

J41
30

2,30WT−Queue 3,20

(e) At time 14, more slack is generated from J22;

5 10 15 30

t

0

21J J3111J

Ready−Q

J12 J31
J41 J1322J J22

WT−QueueRJ41
J41

3030

(f) Partial job J41 is scaled and needs a full recovery job RJ41;

21J J3111J J12 J31
J41 J13J22 J22

5 10 150

t

30

41J

20 25

WT−QueueReady−Q 5,30J32
30

(g) Scaled J41 finishes early, both its remaining time and RJ41 are released as slack at time 15, J32 arrives

21J J3111J J12 J31
J41 J13J22 J22

5 10 150

t

30

41J

20 25

J32
J14 J

32
J23

WT−QueueReady−Q J15
30

J32 RJ32
30 30

2,30

(h) Scaled J32 is preempted (but its reclaimed slack is conserved) and more slack is generated from J22 at time 24;

21J J3111J J12 J31
J41 J13J22 J22

5 10 150

t

30

41J

20 25

J32
J14 J

32
J23 J15 RJ15

J32 RJ 32

(i) J15 reclaimed the new slack and was scaled down; when it fails, RJ15 is executed; J32 and RJ32 meet their deadlines;

Fig. 2. Using wrapper-tasks to manage dynamic slack.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 17

deadline no later than Jx’s deadline [4]. From our previous discussion, to recuperate reliability

loss due to energy management, a recovery job needs to be scheduled within Jx’s deadline.

Hence, a non-scaled job will reclaim the slack only if the amount of reclaimable slack is larger

than the job size. Thus, at time 3, J31 reclaims the available slack (Rule 2a) and scales down its

execution as shown in Figure 2(b). Here, a recovery job RJ31 is created. The scaled execution of

J31 uses the time slots of the reclaimed slack and is scaled at speed 2
4

= 1
2
, while RJ31 will take

J31’s original time slots. Both J31 and RJ31 could finish their executions within J31’s deadline

in the worst case scenario.

Suppose that the scaled J31 finishes its execution correctly at time 8, after being preempted by

J12 at time 6. The recovery job RJ31 will be removed from Ready-Q and all its time slots will

become slack (Rule 1) as shown in Figure 2(c). But this slack is not sufficient for reclamation

by J41. However, since the corresponding wrapper-task has higher priority, it is scheduled and

wraps the execution of J41 (Rule 3a). When the wrapper-task finishes at time 10, a new wrapper-

task with the same size is created, but with the deadline of J41. This can also be viewed as J41

borrowing the slack for its execution and returning it with the extended deadline (i.e., the slack is

pushed forward). The schedule and queues at time 10, after J22 arrives, are shown in Figure 2(d).

When J22 completes early at time 14 (after being preempted by J13 at time 12), 3 units of

slack is generated with the deadline of 20 (Rule 1), as shown in Figure 2(e). Now, we have two

pieces of slack (represented by two wrapper-tasks, respectively) with different deadlines.

Note that, as faults are assumed to be detected at the end of a job’s execution, a full recovery

job is needed to recuperate the reliability loss for an even partially scaled execution3. Thus,

when the partially-executed J41 reclaims all the available slack (since both wrapper-tasks have

deadlines no later than J41’s deadline), a full recovery job RJ41 is created and inserted into

Ready-Q (Rule 2a). J41 uses the remaining slack to scale down its execution appropriately as

shown in Figure 2(f).

When the scaled J41 finishes early at time 15, both its unused CPU time and RJ41 are freed

as slack (Rule 1). After the arrival of J32 at time 15, the schedule and queues are shown in

Figure 2(g). Here, J32 will reclaim the slack and be scaled to speed 2
5

after reserving the slack

3Although checkpointing could be used for partial recovery [36], we have shown that checkpoints with a single recovery

section cannot guarantee to preserve task reliability [38].

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 18

for its recovery job RJ32. After the scaled J32 is preempted by J14 and J23 (at time 18 and 20,

respectively), and J23 completes early at time 24, Figure 2(h) shows the newly generated slack

and the state of Ready-Q, which contains J15 (with arrival time 24). Note that, the recovery job

RJ32 (i.e., the slack time) is conserved even after J32 is preempted by higher priority jobs.

J15 reclaims the new slack. Suppose that both of the scaled jobs J15 and J32 fail, then, RJ15

and RJ32 will be executed as illustrated in Figure 2(i). It can be seen that all jobs (including

recovery jobs) finish their executions on time and no deadline is missed.

C. Job-level Dynamic RA-PM (RA-DPM) Algorithm

The outline of the EDF-based RA-DPM algorithm is shown in Algorithm 1. Note that, RA-

DPM may be invoked by three types of events: job arrival, job completion and wrapper-task

completion (a timer can be used to signal a wrapper-task’s completion to the operating system).

As common routines, we use Enqueue(J, Q) to add a job/wrapper-task to the corresponding queue

and, Dequeue(Q) to fetch the highest priority (i.e., the header) job/wrapper-task and remove it

from the queue. Moreover, Header(Q) is used to retrieve the header job/wrapper-task without

removing it from the queue.

At each scheduling point, as the first step (from line 3 to line 14), the remaining execution

time information of the currently running job and that of the wrapper-task (if any) is updated. If

they did not complete, they are put back to Ready-Q and WT-Queue (lines 7 and 9), respectively.

When a wrapper-task (WT) is used and wraps the execution of J (line 11), as discussed before,

the corresponding amount of slack (i.e., tpast) is pushed forward by creating a new wrapper-task

with the deadline of the currently wrapped job. Otherwise, the slack is consumed (wasted).

If the current job completes early (line 6) or its recovery job is removed due to the primary

job’s successful scaled execution (lines 13 and 14), new slack is generated and corresponding

wrapper-tasks are created and added to the wrapper-task queue WT-Queue.

Secondly, if new jobs arrive at the current scheduling point, they are added to Ready-Q

according to their EDF priorities (line 17). The remaining timing requirements will be set as

their WCETs at the speed fmax. The last step is to choose the next highest priority ready job J

(if any) for execution (lines 19 to 28). J first tries to reclaim the available slack (line 20; details

are shown in Algorithm 2). Then, depending on the priority of the remaining wrapper-tasks, J’s

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 19

Algorithm 1 EDF-based RA-DPM Algorithm
1: In the algorithm, tpast is the elapsed time since last scheduling point. J and WT represent the current job

and wrapper-task, respectively (each can have the value of NULL if there is no such a job or wrapper-task).

J.rem and WT.rem denote the remaining time requirements; J.d and WT.d are the deadlines.

2: Step 1:

3: if (J!=NULL and J.rem− tpast > 0) {
4: J.rem − = tpast;

5: if (J completes) //slack of early completion

6: Create a wrapper-task with size J.rem and deadline J.d;

7: else Enqueue(J , Ready-Q);}
8: if (WT !=NULL and WT.rem− tpast > 0) {
9: WT.rem − = tpast; Enqueue(WT , WT-Queue);}

10: if (WT !=NULL and J!=NULL) //push the slack forward;

11: Create a wrapper-task with size tpast and deadline J.d;

12: if (J is scaled and succeeds){
13: RemoveRecoveryJob(J ,Ready-Q);//slack from free of recovery job;

14: Create a wrapper-task with size J.c and deadline J.d;}
15: Step 2:

16: for (all newly arrived job NJ){ NJ.rem = NJ.c;

17: NJ.f = fmax; Enqueue(NJ , Ready-Q);}
18: Step 3://in the following, J and WT represent the next job and wrapper-task to be processed, respectively;

19: J=Dequeue(Ready-Q);

20: if (J!=NULL) ReclaimSlack(J , WT-Queue);

21: WT=Header(WT-Queue);

22: if (J!=NULL){
23: if (WT ! = NULL and WT.d < J.d)

24: WT = Dequeue(WT-Queue);//WT wraps J’s execution

25: else WT = NULL;//normal execution of J

26: Execute(J);}
27: else if (WT !=NULL)

28: WT = Dequeue(WT-Queue);

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 20

execution may be wrapped (line 24) or executed normally (line 25). When a wrapper-task has

the highest priority but no job is ready, the wrapper-task executes no-ops (line 28).

Algorithm 2 ReclaimSlack(J , WT-Queue)
1: if(J is a recovery job) return; //recovery job is not scaled

2: Step 1: //collect reclaimable slack

3: slack = 0;

4: for(WT ∈WT-Queue)

5: if (WT.d ≤ J.d) slack+ = WT.rem;

6: Step 2: //scale down J if the slack is sufficient

7: if (!J.scaled && slack <= J.c) return;//J.c is the WCET of J’s task;

8: if (!J.scaled) slack− = J.c; //reserve for recovery

9: tmp = max(fee,
J.rem∗J.f

slack+J.remfmax);

10: slack = J.rem∗J.f
tmp − J.rem; //slack needed for energy management

11: J.f = tmp; //new speed

12: if (!J.scaled){CreateRecoveryJob(J);slack+ = J.c;}
13: J.scaled = true; //label the job as scaled

14: //remove the reclaimed slack from WT-Queue;

15: while (slack > 0){
16: WT =Header(WT-Queue);

17: if (slack ≥ WT.rem){slack− = WT.rem;

18: WT =Dequeue(WT-Queue);}
19: else{WT.rem− = slack; slack = 0;}
20: }

Algorithm 2 further shows the details of slack reclamation. Recall that recovery jobs are

assumed to be executed at fmax and are not scaled (line 1). For a job J , by traversing WT-

Queue, we can find out the amount of reclaimable slack (lines 3 and 5). If J is not a scaled job

(i.e., its recovery job is not reserved yet) and the amount of reclaimable slack is no larger than the

WCET of J (i.e., J.c), the available slack is not enough for reclamation (line 7). Otherwise, after

properly reserving the slack for recovery (line 8), J’s new speed is calculated, which is bounded

by fee (line 9). The actual amount of slack used by J includes those for energy management

(line 10) as well as the slack for recovery job (where the recovery job is created and added to

Ready-Q in line 12). For the reclaimed slack, the corresponding wrapper-task(s) will be removed

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 21

from WT-Queue and destroyed (lines 15 to 20), which ensures that this slack is conserved for

the scaled job, even if higher-priority jobs preempt the scaled job’s execution later.

D. Analysis of RA-DPM

Note that, when all jobs in a task set present their WCETs at run time, there will be no dynamic

slack and no wrapper-task will be created. In this case, RA-DPM will perform the same as EDF

and generate the same worst case schedule, which is feasible by assumption. However, as some

jobs complete early, RA-DPM will undertake slack reclamation and/or wrapped execution, and

one needs to show that the feasibility is preserved even after the changes in CPU time allocation

of jobs.

Recall that, the elements of WT-Queue represent the slack of tasks that complete early. These

slack elements, while being reclaimed, may be entirely or partially re-transformed to actual

workload. Our strategy will consist in proving that, at any time t during execution, the remaining

workload could be feasibly scheduled by EDF, even if all the slack elements in WT-Queue were

to be re-introduced to the system, with their corresponding deadlines and remaining worst-case

execution times (sizes). This, in turn, will allow us to show the feasibility of the actual schedule,

since the above-mentioned property implies the feasibility even with an over-estimation of the

actual workload, for any time t.

In RA-DPM, the slack is reclaimed for dual purposes of scheduling recovery jobs and slowing

down the execution of tasks to save energy with DVFS. Similarly, the slack may be added to

the WT-Queue as a result of early completion of a primary/recovery job, or de-activation of the

recovery job (in case of a successful, non-faulty completion of the corresponding primary job).

However, the feasibility of the resulting schedule is orthogonal to these details. Hence, we will

not be further concerned about whether the slack is obtained from a primary job or a recovery

job, and for what purpose (i.e. recovery or DVFS) it is used.

Before presenting the proof for the correctness of RA-DPM, we first introduce the concept

of processor demand and the fundamental result in the feasibility analysis of periodic real-time

task systems scheduled by preemptive EDF [5], [22].

Definition 1: The processor demand of a real-time job set Φ in an interval [t1, t2], denoted

as hΦ(t1, t2), is the sum of computation times of all jobs in Φ with arrival times greater than or

equal to t1 and deadlines less than or equal to t2.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 22

Theorem 2: ([5], [22]) A set of independent real-time jobs Φ can be scheduled (by EDF) if

and only if hΦ(t1, t2) ≤ t2 − t1 for all intervals [t1, t2].

Let us denote by J(r, e, d) a job J that is released at time r, and that must complete its

execution by the deadline d, with worst-case execution time e. We next prove the following

lemma that will be instrumental in the rest of the proof.

Lemma 1: Consider a set Φ1 of real-time jobs which can be scheduled by preemptive EDF

in a feasible manner. Then, the set Φ2, obtained by replacing Ja(ra, ea, da) in Φ1 by two jobs

Jb(ra, eb, db) and Jc(ra, ec, dc), is still feasible if eb + ec ≤ ea, and da ≤ db ≤ dc.

Proof:

Since the EDF schedule of Φ1 is feasible, from Theorem 2, we have hΦ1(t1, t2) ≤ t2 −
t1,∀ t1, t2. We need to show that hΦ2(t1, t2) ≤ t2 − t1,∀ t1, t2.

It is well-known that, when evaluating the processor demand for a set of real-time jobs, one

can safely focus on intervals that start at a job release time and end at a job deadline [5], [22].

Noting that the only difference between Φ1 and Φ2 consists in substituting two jobs Jb and Jc

for Ja, we first observe that hΦ2(rx, dy) = hΦ1(rx, dy) ≤ dy − rx, whenever rx is a job release

time strictly greater than ra, or dy is a job deadline strictly smaller than da. Hence, we need to

consider only the intervals [rx, dy] where rx ≤ ra and dy ≥ da. By taking into account the fact

that da ≤ db ≤ dc, the following properties can be easily derived for all possible positionings of

dy with respect to these three deadlines:

• hΦ2(rx, dy) = hΦ1(rx, dy)− (ea − eb − ec) if dc ≤ dy,

• hΦ2(rx, dy) = hΦ1(rx, dy)− (ea − eb) if da ≤ db ≤ dy < dc,

• hΦ2(rx, dy) = hΦ1(rx, dy)− ea if da ≤ dy < db ≤ dc.

Since ea ≥ eb + ec by assumption, in all three cases, hΦ2(rx, dy) ≤ hΦ1(rx, dy) ≤ dy− rx, and

the job set Φ2 is also feasible.

Now, we introduce some additional notations and definitions to reason about the execution

state of RA-DPM, at time t.

• JR(t) denotes the set of ready jobs at time t. Each job Ji ∈ JR(t) has a corresponding

remaining worst-case execution time ei at time t and deadline di. Note that Ji can be seen

as released at time t, and having the worst-case execution time ei and deadline di.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 23

• JF (t) denotes the set of jobs that will arrive after t, with their corresponding worst-case

remaining execution times and deadlines.

• JW (t) denotes the set of jobs obtained through the WT-Queue. Specifically, for every slack

element in WT-Queue with size si and deadline di, JW (t) will include a job Ji(t, si, di).

Definition 2: The Augmented Remaining Workload of RA-DPM at time t, denoted by ARW(t),

is defined as JR(t)
⋃

JF (t)
⋃

JW (t).

Informally, ARW(t) denotes the total workload obtained, if one re-introduces all the slack

elements in WT-Queue at time t to the ready-queue, with their corresponding deadlines. This

is clearly an over-estimation of the actual workload at time t, since the amount of workload

re-introduced by slack reclamation can never exceed JW (t).

Theorem 3: ARW(t) can be scheduled by EDF in a feasible manner during the execution of

RA-DPM, for every time t.

Proof: The statement is certainly true at t = 0, when the WT-Queue is empty, and the

workload can be scheduled in a feasible manner by EDF even under the worst-case conditions.

Assume that the statement holds ∀ t ≤ t1. Note that for t = t1, t1 + 1, . . . , ARW(t) remains

feasible as long as there is no slack reclamation or ’wrapped execution’. This is because, under

these conditions, the task with highest priority in the ready queue is executed at every time

slot according to EDF – and being an optimal preemptive scheduling policy, EDF preserves the

feasibility of the remaining workload. Also note that, if the ready queue is empty for a given

time slot, then the slack at the head of WT-Queue is consumed, which corresponds to the fact

that ARW(t) is updated dynamically according to EDF execution rules.

Let t2 be the first time instant after t1, if any, where RA-DPM performs a slack reclamation or

starts the “wrapped execution”. We denote the head of WT-Queue by H at t = t2, with deadline

dH and size eH . We will show that ARW() remains feasible after such a point in both scenarios,

completing the proof.

• Case 1: At t = t2, slack reclamation is performed through the WT-Queue. Assume k

units of slack is transferred from H to the job JA which is about to be dispatched, with

deadline dA ≥ dH and remaining worst-case execution time eA. Note that this slack transfer

can be seen as replacing JH(t2, eH , dH) in ARW(t2) by two new jobs JH1(t2, k, dA) and

JH2(t2, eH − k, dH); and by the virtue of Lemma 1, ARW(t2) remains feasible after the

slack transfer. If, the slack is transferred from multiple elements in WT-Queue successively,

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 24

then we can repeat the argument for the following elements in the same order.

• Case 2: At t = t2, a ’wrapped execution’ starts, to end at t = t3 > t2. We will show that

ARW(t) remains feasible for t2 ≤ t ≤ t3, completing the proof.

The wrapped execution (i.e., slack forwarding) in the interval [t2, t3] is functionally equiv-

alent to the following: in every time slot [ti, ti+1] in the interval [t2, t3], one unit of slack

from H (the head of WT-Queue) is replaced by another item in WT-Queue with size 1, and

deadline dAi
, which is the deadline of job JAi

that executes on the CPU in the interval

[ti, ti+1]. On the other hand, when seen from the perspective of changes in ARW(t), this

is equivalent to the reclamation by JAi
one unit of slack from H in slot [ti, ti+1] (even

though, in actual execution, this slack unit will not be used because of wrapped execution).

As a conclusion, ARW(t) remains feasible at every time slot in the interval [t2, t3] as slack

reclamation on ARW(t) was shown to be safe in Case 1 above.

Since ARW(t) is an over-estimation of the actual workload, we obtain the following result:

Corollary 1: RA-DPM preserves the feasibility of any periodic real-time task set under

preemptive EDF.

E. Run-time Complexity of RA-DPM

Note that, in the worst case (e.g., at t = 0), n jobs can arrive simultaneously, and the complexity

of building Ready-Q (lines 16 and 17 of Algorithm 1) will be O(n · log(n)). Moreover, the

deadlines of wrapper-tasks are actually the deadlines of corresponding real-time jobs. At any

time t, there are at most n different deadlines corresponding to jobs with release times on or

before t and deadlines on or after t. That is, the number of wrapper-tasks in WT-Queue is at

most n. Therefore, slack reclamation, where multiple wrapper-tasks may be reclaimed at the

same time, can be performed (by traversing WT-Queue; see Algorithm 2) in time O(n). Hence,

the complexity of RA-DPM is at most O(n · log(n)) at each scheduling point.

VI. INTEGRATED SCHEMES

We have studied separately, in the last two sections, the task-level static and job-level dy-

namic RA-PM schemes that exploit system spare capacity (i.e., static slack) and dynamic slack,

respectively. In what follows, depending on how the static and dynamic slack are collectively

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 25

reclaimed, we will present two different approaches that integrate the static and dynamic schemes

in reliability-aware settings.

A. RA-DPM over Static Schemes

The intuitive approach, which follows the same idea of applying dynamic slack reclamation

on top of static power management [4], is to apply RA-DPM to a task set that has been statically

managed. In this case, a subset of tasks are statically selected to scale down and each of them

has a corresponding recovery task for reliability preservation utilizing the spare capacity, which

is different from the original task set (where all tasks run at the maximum frequency and no

spare capacity is reclaimed). Therefore, for jobs of different tasks, RA-DPM needs to treat them

differently at the time of their arrivals (i.e., at lines 16 and 17 of Algorithm 1).

Specifically, for jobs of tasks that are not scaled down, they will be handled in the same

way as shown in Algorithm 1. However, for jobs of scaled tasks, their initial speed will not be

fmax but a pre-determined scaled speed (e.g., NJ.f = f < fmax). The worst case remaining

execution time and flags should be set accordingly (e.g., NJ.rem = NJ.c
f

; NJ.scaled = true;)

and corresponding recovery jobs should be created. After that, these pre-scaled jobs can be

treated the same as jobs that are scaled online. That is, if their scaled speed is higher than fee,

they may reclaim additional dynamic slack and further slow down their executions. When they

complete successfully, the corresponding recovery jobs will be removed/released and become

dynamic slack; otherwise, the recovery jobs will be activated accordingly.

Note that, after a feasible task set (with system utilization U ≤ 1) is managed statically,

the effective total system utilization of the augmented task set (with scaled tasks and newly

constructed recovery tasks) should still be less than or equal to 1 (see Section IV). That is, the

augmented task set is schedulable under preemptive EDF. From previous discussion, we know

that RA-DPM does not introduce any additional workload to the augmented task set. Therefore,

the approach of applying RA-DPM over static RA-PM schemes is feasible in terms of meeting

all the deadlines.

B. Slack Transformation Using a Dummy Task

In the previous approach, spare capacity (i.e., static slack) and dynamic slack are reclaimed in

two separate steps. To simplify the process, in this section, we consider a single-step approach

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 26

where the spare capacity will be transformed into dynamic slack and is reclaimed at run time.

The central idea of such slack transformation relies on the creation of a dummy task T0 using

the spare capacity. That is, the utilization of T0 is u0 = sc = 1 − U . At run time, all jobs of

the dummy task will have the zero actual execution time, which effectively transforms the spare

capacity to dynamic slack periodically. Therefore, with this approach, all available slack can be

managed/reclaimed by the dynamic scheme (i.e., RA-DPM) uniformly. In this approach, since a

separate static component does not exist, at system start time, all jobs will assume (implicitly)

the speed fmax. However, at dispatch time, many jobs will be able to slow down thanks to the

dynamic slack periodically introduced by the dummy task T0.

Note that, regardless of the period of T0, the task set augmented with the dummy task is

schedulable under preemptive EDF. Therefore, it is also schedulable under RA-DPM. However,

we can see that the period of the dummy task will lead to an interesting trade-off between the

slack usage efficiency and the overhead of RA-DPM. Intuitively, for smaller periods, the dummy

task will distribute the slack across the schedule more evenly and thus increase the chance of

the slack being reclaimed. However, with smaller periods, more preemptions, and scheduling

points/activities can be expected (thus resulting in higher scheduling overhead). Conversely,

larger periods for the dummy task will incur less scheduling overhead, but the chance of the

corresponding slack being reclaimed will be reduced and the slack is more likely to be wasted.

The effects of the dummy task’s period on the performance and overhead of RA-DPM will be

evaluated in the next section.

VII. SIMULATION RESULTS AND DISCUSSION

To evaluate the performance of our proposed schemes, we developed a discrete event simulator

using C++. In the simulations, we consider the following different schemes. The scheme of no

power management (NPM), which executes all tasks/jobs at fmax and puts system to sleep

states when idle, is used as the baseline for comparison. The ordinary static power management

(SPM) scales all tasks uniformly at speed f = U · fmax (where U is the system utilization). For

the task-level static RA-PM schemes, after obtaining the optimal utilization (Xopt) that should

be managed, two heuristics are considered: smaller utilization task first (RA-SPM-SUF) and

larger utilization task first (RA-SPM-LUF). For dynamic schemes, we implemented our job-

level dynamic RA-PM (RA-DPM) algorithm and the cycle conserving EDF (CC-EDF) [27], a

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 27

well-known but reliability-ignorant DVFS algorithm, for periodic real-time tasks.

Transient faults are assumed to follow the Poisson distribution with an average fault rate of

λ0 = 10−6 at fmax (and corresponding supply voltage), which corresponds to 100,000 FITs

(failures in time, in terms of errors per billion hours of use) per megabit. This is a realistic fault

rate as reported in [18], [46]. To take the effects of DVFS on fault rates into consideration, we

adopt the exponential fault rate model developed in [42], where λ(f) = λ0 · g(f) = λ010
d(1−f)
1−fmin .

Here, the exponent d (> 0) is a constant which indicates the sensitivity of fault rates to

DVFS. The maximum fault rate is assumed to be λmax = λ010d, which corresponds to the

minimum frequency fee (and corresponding supply voltage). In our simulations, we assume that

the exponent d = 2. That is, the average fault rate is assumed to be 100 times higher at the

lowest speed fmin (and corresponding supply voltage). The effects of different values of d were

evaluated in our previous work [38], [39], [42].

As discussed in Section III, the static power Ps will be always consumed for all schemes.

Therefore, we focus on active power in our evaluations. We further assume that m = 3, Cef = 1

and Pind = 0.1. In these settings, the energy efficient frequency is found as fee = 0.37 (see

Section III). The effects of these parameters on normalized energy consumption have been

studied extensively in our previous work [43].

We consider synthetic real-time task sets where each task set contains 5 or 20 periodic tasks.

The periods of tasks (p) are uniformly distributed within the range of [10, 20] (for short-period

tasks) or [20, 200] (for long-period tasks). The WCETs of tasks are uniformly distributed in the

range of 1 and their periods. Finally, the WCETs of tasks are scaled by a constant such that the

system utilization of tasks reaches a desired value [27]. The variability in the actual workload is

controlled by the WCET
BCET

ratio (that is, the worst-case to best-case execution time ratio), where the

actual execution time of tasks follows a normal distribution with mean and standard deviation

being WCET+BCET
2

and WCET−BCET
6

, respectively [4].

We simulate the execution for 107 and 108 time units, for short- and long-period task sets,

respectively. That is, approximately 5 to 20 million jobs are executed during each run. Moreover,

for each result point in the graphs, 100 task sets are generated and the presented results correspond

to the average.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 28

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

U: system utilization

NPM
SPM

RA-SPM-SUF
RA-SPM-LUF

(a) 20 tasks with p ∈ [10, 20]

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n(
%

)

U: system utilization

RA-SPM-SUF
RA-SPM-LUF
OPT-BOUND

SPM

(b) 20 tasks with p ∈ [10, 20]

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n(
%

)

U: system utilization

RA-SPM-SUF
RA-SPM-LUF
OPT-BOUND

SPM

(c) 5 tasks with p ∈ [20, 200]

Fig. 3. Reliability and energy consumption for static schemes.

A. Performance of Task-Level Schemes

For different system utilization (i.e., spare capacity), we first evaluate the performance of the

task-level static schemes. It is assumed that all jobs take their WCETs. For task sets with short

periods (i.e., p ∈ [10, 20]), where each set contains 20 tasks, Figure 3a first shows the probability

of failure (i.e., 1−reliability) for NPM and the static schemes. Here, the probability of failure

shown is the ratio of the number of failed jobs (recovery jobs have been incorporated, if any)

over the total number of jobs executed.

From the figure, we can see that, as the system utilization increases, for NPM, the probability

of failure increases slightly. The reason for this is that, with increased total utilization, the

computation requirement for each task increases and tasks run longer, which increases the

probability of being subject to transient fault(s). The probability of failure for SPM increases

drastically due to increased fault rates and extended execution time. Note that, the minimum

energy efficient frequency is fee = 0.37. At low system utilizations (i.e., U < 0.37), SPM

executes all tasks with fee. The probability of failure for SPM increases slightly with increased

utilization for the same reason as NPM. However, when the system utilization is higher than

0.37, the processing speed of SPM increases with increased utilization, which has lower failure

rates and results in decreased probability of failure.

For reliability-aware static schemes (i.e., RA-SPM-SUF and RA-SPM-LUF), by incorporating

a recovery task for each task to be scaled, the probability of failure is lower than that of NPM

and system reliability is preserved, which confirms the theoretical result obtained in Section IV.

Figure 3b further shows the normalized energy consumption for tasks under different schemes

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 29

with NPM as a baseline. Here, reliability-aware static schemes consume up to 30% more

energy than that of the ordinary SPM because there is less spare capacity available for energy

management. Moreover, the figure also shows the energy consumption for OPT-BOUND, which

is calculated as the fault-free energy consumption with the assumption that the managed tasks

have the accumulated utilization exactly equal to Xopt (See Section IV-C). Clearly, OPT-BOUND

provides an upper-bound even for the optimal static solution. From the figure, we can see that

the normalized energy consumption for the two heuristics is almost the same as that of the upper

bound (within 2%). With 20 tasks in a task set, each task has a very small utilization, which

leads to the close-to-optimal solution for both static heuristics.

When there are only 5 tasks in a task set, the utilization for each task becomes larger and

Figure 3c shows the normalized energy consumption for the static heuristics and the upper-

bound. From the results, we can see that RA-SPM-LUF outperforms RA-SPM-SUF for most

cases since it selects tasks to more closely match Xopt. However, even for RA-SPM-SUF, the

normalized energy consumption is within 5% of that of the upper-bound. For long-period tasks

(i.e., p ∈ [20, 200]), similar results are obtained but are not included due to space limitations.

The complete set of results can be found in our technical report [40].

B. Performance of Job-Level Schemes

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 1 2 3 4 5 6 7 8 9 10

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

WCET/BCET

NPM
CC-EDF
RA-DPM

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 2 3 4 5 6 7 8 9 10no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n(
%

)

WCET/BCET

CC-EDF
RA-DPM

RA-DPM-DISC

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 2 3 4 5 6 7 8 9 10no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n(
%

)

WCET/BCET

CC-EDF
RA-DPM

RA-DPM-DISC

a. reliability for p ∈ [10, 20] b. energy for p ∈ [10, 20] c. energy for p ∈ [20, 200]

Fig. 4. Reliability and energy consumption for dynamic schemes.

With system utilization fixed at U = 1.0 (i.e., no static slack is available), we vary WCET
BCET

ratio

and evaluate the performance of the dynamic schemes. Figure 4a first shows the probability of

failure for short-period tasks (i.e., p ∈ [10, 20]). Here, as WCET
BCET

ratio increases, more dynamic

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 30

slack becomes available. Without considering system reliability, CC-EDF uses all available

slack greedily for energy savings and its probability of failure increases (i.e., system reliability

decreases) drastically due to the scaled executions of jobs. Again, by reserving slack for recovery

jobs before using it for saving energy, RA-DPM preserves system reliability. When there is

more dynamic slack as the value of WCET
BCET

increases, more recovery jobs will be scheduled and,

compared to that of NPM, the probability of failure for RA-DPM generally decreases (i.e., better

system reliability is achieved). The results for long-period tasks are similar.

Figure 4b shows the normalized energy consumption for short-period tasks. Initially, as the

ratio of WCET
BCET

increases, additional dynamic slack becomes available and normalized energy

consumption decreases. Due to the limitation of fee (= 0.37), when WCET
BCET

> 9, the normalized

energy consumption for both schemes stays roughly the same and RA-DPM consumes about

8% more energy than CC-EDF. However, for long-period tasks (i.e., p ∈ [20, 200]), as shown in

Figure 4c, RA-DPM performs much worse than CC-EDF and consumes about 32% more energy.

A possible explanation is that, when the slack is pushed forward excessively by the long-period

tasks, this prevents other jobs from reclaiming it (due to reduced slack priorities), resulting in

less energy savings.

C. Effects of Discrete Speeds

So far, we have assumed that the clock frequency can be scaled continuously. However, current

DVFS-enabled processors (e.g., Intel XScale [1], [2]) only have a few speed levels. Nevertheless,

our schemes can be easily adapted to discrete speed settings. After obtaining the desired speed

(e.g., Algorithm 2 line 9), we can either use two adjacent frequency levels to emulate the task’s

execution at that speed [20], or use the next higher discrete speed to ensure the algorithm’s

feasibility. Assuming Intel XScale model [1] with 5 speed levels {0.15, 0.4, 0.6, 0.8, 1.0} and

using the next higher speed, we re-ran the simulations. The results for normalized energy

consumption are represented as RA-DPM-DISC and shown in Figure 4bc. Here, we can see that,

although RA-DPM-DISC consumes slightly less energy than that of RA-DPM for short period

tasks; for long-period tasks, RA-DPM performs slightly better than RA-DPM-DISC. However,

the difference on the energy consumption for discrete speeds and continuous speed is within

2%. The reason is that, with the next higher discrete speed being utilized, the unused slack is

not wasted but actually saved for future usage.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 31

D. Evaluation of the Integrated Schemes

In the evaluation of the integrated schemes, we consider three different algorithms for compari-

son. First, the static RA-SPM-SUF scheme, which executes selected tasks at statically determined

scaled frequency but does not reclaim dynamic slack at run time. SUF+RA-DPM is the second

scheme that will reclaim dynamic slack to further scale down the statically selected tasks or to

manage more unscaled tasks at run time. The last scheme, DUMMY+RA-DPM, uses a dummy

task (as discussed in Section VI) and does not select any task for scaling down statically. At

run-time, together with the transformed dynamic slack from the dummy task, all dynamic slack

will be reclaimed appropriately as in RA-DPM.

 0.9
 0.95

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 1.4

 2 4 6 8 10 12 14 16 18 20

no
rm

al
iz

ed
 #

 o
f s

ch
ed

ul
in

g
po

in
ts

dummy task period

RA-SPM-SUF
SUF+RA-DPM

DUMMY+RA-DPM

 50
 52
 54
 56
 58
 60
 62
 64
 66
 68
 70

 2 4 6 8 10 12 14 16 18 20no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n(
%

)

dummy task period

RA-SPM-SUF
SUF+RA-DPM

DUMMY+RA-DPM

 55

 60

 65

 70

 75

 80

 85

 0 20 40 60 80 100 120 140 160 180 200no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n(
%

)

dummy task period

RA-SPM-SUF
SUF+RA-DPM

DUMMY+RA-DPM

a. scheduling points for p ∈ [10, 20] b. energy for p ∈ [10, 20] b. energy for p ∈ [20, 200]

Fig. 5. Effects of the dummy task’s period. Here, U = 0.5 and WCET
BCET

= 1.

For task sets with 20 short-period tasks (i.e., p ∈ [10, 20]) with system utilization U = 0.5

and WCET
BCET

= 1, Figure 5a first shows the normalized number of scheduling points with NPM

as the baseline for different periods of the dummy task. Note that, the dummy task only

affects DUMMY+RA-DPM scheme and the number of scheduling points for RA-SPM-SUF

and SPM+RA-DPM remain the same for different dummy task periods. Without managing

and reclaiming the dynamic slack (from early completion of jobs and the removal of statically

scheduled recovery jobs), the number of scheduling points for RA-SPM-SUF is almost the same

as that of NPM. For SUF+RA-DPM, it reclaims dynamic slack at run-time and the number of

scheduling points is about 16% more than that of NPM. For DUMMY+RA-DPM, as the period of

the dummy task increases, less scheduling activities are expected and the normalized number of

scheduling points decreases. From the figure, we can see that, the minimum number of scheduling

points is obtained when the dummy period is 14 (which is around 10, the smallest period of

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 32

tasks in the task set). For larger dummy task periods, the transformed slack is aggregated and

the job that reclaims the slack is more likely executed at the minimum frequency fee, which

leads to more preemption and thus more scheduling points.

Figure 5b further shows the corresponding normalized energy consumption for the three

schemes. By reclaiming the dynamic slack, SUF+RA-DPM could save roughly 12% more energy

than that of RA-SPM-SUF. When the period of the dummy task is less than 10, the transformed

slack is uniformly distributed and can be effectively reclaimed, which leads to better energy

savings for DUMMY+RA-DPM than that of SUF+RA-DPM. However, for larger dummy task

periods, the transformed slack is aggregated under DUMMY+RA-DPM and leads to uneven

execution for tasks, where more energy is consumed under DUMMY+RA-DPM than that of

SUF+RA-DPM. From these results, we can see that, for short period tasks, the best period

for the dummy task would be the minimum period of all tasks in a task set, which is further

confirmed for long-period tasks as shown in Figure 5c. However, for long-period tasks, the

energy consumption for DUMMY+RA-DPM is much worse than that of SUF+RA-DPM. This

is because, the transformed dynamic slack under DUMMY+RA-DPM may be pushed forward

too much and wasted, which leads to inefficient usage of the static slack and more energy

consumption compared to that of SUF+RA-DPM.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 1 2 3 4 5 6 7 8 9 10

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

WCET/BCET

NPM
RA-SPM-SUF

SUF+RA-DPM
DUMMY+RA-DPM

 40

 45

 50

 55

 60

 65

 70

 1 2 3 4 5 6 7 8 9 10no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n(
%

)

WCET/BCET

RA-SPM-SUF
SUF+RA-DPM

DUMMY+RA-DPM

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 1 2 3 4 5 6 7 8 9 10no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n(
%

)

WCET/BCET

RA-SPM-SUF
SUF+RA-DPM

DUMMY+RA-DPM

a. U = 0.5 and p ∈ [10, 20] b. U = 0.5 and p ∈ [10, 20] c. U = 0.7 and p ∈ [10, 20]

Fig. 6. Performance of the integrated schemes with 20 tasks.

For different values of WCET
BCET

(i.e., different amounts of dynamic slack), Figure 6 further

shows the performance of the integrated schemes with 20 tasks in the task sets. For short-

period (i.e., p ∈ [10, 20]) tasks with system utilization U = 0.5, Figures 6ab first show the

probability of failure and normalized energy consumption for all the schemes, respectively. The

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 33

same as before, all reliability-aware schemes perform better than NPM with lower probability

of failure. By reclaiming dynamic slack and managing more jobs at run time, SUF+RA-DPM

achieves better system reliability (i.e., lower probability of failure values) than that of RA-SPM-

SUF. With the dummy task’s period being set as 10, DUMMY+RA-DPM performs slightly

better (in terms of both reliability and energy) than SUF+RA-DPM when WCET
BCET

= 1. That is,

when there is no dynamic slack available from early completion (i.e., WCET
BCET

= 1), by using

a dummy task to transform all spare capacity to dynamic slack, DUMMY+RA-DPM can use

it more effectively to scale down the jobs to fee for more energy savings and possibly re-use

such slack to manage more jobs for better system reliability. However, for cases where dynamic

slack from early completion is significant (i.e., WCET
BCET

>= 2), DUMMY+RA-DPM could be

too greedy when using the dynamic slack and the slack transformed from spare capacity by

the dummy task, and thus performs slightly worse (≤ 3%) than SUF+RA-DPM. For task sets

with higher system utilization U = 0.7, similar results are shown in Figure 6c, where the

performance difference between SUF+RA-DPM and DUMMY+RA-DPM becomes smaller. For

long-period (i.e., p ∈ [20, 200]) tasks, a larger performance difference between SUF+RA-DPM

and DUMMY+RA-DPM has been observed and the results are omitted due to space limitations

(see [40] for details).

VIII. CONCLUSIONS AND FUTURE WORK

DVFS was recently shown to have negative impact on settings where transient faults become

more prominent with continued scaling of CMOS technologies and reduced design margins. In

this paper, focusing on preemptive EDF scheduling, we proposed a reliability-aware power man-

agement (RA-PM) framework for periodic real-time tasks. We first studied task-level utilization-

based static RA-PM schemes that exploit the system spare capacity. We showed the intractability

of the problem and proposed two efficient heuristics. Moreover, we proposed the wrapper-task

mechanism for efficiently managing dynamic slack and presented a job-level dynamic RA-PM

scheme. The scheme is able to conserve the slack reclaimed by a scaled job, which is an

essential requirement for reliability preservation, across preemption points. The correctness of

the dynamic scheme in terms of meeting all the timing constraints is formally proved. In addition,

two integrated techniques that combine the management of static and dynamic slack are also

studied. The first technique applies job-level dynamic scheme to a statically managed task set. In

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 34

the second technique, the spare capacity is used to create a dummy task and the job-level dynamic

scheme is applied to the augmented task set, where the spare capacity will be transformed to

dynamic slack by the dummy task at run-time.

The proposed schemes are evaluated through extensive simulations with synthetic real-time

workloads. The results show that, compared to the ordinary energy management schemes, the

new schemes could achieve comparable amount of energy savings while preserving system

reliability. However, ordinary energy management schemes that are reliability-ignorant, often

lead to drastically decreased system reliability. For the static heuristics, the energy savings are

close to the upper-bound of the optimal solution by a margin of 5%. By effectively exploiting the

run-time slack, additional energy savings can be obtained through the dynamic schemes while

preserving system reliability. For the integrated technique with a dummy task, the period of the

dummy task should be set as the minimum period of tasks in a task set for the best performance.

Although the dummy task approach simplifies the slack reclamation, applying job-level dynamic

scheme on top of task-level static scheme generally gives better performance.

As our future work, we plan to extend the RA-PM framework for sporadic real-time tasks

as well as mixed workload with both aperiodic and periodic tasks. Another direction will

be extending the current RA-PM framework to consider parallel multicore-based systems and

various system reliability requirements.

ACKNOWLEDGEMENTS

First of all, the authors would like to thank the reviewers for their insightful comments and

valuable suggestions to help improve the quality of this paper. In addition, the authors want to

thank National Science Fundation for the support of this work through the awards CNS-0720651,

CNS-0720647 and NSF CAREER Award CNS-0546244.

REFERENCES

[1] Intel xscale technology and processors. http://developer.intel.com/design/intelxscale/.

[2] Intel corp. mobile pentium iii processor-m datasheet. Order Number: 298340-002, Oct 2001.

[3] H. Aydin, V. Devadas, and D. Zhu. System-level energy management for periodic real-time tasks. In Proc. of The 27th

IEEE Real-Time Systems Symposium (RTSS), Piscataway, NJ, USA, Dec. 2006. IEEE CS Press.

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Power-aware scheduling for periodic real-time tasks. IEEE Trans.

on Computers, 53(5):584–600, 2004.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 35

[5] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concerning the preemptive scheduling of periodic,

real-time tasks on one processor. Real-Time Systems, 2, 1990.

[6] E. Bini, G.C. Buttazzo, and G. Lipari. Speed modulation in energy-aware real-time systems. In Proc. of the 17th Euromicro

Conference on Real-Time Systems, 2005.

[7] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design. In Proc. of The HICSS Conference, Jan.

1995.

[8] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun control. In Proc. of Real-Time Systems Symposium,

2000.

[9] X. Castillo, S. McConnel, and D. Siewiorek. Derivation and caliberation of a transient error reliability model. IEEE Trans.

on computers, 31(7):658–671, 1982.

[10] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling for real-time tasks with different power characteristics.

In Proc. of the 2005 International Conference on Parallel Processing (ICPP), pages 13–20, Jun. 2005.

[11] J.-J. Chen and T.-W. Kuo. Procrastination determination for periodic real-time tasks in leakage-aware dynamic voltage

scaling systems. In Proc. of the 2007 IEEE/ACM Int’l Conference on Computer-Aided Design (ICCAD), pages 289–294,

2007.

[12] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M. J. Irwin. Soft errors issues in low-power caches. IEEE Trans.

on Very Large Scale Integration (VLSI) Systems, 13(10):1157–1166, Oct. 2005.

[13] A. Ejlali, M. T. Schmitz, B. M. Al-Hashimi, S. G. Miremadi, and P. Rosinger. Energy efficient seu-tolerance in dvs-enabled

real-time systems through information redundancy. In Proc. of the Int’l Symposium on Low Power and Electronics and

Design (ISLPED), 2005.

[14] E. (Mootaz) Elnozahy, R. Melhem, and D. Mossé. Energy-efficient duplex and tmr real-time systems. In Proc. of The

23rd IEEE Real-Time Systems Symposium, Dec. 2002.

[15] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner. Razor: circuit-level correction of

timing errors for low-power operation. IEEE Micro, 24(6):10–20, 2004.

[16] R. Ernst and W. Ye. Embedded program timing analysis based on path clustering and architecture classification. In Proc.

of The Int’l Conference on Computer-Aided Design, pages 598–604, 1997.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Mathematical

Sciences Series. Freeman, 1979.

[18] P. Hazucha and C. Svensson. Impact of cmos technology scaling on the atmospheric neutron soft error rate. IEEE Trans.

on Nuclear Science, 47(6):2586–2594, 2000.

[19] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proc. of The 14th Symposium on Discrete Algorithms,

2003.

[20] T. Ishihara and H. Yauura. Voltage scheduling problem for dynamically variable voltage processors. In Proc. of The Int’l

Symposium on Low Power Electronics and Design, 1998.

[21] R.K. Iyer, D. J. Rossetti, and M.C. Hsueh. Measurement and modeling of computer reliability as affected by system

activity. ACM Trans. on Computer Systems, 4(3):214–237, Aug. 1986.

[22] K. Jeffay and D. L. Stone. Accounting for interrupt handling costs in dynamic priority task systems. In Proc. of the IEEE

Real-Time Systems Symposium, Dec. 1993.

[23] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time embedded systems. In Proc.

of the 41st Design automation conference, 2004.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 36

[24] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation. In Int’l Conference on Architectural Support

for Programming Languages and Operating Systems, 2000.

[25] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. J. ACM,

20(1):46–61, 1973.

[26] R. Melhem, D. Mossé, and E. (Mootaz) Elnozahy. The interplay of power management and fault recovery in real-time

systems. IEEE Trans. on Computers, 53(2):217–231, 2004.

[27] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. In Proc. of 18th

ACM Symposium on Operating Systems Principles, Oct. 2001.

[28] P. Pop, K.H. Poulsen, V. Izosimov, and P. Eles. Scheduling and voltage scaling for energy/reliability trade-offs in fault-

tolerant time-triggered embedded systems. In Proc. of the 5th IEEE/ACM Int’l Conference on Hardware/software codesign

and System Synthesis (CODES+ISSS), pages 233–238, 2007.

[29] D. K. Pradhan. Fault Tolerance Computing: Theory and Techniques. Prentice Hall, 1986.

[30] S. Saewong and R. Rajkumar. Practical voltage scaling for fixed-priority rt-systems. In Proc. of the 9th IEEE Real-Time

and Embedded Technology and Applications Symposium, 2003.

[31] C. Scordino and G. Lipari. A resrouce reservation algorithm for power-aware scheduling of periodic and aperiodic real-time

tasks. IEEE Trans. on Computers, 55(12):1509–1522, 2006.

[32] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast: Frequency-aware static timing analysis. In Proc. of the

24th IEEE Real-Time System Symposium, 2003.

[33] O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware software-based fault tolerance in real-time systems. In

Proc. of The Int’l Symposium on Low Power Electronics Design, 2002.

[34] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu energy. In Proc. of The First USENIX

Symposium on Operating Systems Design and Implementation, Nov. 1994.

[35] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In Proc. of The 36th Annual Symposium

on Foundations of Computer Science, Oct. 1995.

[36] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in embedded real-time systems. In Proc. of IEEE/ACM

Design, Automation and Test in Europe Conference(DATE), 2003.

[37] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault tolerance in fixed-priority real-time embedded systems.

In Proc. of Int’l Conference on Computer Aided Design, Nov. 2003.

[38] D. Zhu. Reliability-aware dynamic energy management in dependable embedded real-time systems. to appear in ACM

Trans. on Embedded Computing Systems; A preliminary version appeared in RTAS 2006.

[39] D. Zhu and H. Aydin. Energy management for real-time embedded systems with reliability requirements. In Proc. of the

Int’l Conf. on Computer Aidded Design, 2006.

[40] D. Zhu and H. Aydin. Reliability-aware energy management for periodic real-time tasks. Technical report, Dept. of

Computer Science, Univ. of Texas at San Antonio, 2006. available at http://www.cs.utsa.edu/˜dzhu/papers/CS-TR-2008-

005-zhu.pdf.

[41] D. Zhu, H. Aydin, and J.-J. Chen. Optimistic reliability aware energy management for real-time tasks with probabilistic

execution times. In to appear in the Proc. of the 29th IEEE Real-Time Systems Symposium (RTSS), 2008.

[42] D. Zhu, R. Melhem, and D. Mossé. The effects of energy management on reliability in real-time embedded systems. In

Proc. of the Int’l Conf. on Computer Aidded Design, 2004.

August 11, 2009 DRAFT

IEEE TRANSACTION ON COMPUTERS, VOL. XXX, NO. XXX, OCT. 2008 37

[43] D. Zhu, R. Melhem, D. Mossé, and E.(Mootaz) Elnozahy. Analysis of an energy efficient optimistic tmr scheme. In Proc.

of the 10th Int’l Conference on Parallel and Distributed Systems, 2004.

[44] D. Zhu, X. Qi, and H. Aydin. Priority-monotonic energy management for real-time systems with reliability requirements.

In Proc. of the IEEE International Conference on Computer Design (ICCD), 2007.

[45] D. Zhu, X. Qi, and H. Aydin. Energy management for periodic real-time tasks with variable assurance requirements. In

Proc. of the IEEE Int’l Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2008.

[46] J. F. Ziegler. Trends in electronic reliability: Effects of terrestrial cosmic rays. available at

http://www.srim.org/SER/SERTrends.htm, 2004.

August 11, 2009 DRAFT

