
Energy-Efficient Policies for Embedded Clusters∗

Ruibin Xu Dakai Zhu† Cosmin Rusu Rami Melhem Daniel Mossé
Computer Science Department, University of Pittsburgh

Pittsburgh, PA 15260
{xruibin,zdk,rusu,melhem,mosse}@cs.pitt.edu

Abstract
Power conservation has become a key design issue for many sys-
tems, including clusters deployed for embedded systems, where
power availability ultimately determines system lifetime. These
clusters execute a high rate of requests of highly-variablelength,
such as in satellite-based multiprocessor systems. The goal of
power management in such systems is to minimize the aggregate
energy consumption of the whole cluster while ensuring timely re-
sponses to requests. In the past, dynamic voltage scaling (DVS) and
on/off schemes have been studied under the assumptions of contin-
uously tunable processor frequencies and perfect load-balancing.
In this work, we focus on the more realistic case of discrete proces-
sor frequencies and propose a new policy that adjusts the number
of active nodes based on the systemload, not system frequency.
We also design a threshold scheme which prevents the system from
reacting to short-lived temporary workload changes in the presence
of unstable incoming workload. Simulation and implementation
results on real hardware show that our policy is very effective in
reducing the overall power consumption of clusters executing em-
bedded applications.

Categories and Subject Descriptors D.4.7 [Operating systems]:
Organization and Design - Real-time systems and embedded sys-
tems; D.4.8 [Operating Systems]: Performance - Measurements

General Terms Algorithms, Management, Experimentation

Keywords Dynamic Voltage Scaling, Load Balancing, Space Ap-
plications, Distributed Systems, Cluster Computing

1. Introduction
In portable or untethered devices that deal with large amount of
requests, power consumption and cooling account for a significant
fraction of the total operating cost. Furthermore, system overheat

∗ This work has been supported by NSF grant ANI-0125704 and ANI-
0325353.
† The author is now a faculty member in Computer Science Department of
University of Texas at San Antonio. He can be reached at Computer Science
Department, UTSA, San Antonio, TX 78249, email:dzhu@cs.utsa.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-018-3/05/0006. . .$5.00.

resulting from excessive power consumption can lead to intermit-
tent system failures.

An example of the type of system that requires power man-
agement is satellite-based signal processing. Signal datacollected
through external sensors (equivalent to the front-end of a cluster)
may be disseminated to several processing units for furtheranal-
ysis by a signal processing application. Currently, we are investi-
gating two such signal processing applications, referred to asSBT
(Subband Tuner) andCAF (Complex Ambiguity Function), each
provided with several realistic traces. Based on the observation that
a system designed for peak load is rarely fully utilized, applying
power management schemes can successfully lead to significant
power savings while maintaining adequate system performance.

Power management mechanisms can be divided into two cat-
egories: vary-on/vary-off (VOVO) and dynamic voltage scaling
(DVS). Node VOVO [14, 7] makes cluster nodes inactive (i.e.,puts
them in a lower-power mode such as sleep or off) when the incom-
ing workload can be adequately served by a subset of the nodes
in the cluster and makes nodes active again when the workloadin-
creases beyond the capacity of the active nodes.

On the other hand, individual power management at local nodes
is possible because current power-efficient systems have manage-
ment functions that can be invoked to choose among different
power states for each component. An increasing number of proces-
sors [19, 2, 6] implement DVS, which can yield quadratic energy
savings.

It has been shown that combining the VOVO and DVS mecha-
nisms can achieve significant power savings for clusters [7]. How-
ever, the existing policies are based on the assumptions of contin-
uous frequencies and cubic rule of the power-frequency relation,
which do not hold in practice. Currently available commercial DVS
processors only provide about 4-10 discrete operating frequencies
and many of them do not comply with the cubic rule of the power-
frequency relation. Furthermore, some processors have inefficient
frequencies that must be eliminated [16].

In this paper, we propose a new power management policy
for embedded clusters. Our policy applies directly to the case of
discrete frequencies and does not make any assumption on the
power-frequency relationship. Even though our policy achieves
maximum power savings when the incoming workload is stable
and balanced across the whole cluster, we do not rely on these
assumptions1. Our proposed policy, to be implemented at the front-
end of the cluster, assumes that each node in the cluster performs
DVS independently, to meet a desired QoS requirement (e.g.,a goal
is to keep up with the rate of request arrivals). This is the case for
many existing systems, such as the satellite-based multiprocessor
systems that we are dealing with.

1 Our motivation, theCAF andSBT applications, do not at all comply with
the assumption of a stable workload.

The remainder of the paper is organized as follows. We first
present related work in Section 2. The system model and applica-
tions are in Section 3. We present the theoretical results ondeciding
the optimal number of active nodes in Section 4. Our new policy is
presented in Section 5. Simulation and implementation results are
reported in Section 6. We conclude the paper in Section 7.

2. Related Work
Dynamic voltage-scaling (DVS), which involves dynamically ad-
justing the voltage and frequency of the CPU, has become a major
research area. Quadratic energy savings [19, 15] can be achieved at
the expense of just linear performance loss. For real-time systems,
DVS schemes focus on minimizing energy consumption in the sys-
tem while still meeting the deadlines. Yao et al. [21] provided a
static off-line scheduling algorithm and a number of on-line algo-
rithms with good competitive performance, all for aperiodic tasks.
However, the algorithms assume cubic rule of power-frequency re-
lation and knowing the computational requirement of tasks a-priori,
which do not apply in our case. Weiser et al. [18] recommended
interval-based DVS algorithms. Govil et al. [10] proposed to sep-
arate the interval-based DVS algorithms into two parts: prediction
and speed-setting. Prediction methods and speed-setting policies
were extensively studied in [11, 13]. The interval-based DVS al-
gorithms incur low overhead and are easy to implement. From our
experience, they are very effective in terms of keeping up with the
request arrival rate. Automatic DVS for Linux running in general-
purpose computers with distinction between background andinter-
active jobs was presented in [8].

Power management has traditionally focused on portable and
handheld devices. IBM Research broke with tradition and pre-
sented a case for managing power consumption in web servers [4].
Elnozahy et al. evaluated five policies which employ variouscom-
binations of DVS and node VOVO for cluster-wide power manage-
ment in server farms [7]. Sharma et al. [17] investigated adaptive
algorithms for dynamic voltage scaling in QoS-enabled web servers
to minimize the energy consumption subject to service delaycon-
straints. Aydin et al. [3] incorporated DVS scheduling of periodic
task sets to partitioned multiprocessor real-time systems.

Among the related work, the policies in [7] for power man-
agement in clusters are most relevant to our work. These policies
determine the number of active nodes and apply a certain DVS
scheme independently or coordinately. A vary-on/vary-offcoordi-
nated voltage scaling policy (VOVO-CVS) resulted in most power
savings. For every possible number of active nodes, the policy pre-
computes an on-frequency and an off-frequency such that if the av-
erage frequency of the cluster exceeds the on-frequency, a sleeping
node will be turned on and if the average frequency of the cluster
falls below the off-frequency, one of the active nodes will be turned
off. The policy precomputes the on-frequencies and off-frequencies
based on the assumptions of perfect load-balancing, continuous fre-
quencies and cubic power functions. In practice, these assumptions
do not hold, and thus the policy is suboptimal.

3. System Model and Applications
3.1 Models

The system we consider is a cluster (Figure 1) consisting of afront-
end andN identical nodes, each equipped with a DVS processor.
At any given time, each node is in one of three states: active,
idle, and inactive. When a node is active, its processor is running
at some frequencyf , wheref is between a maximum frequency
fmax and a minimum frequencyfmin. Without loss of generality,
we assume that0 ≤ fmin ≤ fmax = 1, that is, we normalize
the frequency values with respect tofmax. We consider both the
ideal case, where the frequency can be tuned continuously, and

result

clients
 front end

node 1

node 2

node N

r
e
q
u
e
s
t
s

->

<
-

f
e
e
d
b
a
c
k

re
qu
es
ts
 -
>

<-
 f
ee
db
ac
k

r
e
q
u
e
s
t
s

-
>

<
-

f
e
e
d
b
a
c
k

Requests

res
ult

result

.

.

.

embedded

cluster

Figure 1. Cluster architecture

the realistic case, where the CPU only provides a finite number of
discrete frequencies. The node’s power consumption when active
is Pactive, which is dependent on its operating frequencyf . The
node’s power consumption when idle (i.e., the processor is in the
idle state and memory/bridge are in doze mode) isPidle. The node’s
power consumption when inactive isPinactive, which is the power
consumed when the processor is off and the memory is in self-
refresh mode. We consider the ideal case because its analysis can
give insight into power management policies for clusters.

The front-end is responsible for collecting requests from clients
and for distributing the requests to the active nodes. Neither the
request arrival rate nor the computational requirement foreach
request is knowna priori. Due to this characteristic of the systems
under consideration, we express the system load as the amount of
work (in cycles) that the front-end receives in one second. The
front-end is also capable of making the nodes inactive and bringing
them back to active state (that is, VOVO), according to some policy.
The front-end tries to distribute the incoming requests among the
active nodes in a balanced fashion.

Each active node carries out DVS independently, running at the
lowest frequency that keeps up with the request arrival rate. Nodes
service the requests that the front-end sends to them and return
the results directly to the clients. Nodes also send feedback to the
front-end, such as speed changes. Individual node policieswere
investigated in [15].

A note on load balancing:While load balancing makes perfect
sense if the CPU speed can be tuned continuously, it is not energy
optimal for the discrete case, where loadunbalancing may be
desired. For example, for a two-node cluster where the CPU only
provides two speeds: 100MHz and 200MHz, if the system load
is 300MHz, it is optimal to distribute 100MHz of system load
to one node and 200MHz to the other, instead of distributing 150
MHz to each of the nodes. However, because the exact load is
unknown (i.e., execution times and the arrival rate are not known
a-priori), such a load unbalancing mechanism is impractical to
implement. In contrast, load balancing techniques have been well
studied and are effective even when the incoming load is unstable
(e.g., sending the next request to the node with the lowest load) [5].

3.2 Space Applications

As mentioned in Section 1, two digital signal processing applica-
tions are our motivation in this work, namelySBT andCAF. These
applications were provided by our industrial partners, whoare mov-
ing their embedded platforms from a application-specific processor

(in this case a DSP) to a general-purpose processor (in this case
a PowerPC 750 with DVS capability). For these applications,the
system can determine the requesttype, upon request arrival.Type
is the sort of semantic information that helps improving thepredic-
tions about the workload. In general, several types can be associ-
ated with the application processing the request.

For theCAF application there are three event types: the first
time an event occurs, the second time and all times after that
(typically resulting in long, short to medium, and relatively short
events, respectively). ForSBT, there are two types of requests (long
and short). In these applications, the request type can be determined
solely from the header.

SBT is an application that searches digital signal data that is
related to frequency and time domain for certain patterns. It uses
filters for finding contiguous chunks of data that have a specific
characteristic for a certain interval of time. After findingsuch pat-
terns, there is some processing that occurs. There are two possible
paths to be followed, depending on the type of the event. From
our own measurements, in about 19% of the events, there are not
enough details to quickly extract the correct data and thus there is
extra processing that is incurred. For the other 81% of the events,
the data is sufficient for quick processing.

CAF is an application that collects data in low orbiting satellites
(LEOs), correlates it with data collected from geo-stationary satel-
lites (GEOs), for object recognition and location.CAF processing
is done in the LEO through calculations of the difference between
arrival time (dT) and frequency (dF) signals from the objectof in-
terest. This object may be on Earth’s surface or may be flying.The
CAF application can determine an object’s location with an accu-
racy from 4 to 7 significant digits (corresponding to 1K to 16Kdata
point correlation, respectively).

We measured the execution times of the requests in an experi-
mental platform consisting of PowerPC 750 boards, using real-life
inputs and inter-arrival times. We noted that the variability of exe-
cution lengths was extremely large (2 to 750 million cycles in SBT
and 1 to 5,000 million cycles inCAF) and the predictability of the
execution length was very poor. Our measurements are shown in
Tables 1 and 2. From the execution of the applications, we gener-
ated realistic traces and used them in our evaluation of the system
(see Section 6).

Table 1.Request execution times (in millions of cycles)

SBT CAF
Type 1 Type 2 Type 1 Type 2 Type 3

Min 2.9 2.0 8.2 4.1 1.3
Max 82.6 753.6 5045 210.2 32.9
Avg 9.7 123.2 820.2 45.0 5.8

% 79% 21% 5.4% 2.9% 91.7%

Table 2.Request inter-arrival times (in seconds)

SBT CAF
81 min 1030 sec 1800 sec

Min 0.13 0.1 0
Max 6.7 11 5
Avg 0.37 0.44 0.7

events 13045 2307 2564

4. Determining the Optimal Number of Active
Nodes

In this section, we present the theoretical results on how todeter-
mine the optimal number of active nodes based on the system load,

assuming that the incoming workload is stable and balanced across
the active nodes in the cluster. We consider the ideal and realistic
cases (continuous and discrete speeds).

4.1 Continuous Case

Suppose that the CPU frequency/speed can be changed continu-
ously. In this section we follow the power model used in [7]. In
this model, the node power consumption when active (runningat
frequencyf) is

Pactive(f) = c0 + c1f
3

wherec0 andc1 denote the static power and the maximum dynamic
power respectively. A node consumes the static power as longas it
is active or idle, which includes the power consumption of all com-
ponents except for the CPU, plus the base power consumption of
the CPU. The dynamic power is determined by the CPU operating
frequency and the maximum dynamic power is the dynamic power
consumed when CPU is operating at the maximum frequency. For
the purpose of analysis, we assume thatPinactive = 0 and that
clock gating is used when the processor is put to the idle mode,
thus resulting inPidle = c0. If Pinactive 6= 0, then this value can
be subtracted fromc0 and the analysis results still hold.

The authors in [7] derived the policies turning on/off nodes
based on the frequency of active nodes. In our approach, we decide
the optimal number of active nodes based on the system load.
Although both approaches solve the same problem, our approach
enables the system to react much quicker to workload change (O(1)
vs. O(N)). Furthermore, our approach can identify the sufficient
conditions when it is best to minimize the number of active nodes
and when it is best to maximize the number of active nodes, as will
be discussed below (see Results 1 and 2).

Let x be the normalized system workload (0 < x ≤ 1, normal-
ized with respect to the maximum workload that the system can
handle, i.e.,Nfmax = N). Thus, the minimum number of active
nodes that can handle the workloadx is nmin = ⌈xN⌉. Let n be
the number of active nodes, then the frequency of the processor
of each node isxN

n
. If xN

n
≥ fmin, the total power of the whole

system for loadx, denoted byp1(n, x), is

p1(n, x) = n

c0 + c1

„

xN

n

«

3
!

If xN
n

≤ fmin, the frequencyxN
n

can be emulated by running
xN

n

fmin
(= xN

nfmin
, also calledutilization) of the time at frequency

fmin and idle for the rest of the time. Thus, the total power of the
whole system for loadx, denoted byp2(n, x), is

p2(n, x) = n

„

c0 + c1f
3

min

xN

nfmin

«

= nc0 + c1f
2

minxN

Therefore, the total power of the whole system for loadx, denoted
by p(n, x), is

p(n, x) =



p1(n, x) if n ≤ xN
fmin

p2(n, x) otherwise

The problem of deciding the optimal number of active nodes,n,
can be expressed as a mathematical program:

Minimize p(n, x)
Subject to xN ≤ n ≤ N

n ∈ {1, 2, . . . , N}

We solve the above mathematical program by first solving the
continuous version of the program, that is, removing the constraint
n ∈ {1, 2, . . . , N}. The functionp(n, x) (Figure 2a) is composed
of parts of two functions:p1(n, x), a convex function with the only

critical point 3

q

2c1
c0

xN (i.e., the point wherep1(n, x) achieves its

minimum), andp2(n, x), a linear function with positive slope. Note
that p1(n) = p2(n) whenn = xN

fmin
, which may be inside the

range[xN,N] or [N,∞]. It is easy to verify that the solution to the
continuous version of the program (see Figure 2) is

n̂ =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

xN if 2c1
c0

≤ 1 (1)
(Figure 2b)

xN
fmin

if x ≤ fmin and 2c1
c0

≥ 1

f3

min

(2)

(Figure 2c)
N if x ≥ fmin and 2c1

c0
≥ 1

x3 (3)

(Figure 2d)
3

q

2c1
c0

xN otherwise (4)

xN

c

c

3

0

1
2

n

)
,
(
 x
n
p

)
,
(
1
 x
n
p

)
,
(
2
 x
n
p

min
f

N
x

 N
xN

xN

c

c

3

0

1
2

)
,
(
 x
n
p

)
,
(
1
 x
n
p

)
,
(
2
 x
n
p

xN

min
f

N
x

 N

n

a. General plot ofp(n, x) b.p(n, x) when the
for a givenx minimum occurs atxN

xN

c

c

3

0

1
2

)
,
(
 x
n
p

)
,
(
1
 x
n
p

)
,
(
2
 x
n
p

xN

min
f

N
x

N

n

xN

c

c

3

0

1
2

)
,
(
 x
n
p

)
,
(
1
 x
n
p

)
,
(
2
 x
n
p

xN

min
f

N
x

N

n

c.p(n, x) when the d.p(n, x) when the
minimum occurs at xN

fmin
minimum occurs atN

Figure 2. Functionp(n, x).

The optimal solutionn∗ to the discrete version2 of the mathe-
matical program is either⌈n̂⌉ or ⌊n̂⌋, subject toxN ≤ n∗ ≤ N .
This is easily found by a simple comparison.

From the solution to the mathematical program, we have the
following results:

Result 1: If 2c1
c0

≤ 1, the minimum energy consumption is at-
tained when the number of active nodes is just large enough to
handle the system load (from condition (1)).

Result 2: If 2c1
c0

≥ 1

f3

min

and the load distributed to each ac-

tive node is no less than fmin , the minimum energy is attained
when the maximum number of nodes is used (from condition (3)).

Results 1 and 2 are intuitive, as follows. Result 1 states that,
when the static power dominates the dynamic power (c0 ≥ 2c1,
which satisfies condition (1)), it is better to put as many nodes
inactive as possible to save the static power, as long as the number

2 While considering the cubic rule, taken to be integer

of the active nodes is enough to service the workload. Result2 says
that, when the incoming workload is reasonably large (x ≥ fmin)
and the dynamic power dominates the static power (c1 ≥ c0

2f3

min

,

which implies thatc1 ≥ c0
2x3 , satisfying condition (3)), it is better

to use as many active nodes as possible to lower the dynamic power
of each node.

4.2 Discrete Case

Today’s processors only provide a few number of discrete speeds
(that is, the continuous speed assumption is not valid) and the cubic
rule does not usually apply in practice [20].

In the discrete case, when a node is active, the processor runs
at one of theM discrete operating frequencies:f1, f2, . . . , fM and
the corresponding node powers areP (f1), P (f2), . . . , P (fM).

In the presence of discrete speeds, if the incoming workload
for one particular node isw where0 ≤ w ≤ 1, it will need to
run at the frequency‖w‖ where‖w‖ denotes the lowest available
discrete frequency higher than or equal tow. Thus, the utilization
of the node isu = w/‖w‖ and the power consumption of the node
is u × P (‖w‖) + (1− u) × Pidle.

As above, ifx is the normalized system workload, the minimum
number of active nodes that can handle the workloadx is nmin =
⌈xN⌉. Let n be the number of active nodes, then the frequency of
the processor of each node is

f = ‖
xN

n
‖

and the utilization of each processor is

u =
xN
n

f
=

xN

nf

and the total power of the whole system for loadx, denoted by
p(n, x) is

p(n, x) = (uP (f) + (1 − u)Pidle)n + Pinactive(N − n)

Thus, determining the optimal number of active nodes for a par-
ticular system loadx is equivalent to finding the value ofn which
minimizesp(n, x), that is, computing functiong(x) that returns the
number of active nodes that minimizesp(n, x).

An alternative solution to dynamically computing the optimal
number of nodes is to precomputeg(x) offline and store its values
in a table, which converts the online computation ofg(x) into a
table lookup operation. This solution is feasible sinceg(x) is a
piece-wise constant function.

To see why functiong(x) is piece-wise constant, we first show
that for a givenx, 0 ≤ x ≤ n

N
, the functionpn(x) = p(n, x) is a

piece-wise linear function. We can expresspn(x) in the following
form, which does not contain the‖ · ‖ operation:

pn(x) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

“

xN
nf1

P (f1) + (1 − xN
nf1

)Pidle

”

n+

Pinactive(N − n) if 0 ≤ x < nf1

N“

xN
nf2

P (f2) + (1 − xN
nf2

)Pidle

”

n+

Pinactive(N − n) if nf1

N
≤ x < nf2

N

...
`

xN
n

P (1) + (1 − xN
n

)Pidle

´

n+

Pinactive(N − n) if
nfM−1

N
≤ x ≤ n

N

Each component ofpn(x) is a linear function inx, so pn(x) is
a piece-wise linear function. Thuspn(x) can be expressed byM
straight line segments geometrically. Each functionpn(x) (n ∈
{1, 2, . . . , N}) divides the system load range[0, 1] into O(M)
pieces, and all of them together divide the system load range[0, 1]
into O(MN) parts. Corresponding to each of theseO(MN) parts,

there areO(N) straight line segments, each corresponding to one
of the functionspn(x). TheseO(N) straight line segments will
divide each part intoO(N) pieces. For each of these pieces, we
can find its corresponding optimal number of nodes inO(N) time.
The algorithm runs in polynomial time and the number of pieces for
g(x) is O(MN2). To decide the optimal number of active nodes,
we perform a binary search which takesO(log(MN2)).

While the above algorithm is quite involved, we can instead use
a simple approximation algorithm. This algorithm discretizes the
system load range[0, 1] into b bins of equal width. For a particular
cluster, we precomputeg(y) wherey ∈ {0, 1

b
, 2

b
, . . . , 1} store the

values in a tableH with b+1 entries. This algorithm runs inO(bN)
time. Once the cluster is running, for a given system loadx, we let
g(x) = H [⌊bx⌋], that is, findingg(x) for a system loadx can be
done in constant time. The good value ofb is dependent on the
system and can be decided by offline experiments.

Both the exact and approximation algorithms are offline algo-
rithms, resulting in a table (to be stored at the front-end) that de-
cides for each load what the optimal number of active nodes is.
At runtime, the front-end periodically detects the system load, per-
forms a table lookup to determine the optimal number of active
nodes, and compares with the current number of active nodes to
decide whether it should turn on/off nodes.

5. Power Management Policy
In this work, our goal is to minimize the aggregate energy of the
whole cluster (excluding the front-end). We assume that each node
in the cluster performs DVS independently to keep up with there-
quest arrival rate [15]. Thus, we focus on the front-end algorithms,
that is: how to estimate the system load, when to turn nodes onand
off, and how to distribute requests to active nodes.

5.1 System Load Estimation

We determine the number of active nodes based directly on thesys-
tem load, which can be obtained by getting feedback from each
node. This is in contrast with the policies in [7], which turnon/off
nodes based on the frequency of active nodes. The assumption
in [7] is that the active nodes are not idle most of the time (continu-
ous frequencies) and that they are all running at the same frequency
(perfect load-balancing).

However, we argue that the frequency of a node at a given time
poorly correlates with its actual load (unless the load is well bal-
anced and the frequency is continuous), thus resulting in a poor es-
timation of the average frequency needed. For example, for aCPU
with only 2 discrete speeds, 0.5 and 1, if the incoming workload is
0.25, the CPU would run at frequency 0.5 half of the time and idle
half of the time to keep up with the workload. In this case, using
any instantaneous frequency of the node to estimate the loadwill
result in overestimation or underestimation.

In our policy, we determine the number of nodes needed based
directly on the load in the recent past (rather than the node frequen-
cies). This results in a more accurate estimation and eliminates the
strong dependency on perfect load balancing. We also perform this
decision without the assumption of continuous frequencies. The
front-end will record the history of recent speed changes ofeach
node, which means that each node needs to send the history of
its speed changes as feedback to the front-end. For each node, the
front-end computes the average load (different from the average
frequency because idleness is regarded as frequency zero incom-
puting average load, while the CPU is operating at some frequency
when idle) over the pastlook back seconds, wherelook back is a
system parameter. The summation of the average loads of all nodes
is the estimation of the system load.

We also need to deal with a special case in our load estima-
tion scheme. The average load is at most 1 because it is normalized
to fmax = 1. If a node’s average load is 1, it has been running
at full speed without being idle over the pastlook back seconds.
However, average load of 1 does not indicate whether the nodeis
overloaded or simply keeping up with the request arrival rate. Un-
derestimating the system load would result in increased response
times or even in system failures. To be on the safe side, if a node’s
average load remains at 1 for a predefined period of time, we in-
crease that node’s average load from1 to 1 + 1

b
(for the meaning

of b, see Section 4.2), resulting in an increase on the estimation of
the system load, and thus possibly also in the change of number of
active nodes.

The estimation of the system load and deciding the number
of active nodes based on the system load are the highlights of
our policy. Therefore, we call our policy Load-Aware On-offwith
independent Voltage Scaling (LAOVS).

5.2 The Threshold Scheme

After the front-end obtains the estimation of the system load x,
it computes the number of active nodes needed,no = g(x), as
discussed in Section 4. Let the current number of active nodes be
denoted bync. If no = nc, there is no need to make any nodes
active/inactive; ifno > nc andnc < N , make an inactive node
active; ifno < nc andnc > 1, make an active node inactive. To be
conservative, we do not make more than one node active or inactive
at a time.

In real-life workloads, there may be some short-lived temporary
workload changes.This may force the front-end into making anode
active or inactive if we do that once the front-end detects a work-
load change. To prevent this from happening, we design a thresh-
old scheme. We define two variables:shut down threshold and
turn on threshold. The variableshut down threshold is the
time the front-end will wait before it is sure to make a node inac-
tive. Similarly, turn on threshold is the time the front-end will
wait before it is sure to make a node active. During the waiting
time, the front-end will continue tracking the system load.At the
end of the waiting time, an active node will be made inactive only
if the decision to turn off a node is true every time it was checked
during the waiting time. Similarly, an inactive node will bemade
active only if the decision to turn on a node was true every time it
was checked during the waiting time.

5.3 Workload Distribution

Since neither the request arrival rate nor the computational require-
ment for each request is known a-priori, the front-end approximates
the load-balancing by sending the next request to the activenode
with the lowest average frequency over the pastlook back sec-
ond(s) [5].

To decide which node to become active or inactive, we number
all the nodes from 1 toN and use a variableactive number
to keep track of the number of active nodes. To simplify the
tracking of the status of the nodes, our policy is to keep nodes
1, 2, . . . , active number active and nodeactive number +
1, . . . , N inactive. The value ofactive number is at least 1 which
means node 1 is always active. Under this policy, when we want
to make a node active, nodeactive number + 1 is the target;
when we want to make a node inactive, nodeactive number is
the victim. This implementation was preferred because of its great
simplicity, with complexity ofO(1).

Table 3. IBM PowerPC 750:frequency and system total power
(measured)

f(MHz) idle 4.125 8.25 16.5
P(mW) 1150.0 1150.0 1369.0 1811.0

f(MHz) 33 99 115.5 132
P(mW) 2661.0 4763.0 5269.0 6533.0

Table 4. Intel XScale: frequency and system total power
(datasheets [19])

f(MHz) idle 150 400
P(mW) 355.0 355.0 445.0

f(MHz) 600 800 1000
P(mW) 675.0 1175.0 1875.0

6. Evaluation
6.1 Theoretical Power Consumption

First, we compare the power consumption of our proposed policy,
LAOVS, and VOVO-CVS policy under the conditions of stable
load and perfect load balancing (the plots here are the theoretical
results from Section 4). We used many different power models,
but we only show the results of IBM PowerPC 750 and Intel
XScale due to lack of space. The power consumptions for the
Intel XScale (Table 4) and IBM PowerPC 750 (Table 3) were
obtained from datasheets [19] and from our actual measurements,
respectively. A constant power of 275mW was included for the
XScale system, simulating an Infineon Mobile-RAM (very similar
results are obtained for the XScale model with different values for
the constant power, such as 2W).

Inefficient frequencies [16] cause some lower frequencies to
have higher energy consumption (combined with less performance)
than other higher frequencies. We applied the method in [16]and
eliminated (for PowerPC 750 system) the 16.5MHz, 33MHz, and
99MHz frequencies. Unless otherwise noted, for all experiments,
the number of nodes in the cluster isN = 8. Similar results are
obtained for different values ofN , but are not shown for lack of
space.

Figures 3 and 4 show the number of processors and the total sys-
tem power consumption as a function of the system load, assuming
perfect load balancing. We also show the minimum number of pro-
cessors and the corresponding power consumption, for comparison.
Considering the system load rather than the frequencies of the in-
dividual systems and eliminating the cubic and the continuous as-
sumptions result in LAOVS outperforming the VOVO-CVS policy.
To better illustrate the limitations of the continuous assumption,
we performed the following experiment: we artificially eliminated
the 400MHz and 800MHz frequencies of the XScale model (the
continuous assumption is more inaccurate for fewer discrete fre-
quencies). The disadvantage of VOVO-CVS becomes more evident
with fewer frequencies (see Figure 5).

An interesting result from our experiments is that the number
of active nodes does not necessarily increase with the system load,
as seen in Figure 4. This is somewhat counterintuitive and isdue
to the fact that frequencies are discrete. VOVO-CVS cannot cap-
ture this behavior, as it assumes continuous frequencies. Another
interesting result is the jump of VOVO-CVS to 8 processors at
load < 0.1 in Figure 3. To explain why, we start by noting that
the PowerPC 750 processor has no efficient frequencies between
8.25MHz and 115.5MHz. If the only active node receives a rela-
tively large workload (but no greater than what can be handled by a
115.5MHz CPU), it would run at frequency 115.5MHz in order to
keep up with the workload (due to the gap between 8.25MHz and

115.5MHz). Worse yet, the front-end will use 115.5MHz as thesys-
tem frequency, which is greater than all on-frequencies in Table 5.
This will make the front-end turn on another node; this will happen
continuously until all the nodes in the cluster are on.

When taking the actual load into account, this anomaly does not
happen.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 a

ct
iv

e
no

de
s

load

LAOVS
VOVO-CVS

minimum
 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

to
ta

l s
ys

te
m

 p
ow

er
(W

)

load

LAOVS
VOVO-CVS

p(nmin,x)

Figure 3. IBM PowerPC 750 System with 8 nodes (theoretical
results)

Table 5. On-frequencies and off-frequencies used in VOVO-CVS
for the PowerPC 750

#Nodes Off-frequency(MHz) On-frequency(MHz)
1 4.125 86.8516
2 43.4258 76.1867
3 50.7911 72.0717
4 54.0538 69.8786
5 55.9028 68.5138
6 57.0948 67.5821
7 57.9275 66.9055
8 58.5423 66.3916

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 a

ct
iv

e
no

de
s

load

LAOVS
VOVO-CVS

minimum
 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

to
ta

l s
ys

te
m

 p
ow

er
(W

)

load

LAOVS
VOVO-CVS

p(nmin,x)

Figure 4. Intel XScale System with 8 nodes (theoretical results)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 a

ct
iv

e
no

de
s

load

LAOVS
VOVO-CVS

minimum
 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

to
ta

l s
ys

te
m

 p
ow

er
(W

)

load

LAOVS
VOVO-CVS

p(nmin,x)

Figure 5. 8-node Intel XScale System without the frequencies
400MHz and800MHz (theoretical results)

6.2 Simulation Results

We implemented three request distribution policies—Round-Robin
(RR), VOVO-CVS, and LAOVS—in our simulator [1] designed to
investigate power management schemes for rate-based systems. In
RR, all the available nodes are always kept active and requests are
distributed in a round-robin fashion.

Each simulated node is a PowerPC 750, as shown in Table 3.
Many system parameters in the simulator are tunable. Since the
applications under consideration (i.e.,SBT andCAF) can tolerate
average delay of 5-10 seconds, we set the following parameters. In
each node, the processor speed is adjusted every 1 second based
on CPU utilization over the past 1 second. Nodes take 33 seconds
(boot time) for the inactive-to-active transition and the energy con-
sumed during boot time is 190J (these numbers are from the Pow-
erPC 750 platform, but we examine this issue further below: it has
an important influence on the schemes). For the front-end, itchecks
the system load every 1 second, deciding whether to turn on or
off a node. The variablelook back is set to 4, which means the
front-end computes the average load over the last 4 seconds.Both
shut down threshold andturn on threshold are 4 seconds.

To validate the theoretical power consumption for VOVO-CVS
and LAOVS, we generated a synthetic workload in which the re-
quests lengths (in cycles) and the request arrival rate are constant.
This will result in perfect balance in load distribution by the front-
end. We generated various such workloads for different size(N)
clusters. The performance of LAOVS is never worse than the other
two policies (see Figure 6). In most of the experiments, LAOVS
outperforms RR and VOVO-CVS, both of which use the same num-
ber of nodes (both plots in Figure 6 are very similar; the raw data
shows that the number of nodes is the same). Note that the energy
savings are higher at low system loads because when the system
load is high, most of the nodes have to be active to keep up withthe
request arrival rate, independent of the request distribution tech-
nique. However, when the system load is low, various number of
active nodes can service the load and LAOVS will choose the op-
timal number. The values oflook back, boot time, and thresholds
have very little significance in the case of the synthetic workload.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

sa
vi

ng
s

vs
 R

R
(%

)

Load

N = 2
N = 4
N = 6
N = 8

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

sa
vi

ng
s

vs
 V

O
V

O
-C

V
S

(%
)

Load

N = 2
N = 4
N = 6
N = 8

Figure 6. Energy savings of LAOVS as a function of load, com-
pared to RR (top) and VOVO-CVS (bottom)

The above experiments assume that the load is perfectly bal-
anced across the active nodes. While this assumption may be safe
for some applications, our two applications (SBT andCAF) have
much more unpredictable behavior, as shown in Tables 1 and 2.

As mentioned before, perfect load-balancing is not a realistic as-
sumption for such workloads. In our experiments even the type in-
formation provided by the application was not useful, due tothe
huge variability in the event processing requirements within a sin-
gle event type. The simulation results shown in Figure 7 are based
on a 41-minute trace ofSBT, with average request arrival rate of
26%. We used this trace to test RR, VOVO-CVS, and LAOVS poli-
cies forN = 2, 4, 6, 8 nodes respectively and scaled the trace ac-
cordingly so that the cluster can handle the peak load withN pro-
cessors. In all experiments, LAOVS outperforms RR and VOVO-
CVS in terms of energy by 6-14%. The energy savings are signifi-
cant despite being not as much as for the stable load; this is because
in the realistic trace, there are some very long requests that make
the load unbalanced and thus consume more energy and becausein
these experiments the impact of the energy consumed during boot
time is significant.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10
E

ne
rg

y
sa

vi
ng

s(
%

)
N

LAOVS vs. RR
LAOVS vs. VOVO-CVS

-5

 0

 5

 10

 15

 20

 0 2 4 6 8 10

A
vg

 d
el

ay
(s

ec
on

d)

N

RR
LAOVS

VOVO-CVS

Figure 7. Simulation results on the 41-minute trace ofSBT, with
a boot time of 33 seconds (delay for RR is close to zero, since it
never turns off any nodes)

Clearly, the time and energy spent during boot will have a
significant impact on the effectiveness of any on-off scheme. For
our PowerPC 750 platform, boot time is long (33 seconds) due to
copying and uncompressing the operating systems from SUROM
to main memory (SDRAM). The long boot time results in higher
delay in LAOVS than VOVO-CVS. However, non-volatile memory
is currently being rapidly developed, such as FRAM [9] and carbon
nanotube memories [12]. When using such technology, the boot
time will be drastically reduced, to the millisecond range.The same
holds true for the energy consumed during boot time. We varied the
boot time in our simulator and Figure 8 shows the energy savings
and average delay versus boot time. From Figure 8, we can see
that LAOVS outperforms VOVO-CVS both in terms of energy and
average delay for boot times below 20 seconds.

We also looked into how summing up the average loads of all
nodes to estimate the system load would improve VOVO-CVS.
In Figure 8, VOVO-CVS1 is the modified VOVO-CVS with the
use of summation of all average loads of all nodes to estimate

the system load. As we can see from the figure, VOVO-CVS1
achieves a significant improvement over VOVO-CVS, but is still
outperformed by LAOVS in general; one exception when the boot
time is 30 seconds and the size of the cluster is 4. The exception
is because we did not consider the time and energy during boot
in our model; in that case, LAOVS turns on servers more often
than VOVO-CVS1 and the gain from using the optimal number
of servers and the threshold scheme cannot offset the loss ofthe
energy during boot. However, when the boot time is below 20
seconds, LAOVS is always better than VOVO-CVS1 in terms of
energy and average delay.

6.3 Experiments on A Testbed

As a proof of concept, to build a real system in a hardware platform,
we implemented our scheme on a testbed consisting of IBM Pow-
erPC 750 nodes. This platform, provided by our industrial partners
with RR as the request distribution policy at the front-end,only
had 2 nodes available at the time of testing. Our goal was not to do
extensive evaluation in comparison to other schemes (see previous
section), but to implement a proof-of-concept system, to take ac-
tual measurement, and to evaluate power management policies to
a certain extent. Our collected data can be seen through our web
interface [1].

The voltage/frequency scaling of PowerPC 750 processors is
done through external voltage/frequency regulation. The voltage
scaling takes around2ms for each0.1V adjustment and the fre-
quency scaling takes negligible amount of time. Linux is used in the
nodes and the power management (DVS and on/off) is supported
through APIs. To power on/off a node, programs just need to send
out a specific message to a host machine that has been wired to
all nodes. Powering off a node takes into effect immediatelywhile
powering on a node (booting from ROM including uncompressing
the kernel) takes 33 seconds. The power consumption of each part
in a node (e.g., processor, memory and I/O) was measured and col-
lected using a data acquisition system.

In our experiments, we used an additional node to be the front-
end, which emulates the sensors that generate events; we report
results of the 41-minute trace ofSBT. The front-end sends events
to nodes every second. On each node, a self-adaptive DVS scheme
is employed, which uses the utilization information duringthe last
interval (i.e., one second) to determine the frequency/voltage level
for next interval. For our LAOVS policy, whenever a node changes
its voltage/frequency or becomes idle, a feedback message is sent
to the front-end.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ow

er
 c

on
su

m
pt

io
n

(W
)

ar
riv

al
 r

at
e

time (second)

Node 2
Node 1

rate

Figure 9. The power consumption for PowerPC 750 system with
RR being used at the front-end

First, we show the results when the RR policy is used at the
front-end and both nodes are always kept on. The solid line in
Figure 9 is the normalized arrival rate (Y-axis on the right side
of the plot) of events used in our experiments. Notice that the
arrival rate is a rough indicator of system load. The arrivalrate of1
corresponds to the maximum number of events that can be handled
by two nodes at the maximum voltage/frequency level. The average
arrival rate of this trace is26%.

The other two curves in Figure 9 are the power consumption
for each PowerPC 750 system when there is no power management
(NPM) being employed on each node. From the plots, we can see
that the power consumption of PowerPC 750 systems under NPM
is independent of event arrival rate (i.e., system load).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000

po
w

er
 c

on
su

m
pt

io
n

(W
)

time (second)

Node 2
Node 1

Figure 10.The power consumption for PowerPC 750 systems with
LAOVS being used at the front-end

Figure 10 shows the power consumption for each PowerPC
750 system when LAOVS is used at the front-end. The power
consumption of0 corresponds to the node being powered down
during that period. When DVS is employed on each node, Figure10
shows that using DVS in each node consumes much less power
than not using any power management. However, we can also see
that nodes may be mistakenly powered down due to the inaccurate
estimation of system load based only on the feedback of load
information from each node (network communication delay isone
of the factors). The solution to this problem is left for future work.

Table 6.System energy consumption for different front-end distri-
bution and node DVS policies, normalized to RR/NPM

Policies Energy(kJ) %
RR/NPM 37.7 100.0
RR/DVS 13.4 35.5
LAOVS/NPM 26.3 69.5
LAOVS/DVS 10.7 28.4

Table 6 shows the total energy consumption in the system when
different policies are employed. We can see that only69.5% en-
ergy was consumed by LAOVS compared to RR when NPM is em-
ployed on nodes. When DVS is used on each node, LAOVS uses
around7% less energy compared to RR.

7. Conclusions
In this work, we studied energy-efficient policies for embedded
applications using clusters. We proposed a new power management
policy that is implemented on a front-end node, which carries out

-5

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

en
er

gy
 s

av
in

g(
%

)

boot time(second)

LAOVS vs. RR
LAOVS vs. VOVO-CVS

LAOVS vs. VOVO-CVS1

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

av
er

ag
e

de
la

y(
se

co
nd

)

boot time(second)

RR
LAOVS

VOVO-CVS
VOVO-CVS1

a.N = 2, energy savings b.N = 2, average delay

-5

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

en
er

gy
 s

av
in

g(
%

)

boot time(second)

LAOVS vs. RR
LAOVS vs. VOVO-CVS

LAOVS vs. VOVO-CVS1

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

av
er

ag
e

de
la

y(
se

co
nd

)

boot time(second)

RR
LAOVS

VOVO-CVS
VOVO-CVS1

c.N = 4, energy savings d.N = 4, average delay

-5

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

en
er

gy
 s

av
in

g(
%

)

boot time(second)

LAOVS vs. RR
LAOVS vs. VOVO-CVS

LAOVS vs. VOVO-CVS1

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

av
er

ag
e

de
la

y(
se

co
nd

)

boot time(second)

RR
LAOVS

VOVO-CVS
VOVO-CVS1

e.N = 6, energy savings f.N = 6, average delay

-5

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

en
er

gy
 s

av
in

g(
%

)

boot time(second)

LAOVS vs. RR
LAOVS vs. VOVO-CVS

LAOVS vs. VOVO-CVS1

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

av
er

ag
e

de
la

y(
se

co
nd

)

boot time(second)

RR
LAOVS

VOVO-CVS
VOVO-CVS1

g. N = 8, energy savings h.N = 8, average delay

Figure 8. Simulation results for various boot times

the request/load distribution. The main novel aspects of our policy
are that it has been designed directly for processors with discrete
frequencies, does not make any assumption on the power-frequency
relationship, accounts for the idle power of nodes when making
decisions about nodes being active or inactive, and includes a
threshold scheme to prevent the system from reacting to short-lived
temporary workload changes in the presence of unstable incoming
workload.

We implemented our policy in our suite of simulators [1], and,
for proof of concept, in a testbed at the site of one of our industrial
partners. The testbed consists of PowerPC 750 nodes. Simulation
and implementation results show that our proposed policy iseffec-
tive and outperforms previously proposed policies.

Unlike VOVO-CVS, LAOVS can be extended to heterogeneous
clusters, which is part of our ongoing work. Future work willalso
investigate how to dynamically adapt the LAOVS system parame-
ters to a changing workload.

References
[1] Power-sim. http://www.cs.pitt.edu/PARTS/PACC/NEW.
[2] AMD PowerNow! Technology. http://www.amdboard.com/powernow.html.
[3] H. Aydin and Q. Yang. Energy-Aware Partitioning for Multiprocessor

Real-Time Systems. InWorkshop on Parallel and Distributed Real-
Time Systems(WPDRTS’03), pages 113–121, March 2003.

[4] P. Bohrer, E. Elnozahy, M. Kistler, C. Lefurgy, C. McDowell, and
R. R. Mony. The case for power management in web servers. In
Power Aware Computing, Kluwer Academic Publications, 2002.

[5] H. Bryhni, E. Klovning, and O. Kure. A Comparison of Load
Balancing Techniques for Scalable Web Servers. InIEEE Networks,
pages 58–64, July 2000.

[6] Transmeta Corporation. LongRunTechnology. http://www.transmeta.com/
crusoe/longrun.html.

[7] E.N. Elnozahy, M. Kistler, and R. Rajamony. Energy-Efficient
Server Clusters. InWorkshop on Power-Aware Computer Systems
(PACS’02), 2002.

[8] K. Flautner and T. Mudge. Vertigo: automatic performance-setting
for Linux. In Proceeding of the 5th Symposium on Operating Systems
Design and Implementation (OSDI’02), December 2002.

[9] FRAM: Ferroelectric RAM. http://www.fujitsu.com/downloads/MICRO/
fma/pdf/framppttech.pdf.

[10] K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms for
Dynamic Speed-Setting of a Low-Power CPU. InProceedings of
the 1st ACM International Conference on Mobile Computing and
Networking (MOBICOM), pages 13–25, 1995.

[11] D. Grunwald, P. Levis, K.I. Farkas, C.B. Morrey III, andM. Neufeld.
Policies for Dynamic Clock Scheduling. InProceedings of the
4th Symposium on Operating Systems Design and Implementation,
October 2000.

[12] http://www.nanotech-now.com/.
[13] E. Pering, T. Burd, and R.W. Brodersen. The Simulation and

Evaluation of Dynamic Voltage Scaling Algorithms. InProceedings
of 1998 International Symposium on Low Power Electronics and
Design, August 1998.

[14] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load Balancing
and Unbalancing for Power and Performance in Cluster-Based
Systems. InWorkshop on Compilers and Operating Systems for
Low Power, September 2001.

[15] C. Rusu, R. Xu, R. Melhem, and D. Mossé. Energy-Efficient Policies
for Request-Driven Soft Real-Time Systems. InProceedings of the
16th Euromicro Conference on Real-Time Systems, Catania, Italy,
July 2004.

[16] S. Saewong and R. Rajkumar. Practical Voltage-Scalingfor Fixed-
Priority RT-Systems. InProceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’03), May
2003.

[17] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Liu.
Power-aware QoS Management in Web Servers. InProceedings of
the 24th IEEE Real-Time systems Symposium (RTSS’03), Cancun,
Mexico, December 2003.

[18] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
Reduced CPU Energy. InProceedings of the 1st Symposium on
Operating Systems Design and Implementation, November 1994.

[19] Intel XScale Microarchitecture. http://developer.intel.com/ de-
sign/intelxscale/benchmarks.htm.

[20] R. Xu, C. Xi, R. Melhem, and D. Mossé. Practical PACE for
Embedded Systems. InProceedings of the 4th ACM International
Conference on Embedded Software, Pisa, Italy, September 2004.

[21] F. Yao, A. Demers, and S.Shankar. A Scheduling Model forReduced
CPU Energy. InIEEE Annual Foundations of Computer Science,
pages 374–382, 1995.

