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Abstract

Power conservation has become a key design issue for many sys
tems, including clusters deployed for embedded systemsravh
power availability ultimately determines system lifetimehese
clusters execute a high rate of requests of highly-variéigth,
such as in satellite-based multiprocessor systems. Thé gjoa
power management in such systems is to minimize the aggregat
energy consumption of the whole cluster while ensuring lifme-
sponsesto requests. In the past, dynamic voltage scalvi§)(&nd
on/off schemes have been studied under the assumptionstirf-co
uously tunable processor frequencies and perfect loaahbag.

In this work, we focus on the more realistic case of discrede@s-

sor frequencies and propose a new policy that adjusts théaum
of active nodes based on the systlad, not system frequency.
We also design a threshold scheme which prevents the sysiem f
reacting to short-lived temporary workload changes in tfes@nce

of unstable incoming workload. Simulation and implemenotat
results on real hardware show that our policy is very effecin
reducing the overall power consumption of clusters exagugim-
bedded applications.

Categories and Subject Descriptors D.4.7 [Operating systems]:
Organization and Design - Real-time systems and embedded sy
tems; D.4.8Dperating Systems): Performance - Measurements

General Terms Algorithms, Management, Experimentation

Keywords Dynamic Voltage Scaling, Load Balancing, Space Ap-
plications, Distributed Systems, Cluster Computing

1. Introduction

In portable or untethered devices that deal with large amotin
requests, power consumption and cooling account for afgigni
fraction of the total operating cost. Furthermore, systeerioeat
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resulting from excessive power consumption can lead taririte
tent system failures.

An example of the type of system that requires power man-
agement is satellite-based signal processing. Signalodéiected
through external sensors (equivalent to the front-end dbister)
may be disseminated to several processing units for fughat-
ysis by a signal processing application. Currently, we avesti-
gating two such signal processing applications, referoealsSBT
(Subband Tuner) an@AF (Complex Ambiguity Function), each
provided with several realistic traces. Based on the olbsiervthat
a system designed for peak load is rarely fully utilized, lgiog
power management schemes can successfully lead to significa
power savings while maintaining adequate system perfocaman

Power management mechanisms can be divided into two cat-
egories: vary-on/vary-off (VOVO) and dynamic voltage sugl
(DVS). Node VOVO [14, 7] makes cluster nodes inactive (peits
them in a lower-power mode such as sleep or off) when the incom
ing workload can be adequately served by a subset of the nodes
in the cluster and makes nodes active again when the workiead
creases beyond the capacity of the active nodes.

On the other hand, individual power management at localsiode
is possible because current power-efficient systems havagea
ment functions that can be invoked to choose among different
power states for each component. An increasing number aggro
sors [19, 2, 6] implement DVS, which can yield quadratic gger
savings.

It has been shown that combining the VOVO and DVS mecha-
nisms can achieve significant power savings for clusterdH{@v-
ever, the existing policies are based on the assumptionsriine
uous frequencies and cubic rule of the power-frequencyioala
which do not hold in practice. Currently available commafBlVS
processors only provide about 4-10 discrete operatingi&agies
and many of them do not comply with the cubic rule of the power-
frequency relation. Furthermore, some processors havkcieat
frequencies that must be eliminated [16].

In this paper, we propose a new power management policy
for embedded clusters. Our policy applies directly to theecaf
discrete frequencies and does not make any assumption on the
power-frequency relationship. Even though our policy acés
maximum power savings when the incoming workload is stable
and balanced across the whole cluster, we do not rely on these
assumption’s Our proposed policy, to be implemented at the front-
end of the cluster, assumes that each node in the clustermperf
DVS independently, to meet a desired QoS requirement éegpal
is to keep up with the rate of request arrivals). This is theedar
many existing systems, such as the satellite-based nodggsor
systems that we are dealing with.

1 Our motivation, theCAF andSBT applications, do not at all comply with
the assumption of a stable workload.



The remainder of the paper is organized as follows. We first
present related work in Section 2. The system model andappli
tions are in Section 3. We present the theoretical resultioiding
the optimal number of active nodes in Section 4. Our new padic
presented in Section 5. Simulation and implementationltesue
reported in Section 6. We conclude the paper in Section 7.

2. Related Work

Dynamic voltage-scaling (DVS), which involves dynamigadid-
justing the voltage and frequency of the CPU, has become @armaj
research area. Quadratic energy savings [19, 15] can bevachat
the expense of just linear performance loss. For real-tiyséess,
DVS schemes focus on minimizing energy consumption in tise sy
tem while still meeting the deadlines. Yao et al. [21] predda
static off-line scheduling algorithm and a number of oreladgo-
rithms with good competitive performance, all for aperotdisks.
However, the algorithms assume cubic rule of power-freques-
lation and knowing the computational requirement of tasgsari,
which do not apply in our case. Weiser et al. [18] recommended
interval-based DVS algorithms. Govil et al. [10] proposedép-
arate the interval-based DVS algorithms into two partsdioten
and speed-setting. Prediction methods and speed-setiiitiep
were extensively studied in [11, 13]. The interval-basedSDAl-
gorithms incur low overhead and are easy to implement. Fram o
experience, they are very effective in terms of keeping uh thie
request arrival rate. Automatic DVS for Linux running in geal-
purpose computers with distinction between backgroundraed
active jobs was presented in [8].

embedded
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node N

Figure 1. Cluster architecture

the realistic case, where the CPU only provides a finite nurabe
discrete frequencies. The node’s power consumption wheveac

is Pactive, Which is dependent on its operating frequerfcyThe
node’s power consumption when idle (i.e., the processoar ibé

idle state and memory/bridge are in doze modé)is.. The node’s
power consumption when inactive £3,,4.ctive, Which is the power
consumed when the processor is off and the memory is in self-
refresh mode. We consider the ideal case because its anedysi

Power management has traditionally focused on portable and give insight into power management policies for clusters.

handheld devices. IBM Research broke with tradition and pre
sented a case for managing power consumption in web sedjers [
Elnozahy et al. evaluated five policies which employ varicois-
binations of DVS and node VOVO for cluster-wide power manage
ment in server farms [7]. Sharma et al. [17] investigatedbtida
algorithms for dynamic voltage scaling in QoS-enabled vezhers
to minimize the energy consumption subject to service detay
straints. Aydin et al. [3] incorporated DVS scheduling ofipdic
task sets to partitioned multiprocessor real-time systems

Among the related work, the policies in [7] for power man-
agement in clusters are most relevant to our work. Theseigsli

The front-end is responsible for collecting requests frdients
and for distributing the requests to the active nodes. Meithe
request arrival rate nor the computational requirementefach
request is knowsa priori. Due to this characteristic of the systems
under consideration, we express the system load as the awun
work (in cycles) that the front-end receives in one secorite T
front-end is also capable of making the nodes inactive aimdjimg
them back to active state (that is, VOVO), according to soatiey
The front-end tries to distribute the incoming requests regnihe
active nodes in a balanced fashion.

Each active node carries out DVS independently, runningeat t

determine the number of active nodes and apply a certain DVS lowest frequency that keeps up with the request arrival Moeles

scheme independently or coordinately. A vary-on/varyeoibrdi-
nated voltage scaling policy (VOVO-CVS) resulted in mosivpo
savings. For every possible number of active nodes, theyppti-
computes an on-frequency and an off-frequency such thas -
erage frequency of the cluster exceeds the on-frequentaepisg
node will be turned on and if the average frequency of thetetus
falls below the off-frequency, one of the active nodes wélitbrned
off. The policy precomputesthe on-frequencies and offdencies
based on the assumptions of perfect load-balancing, aanigifre-
guencies and cubic power functions. In practice, thesengsions
do not hold, and thus the policy is suboptimal.

3. System Model and Applications
3.1 Models

The system we consider is a cluster (Figure 1) consistindrofrd-

end andN identical nodes, each equipped with a DVS processor.
At any given time, each node is in one of three states: active,
idle, and inactive. When a node is active, its processornsing

at some frequency, where f is between a maximum frequency
fmaz @and a minimum frequency.i,. Without loss of generality,
we assume thal < fiin < fmer = 1, thatis, we normalize
the frequency values with respect fg,.... We consider both the
ideal case, where the frequency can be tuned continuously, a

service the requests that the front-end sends to them auchret
the results directly to the clients. Nodes also send feddtmathe
front-end, such as speed changes. Individual node poligae
investigated in [15].

A note on load balancing: While load balancing makes perfect
sense if the CPU speed can be tuned continuously, it is noggne
optimal for the discrete case, where loadbalancing may be
desired. For example, for a two-node cluster where the CRY on
provides two speeds: 100 H z and 200M H z, if the system load

is 300 M H z, it is optimal to distribute 100/ H = of system load
to one node and 200/ H z to the other, instead of distributing 150
M H z to each of the nodes. However, because the exact load is
unknown (i.e., execution times and the arrival rate are nown
a-priori), such a load unbalancing mechanism is impraktca
implement. In contrast, load balancing techniques have hbesl
studied and are effective even when the incoming load isainhest
(e.g., sending the next requestto the node with the lowad) [®].

3.2 Space Applications

As mentioned in Section 1, two digital signal processingliapp
tions are our motivation in this work, name®8T andCAF. These
applications were provided by our industrial partners, atemov-
ing their embedded platforms from a application-specifocpssor



(in this case a DSP) to a general-purpose processor (in disis ¢
a PowerPC 750 with DVS capability). For these applicatiths,
system can determine the requgie, upon request arrivallype

is the sort of semantic information that helps improvingphedic-
tions about the workload. In general, several types can becas
ated with the application processing the request.

For the CAF application there are three event types: the first
time an event occurs, the second time and all times after that
(typically resulting in long, short to medium, and relativahort
events, respectively). F&BT, there are two types of requests (long
and short). In these applications, the requesttype canteexieed
solely from the header.

BT is an application that searches digital signal data that is
related to frequency and time domain for certain pattetgsés
filters for finding contiguous chunks of data that have a djmeci
characteristic for a certain interval of time. After findiagch pat-
terns, there is some processing that occurs. There are t8gibe®
paths to be followed, depending on the type of the event. From
our own measurements, in about 19% of the events, there are no
enough details to quickly extract the correct data and theeetis
extra processing that is incurred. For the other 81% of tlemisy
the data is sufficient for quick processing.

CAF is an application that collects data in low orbiting satedi
(LEOs), correlates it with data collected from geo-steadiyrsatel-
lites (GEOs), for object recognition and locatid®AF processing
is done in the LEO through calculations of the differenceneen
arrival time (dT) and frequency (dF) signals from the objefon-
terest. This object may be on Earth’s surface or may be flylihg.
CAF application can determine an object’s location with an accu
racy from 4 to 7 significant digits (corresponding to 1K to 1déta
point correlation, respectively).

We measured the execution times of the requests in an experi-
mental platform consisting of PowerPC 750 boards, usinglifea
inputs and inter-arrival times. We noted that the variapbiif exe-
cution lengths was extremely large (2 to 750 million cycleSBT
and 1 to 5,000 million cycles i€@AF) and the predictability of the
execution length was very poor. Our measurements are shown i
Tables 1 and 2. From the execution of the applications, welgen
ated realistic traces and used them in our evaluation ofyte
(see Section 6).

Table 1.Request execution times (in millions of cycles)

SBT CAF
Typel | Type2 | Typel | Type2 | Type3
Min 2.9 2.0 8.2 4.1 1.3
Max 82.6 753.6 5045 210.2 32.9
Avg 9.7 123.2 820.2 45.0 5.8
[% [ 79% | 21% | 54% | 2.9% | 91.7% |

Table 2. Requestinter-arrival times (in seconds)

SBT CAF
81 min | 1030 sec| 1800 sec
Min 0.13 0.1 0
Max 6.7 11 5
Avg 0.37 0.44 0.7
[events| 13045 2307 | 2564 |

4. Determining the Optimal Number of Active
Nodes

In this section, we present the theoretical results on hodeter-
mine the optimal number of active nodes based on the systsin lo

assuming that the incoming workload is stable and balanceda
the active nodes in the cluster. We consider the ideal aritiea
cases (continuous and discrete speeds).

4.1 Continuous Case

Suppose that the CPU frequency/speed can be changed continu
ously. In this section we follow the power model used in [f. |
this model, the node power consumption when active (runaing
frequencyf) is

Pactiue(f) =co+ led
wherecg ande; denote the static power and the maximum dynamic
power respectively. A node consumes the static power asdsiity
is active or idle, which includes the power consumption béam-
ponents except for the CPU, plus the base power consumgtion o
the CPU. The dynamic power is determined by the CPU operating
frequency and the maximum dynamic power is the dynamic power
consumed when CPU is operating at the maximum frequency. For
the purpose of analysis, we assume tRaf.c.ive = 0 and that
clock gating is used when the processor is put to the idle mode
thus resulting inP;q;c = co. If Pinactive # 0, then this value can
be subtracted from, and the analysis results still hold.

The authors in [7] derived the policies turning on/off nodes
based on the frequency of active nodes. In our approach, eidale
the optimal number of active nodes based on the system load.
Although both approaches solve the same problem, our agiproa
enablesthe systemto react much quickerto workload ch@nde (
vs. O(N)). Furthermore, our approach can identify the sufficient
conditions when it is best to minimize the number of activee®
and when it is best to maximize the number of active nodesijlas w
be discussed below (see Results 1 and 2).

Letz be the normalized system workload € « < 1, normal-
ized with respect to the maximum workload that the system can
handle, i.e..N fmax = N). Thus, the minimum number of active
nodes that can handle the workloads n,., = [N]. Letn be
the number of active nodes, then the frequency of the process
of each node is“X. If X > f,;,, the total power of the whole
system for load:, denoted by (n, z), is

)

If X < f,in, the frequency®™ can be emulated by running
=N N

pi(n,z)=n <co + (

p2 (n7 "E)

H N
Ifngf :

otherwise

Mnimze

Subj ect

= (= aF. also calledutilization) of the time at frequency
fmin and idle for the rest of the time. Thus, the total power of the

: N
n (CO + leg’binm
Therefore, the total power of the whole system for laadenoted
by p(n, x), is
p1 (TL, .'E)
The problem of deciding the optimal number of active nodgs,
can be expressed as a mathematical program:
to aN<n<N

ne{l,2,...,N}

continuous version of the program, that is, removing thestraimt
n € {1,2,...,N}. The functionp(n, x) (Figure 2a) is composed

whole system for load, denoted by: (n, x), is
nco + ¢ frintN
re) = { )
p(n, )
We solve the above mathematical program by first solving the
of parts of two functionsp: (n, ), a convex function with the only



critical point ¢/ %xN (i.e., the point where: (n, ) achieves its
minimum), anc: (n, x), a linear function with positive slope. Note
thatp; (n) = p2(n) whenn = -2~ which may be inside the
range[xz N, N] or[N, oo]. It is easy to verify that the solution to the
continuous version of the program (see Figure 2) is

=N if 220 <1 1)
(Figure 2b)
% if & < frmin and%1 > f;{m 2)
n= (Figure 2c)
N if 2> frmin and%}1 >4 (3)
(Figure 2d)
{/%LaN  otherwise (4)
P (%) /
| P(n.x) ‘
| G j
| \ / l
| o N A
1 \ . ..n L n
N N ] XN
a. General plot op(n, x) b.p(n, ) when the
for a givenx minimum occurs at N
p(n, x) /
p,(nx)
TN P(NX) - p,(nx)
| n,X
pL(n, %) . /
\.\ \ /
; < /
| /
7777777 ; \\\\ /;
n | | } n

' | |
X N 2
N[5 {E

c.p(n, z) when the
minimum occurs atj#

dp(n,x) when the
minimum occurs afV

Figure 2. Functionp(n, x).

The optimal solutiom* to the discrete versigrof the mathe-
matical program is eithefri] or |72 ], subjecttoxN < n* < N.
This is easily found by a simple comparison.

From the solution to the mathematical program, we have the
following results:

Result 1: If %}1 < 1, the minimum energy consumption is at-
tained when the number of active nodes is just large enough to
handle the systemload (from condition (1)).

Result 2: If 2%01 > f31 and the load distributed to each ac-

tive node is no less thaﬁi?mm, the minimum energy is attained
when the maximum number of nodesis used (from condition (3)).

Results 1 and 2 are intuitive, as follows. Result 1 stateg tha
when the static power dominates the dynamic powegr¥ 2ci,
which satisfies condition (1)), it is better to put as many exd
inactive as possible to save the static power, as long asutmber

2While considering the cubic rule, taketo be integer

of the active nodes is enough to service the workload. R2says
that, when the incoming workload is reasonably large>( fi.in)
and the dynamic power dominates the static powerx 2;3“‘ ,
which implies thaic, > 3%, satisfying condition (3)), it is better
to use as many active nodes as possible to lower the dynamirpo
of each node.

4.2 Discrete Case

Today’s processors only provide a few number of discretedpe
(thatis, the continuous speed assumption is not valid) e dubic
rule does not usually apply in practice [20].

In the discrete case, when a node is active, the processsr run
at one of theV/ discrete operating frequencie§; f2, ..., far and
the corresponding node powers @&éf1), P(f2),..., P(f).

In the presence of discrete speeds, if the incoming workload
for one particular node i where0 < w < 1, it will need to
run at the frequencjfw|| where||w|| denotes the lowest available
discrete frequency higher than or equatdéoThus, the utilization
of the node is« = w/||w|| and the power consumption of the node
isux P(Jlw|]) + (1 —u) X Pidie.

As above, ifr is the normalized system workload, the minimum
number of active nodes that can handle the worklo@n, ., =
[xNT]. Letn be the number of active nodes, then the frequency of
the processor of each node is

N
f=1=I
n

and the utilization of each processor is
N

n

oo 2N

fnf

and the total power of the whole system for loaddenoted by
p(n,z)is

p(n,z) = (uP(f) + (1 = u)Piate)n + Pinactive(N —n)

Thus, determining the optimal number of active nodes for a pa
ticular system load: is equivalent to finding the value af which
minimizesp(n, x), thatis, computing functiop(z) that returns the
number of active nodes that minimize&, x).

An alternative solution to dynamically computing the opim
number of nodes is to precomputér) offline and store its values
in a table, which converts the online computationg¢f) into a
table lookup operation. This solution is feasible singe) is a
piece-wise constant function.

To see why functio(x) is piece-wise constant, we first show
that for a giverr, 0 < = < %, the functionp,, (z) = p(n, z) is a
piece-wise linear function. We can expresgx) in the following
form, which does not contain the: || operation:

(%P(fl) +(1 - %)Pidle) n+
Pinactiue(N - TL) if 0 S x < ”NL
(%P(ﬁ) +(1- %)Pidle) n+

u =

pn(w) = Pinactiue(N - TL) if % S x < %
(2EP(1) + (1 — =) Pigie) n+
Pinactiue(N - TL) if nf%71 S x S %

Each component gf, (z) is a linear function inz, so p,(x) is
a piece-wise linear function. Thys, (x) can be expressed hy/
straight line segments geometrically. Each functigriz) (n €
{1,2,...,N}) divides the system load range, 1] into O(M)
pieces, and all of them together divide the system load réhdé¢
into O(M N) parts. Corresponding to each of th€¥@\/ V) parts,



there areO(V) straight line segments, each corresponding to one
of the functionsp,, (). TheseO(N) straight line segments will
divide each part intd@ (V) pieces. For each of these pieces, we
can find its corresponding optimal number of node®inV) time.

The algorithm runs in polynomial time and the number of péfoe
g(x) is O(MN?). To decide the optimal number of active nodes,
we perform a binary search which tak@glog(M N?)).

While the above algorithm is quite involved, we can instes& u
a simple approximation algorithm. This algorithm disaes the
system load rang@, 1] into b bins of equal width. For a particular
cluster, we precompuig(y) wherey € {0, 1, 2,...,1} store the
values in a tablé? with b+1 entries. This algorithm runs i@ (bN)
time. Once the cluster is running, for a given system loade let
g(x) = H[|bx]], thatis, findingg(x) for a system load: can be
done in constant time. The good valuelofs dependent on the
system and can be decided by offline experiments.

Both the exact and approximation algorithms are offline -algo
rithms, resulting in a table (to be stored at the front-ehd} de-
cides for each load what the optimal number of active nodes is
At runtime, the front-end periodically detects the systead|, per-
forms a table lookup to determine the optimal number of activ
nodes, and compares with the current number of active nades t
decide whether it should turn on/off nodes.

5. Power Management Policy

In this work, our goal is to minimize the aggregate energyhef t
whole cluster (excluding the front-end). We assume that eade
in the cluster performs DVS independently to keep up withrée
quest arrival rate [15]. Thus, we focus on the front-end @tlgms,
that is: how to estimate the system load, when to turn nodesdn
off, and how to distribute requests to active nodes.

5.1 System Load Estimation
We determine the number of active nodes based directly osythe

We also need to deal with a special case in our load estima-
tion scheme. The average load is at most 1 because it is rinedal
to fmaex = 1. If @ node’s average load is 1, it has been running
at full speed without being idle over the pdsbk_back seconds.
However, average load of 1 does not indicate whether the isode
overloaded or simply keeping up with the request arrivad.rein-
derestimating the system load would result in increasegbrese
times or even in system failures. To be on the safe side, ifdes0
average load remains at 1 for a predefined period of time, we in
crease that node’s average load frarto 1 + 1 (for the meaning
of b, see Section 4.2), resulting in an increase on the estimafio
the system load, and thus possibly also in the change of nuafibe
active nodes.

The estimation of the system load and deciding the number
of active nodes based on the system load are the highlights of
our policy. Therefore, we call our policy Load-Aware On-wfith
independent \Voltage Scaling (LAOVS).

5.2 The Threshold Scheme

After the front-end obtains the estimation of the systendloa

it computes the number of active nodes needed= g(x), as
discussed in Section 4. Let the current number of active sibee
denoted byn.. If n, = n., there is no need to make any nodes
active/inactive; ifn, > n. andn. < N, make an inactive node
active; ifn, < n. andn. > 1, make an active node inactive. To be
conservative, we do not make more than one node active diniaac
atatime.

In real-life workloads, there may be some short-lived terapo
workload changes. This may force the front-end into makingde
active or inactive if we do that once the front-end detectsoakw
load change. To prevent this from happening, we design athre
old scheme. We define two variable$iut_down_threshold and
turn_on_threshold. The variableshut_down_threshold is the
time the front-end will wait before it is sure to make a nodacin

tem load, which can be obtained by getting feedback from each tive. Similarly, turn_on_threshold is the time the front-end will

node. This is in contrast with the policies in [7], which tuwon/off

wait before it is sure to make a node active. During the waitin

nodes based on the frequency of active nodes. The assumptiorime, the front-end will continue tracking the system loAtithe

in [7] is that the active nodes are not idle most of the timenfc-
ous frequencies) and that they are all running at the samedrecy
(perfect load-balancing).

end of the waiting time, an active node will be made inacting/ o
if the decision to turn off a node is true every time it was dtezt
during the waiting time. Similarly, an inactive node will beade

However, we argue that the frequency of a node at a given time active only if the decision to turn on a node was true evergtim

poorly correlates with its actual load (unless the load i4 tel-
anced and the frequency is continuous), thus resulting oa @s-
timation of the average frequency needed. For example, @@
with only 2 discrete speeds, 0.5 and 1, if the incoming wakls
0.25, the CPU would run at frequency 0.5 half of the time atel id
half of the time to keep up with the workload. In this casengsi
any instantaneous frequency of the node to estimate thewdiad
result in overestimation or underestimation.

was checked during the waiting time.

5.3 Workload Distribution

Since neither the request arrival rate nor the computdtienaire-
ment for each requestis known a-priori, the front-end apiprates

In our policy, we determine the number of nodes needed basedthe load-balancing by sending the next request to the antide

directly on the load in the recent past (rather than the nitpiEn-
cies). This results in a more accurate estimation and editagthe
strong dependency on perfect load balancing. We also petfus
decision without the assumption of continuous frequenciée
front-end will record the history of recent speed changesawh

with the lowest average frequency over the past_back sec-
ond(s) [5].

To decide which node to become active or inactive, we number
all the nodes from 1 taV and use a variablective_number
to keep track of the number of active nodes. To simplify the

node, which means that each node needs to send the history ofracking of the status of the nodes, our policy is to keep sode

its speed changes as feedback to the front-end. For eachthede
front-end computes the average load (different from thesmge
frequency because idleness is regarded as frequency zeoonin
puting average load, while the CPU is operating at some &gy
when idle) over the pasbok_back seconds, wherkok_back is a
system parameter. The summation of the average loads afdgin
is the estimation of the system load.

1,2,...,active_number active and nodeactive_number +
1,..., N inactive. The value ofictive_number is at least 1 which
means node 1 is always active. Under this policy, when we want
to make a node active, nodetive_number + 1 is the target;
when we want to make a node inactive, nedeive_number is

the victim. This implementation was preferred becausesofiieat
simplicity, with complexity ofO(1).



Table 3. IBM PowerPC 750:frequency and system total power 115.5MHz).Worse yet, the front-end will use 115.5MHz asiye-

(measured) tem frequency, which is greater than all on-frequenciesainld 5.
This will make the front-end turn on another node; this wépipen
f(M Hz) idle 4125 | 825 16.5 continuously until all the nodes in the cluster are on.
P(mW) || 1150.0] 1150.0] 1369.0] 1811.0 When taking the actual load into account, this anomaly doés n
f(MHz) 33 99 1155 132 happen.
PmW) 2661.0 | 4763.0| 5269.0 | 6533.0

60

50 [

Table 4. Intel XScale: frequency and system total power
(datasheets [19])
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Figure 3. IBM PowerPC 750 System with 8 nodes (theoretical
6. Evaluation results)

6.1 Theoretical Power Consumption

First, we compare the power consumption of our proposedyoli  tap1e 5 On-frequencies and off-frequencies used in VOVO-CVS
LAOVS, and VOVO-CVS policy under the conditions of stable ¢/ he ﬁ’owequC 750 q

load and perfect load balancing (the plots here are the efieal

results from Section 4). We used many different power mqdels #Nodes | Off-frequency(/ H=) | On-frequency(/ H z)
but we only show the results of IBM PowerPC 750 and Intel 1 4.125 86.8516
. 2 43.4258 76.1867
XScale due to lack of space. The power consumptions for the 3 50.7911 72,0717
Intel XScale (Table 4) and IBM PowerPC 750 (Table 3) were 4 54.0538 69.8786
obtained from datasheets [19] and from our actual measumsme 5 55.9028 68.5138
respectively. A constant power of 275mW was included for the 6 57.0948 67.5821
X : ; . o 7 57.9275 66.9055
XScale system, simulating an Infineon Mobile-RAM (very dami 8 58.5423 66.3916

results are obtained for the XScale model with differenuealfor
the constant power, such as 2W).

Inefficient frequencies [16] cause some lower frequenaes t
have higher energy consumption (combined with less pedona)
than other higher frequencies. We applied the method in @]
eliminated (for PowerPC 750 system) the 16.5MHz, 33MHz, and
99MHz frequencies. Unless otherwise noted, for all expenits,
the number of nodes in the clusteri§ = 8. Similar results are
obtained for different values a¥, but are not shown for lack of
Space 0 0‘.1 0‘.2 0‘.3 0‘,4 0‘.5 O‘.G 0‘.7 (;.8 0‘.9 1 0 0‘.1 0‘.2 0‘.3 (;.4 O‘.S 0.6 0.7 0‘.8 0‘.9 1

Figures 3 and 4 show the number of processors and the total sys load load
tem power consumption as a function of the system load, agsgum
perfect load balancing. We also show the minimum numberf pr Figure 4.Intel XScale System with 8 nodes (theoretical results)
cessors and the corresponding power consumption, for casopa
Considering the system load rather than the frequencigseaht
dividual systems and eliminating the cubic and the contirsues-
sumptions result in LAOVS outperforming the VOVO-CVS pglic
To better illustrate the limitations of the continuous amption,
we performed the following experiment: we artificially elimted
the 400V H z and 800/ H = frequencies of the XScale model (the
continuous assumption is more inaccurate for fewer disdret
guencies). The disadvantage of VOVO-CVS becomes more evide

number of active nodes
total system power(W)

LAOVS ——
VOVO-CVS ——
PNy X) ===~

ORrNWHOUON®O

total system power(W)

number of active nodes
OCRNWAGO DN ® O

o LAOVS =— |
vovo-cvs ——
PNy X) ===~

with fewer frequencies (see Figure 5). 0 0102 03 04 05 05 07 08 09 1 0 010703 04050507 0809 1

An interesting result from our experiments is that the numbe foad foad
of active nodes does not necessarily increase with therasyleted, - - .
as seen in Figure 4. This is somewhat counterintuitive amthes ~ F19Ure 5. 8-node Intel XScale System without the frequencies

to the fact that frequencies are discrete. VOVO-CVS canaptc ~ 400M Hz and800M H z (theoretical results)

ture this behavior, as it assumes continuous frequenciesth&r
interesting result is the jump of VOVO-CVS to 8 processors at
load < 0.1 in Figure 3. To explain why, we start by noting that
the PowerPC 750 processor has no efficient frequencies betwe We implemented three request distribution policies—RoeRotin
8.25MHz and 115.5MHz. If the only active node receives a-rela (RR), VOVO-CVS, and LAOVS—in our simulator [1] designed to
tively large workload (but no greater than what can be hahiljea investigate power management schemes for rate-basedsydte
115.5MHz CPU), it would run at frequency 115.5MHz in orderto RR, all the available nodes are always kept active and résjaes
keep up with the workload (due to the gap between 8.25MHz and distributed in a round-robin fashion.

6.2 Simulation Results



Each simulated node is a PowerPC 750, as shown in Table 3.As mentioned before, perfect load-balancing is not a réalés-
Many system parameters in the simulator are tunable. Simee t sumption for such workloads. In our experiments even the igp
applications under consideration (i.8BT andCAF) can tolerate formation provided by the application was not useful, du¢hi®
average delay of 5-10 seconds, we set the following paraméte huge variability in the event processing requirementsiwighsin-
each node, the processor speed is adjusted every 1 secadl bas gle event type. The simulation results shown in Figure 7 ased
on CPU utilization over the past 1 second. Nodes take 33 slscon on a 41-minute trace d®BT, with average request arrival rate of

(boot time) for the inactive-to-active transition and timergy con- 26%. We used this trace to test RR, VOVO-CVS, and LAOVS poli-
sumed during boot time is 190(these numbers are from the Pow- cies forN = 2,4, 6, 8 nodes respectively and scaled the trace ac-
erPC 750 platform, but we examine this issue further belbhas cordingly so that the cluster can handle the peak load Withro-

an important influence on the schemes). For the front-ectigitks cessors. In all experiments, LAOVS outperforms RR and VOVO-

the system load every 1 second, deciding whether to turn on or CVS in terms of energy by 6-14%. The energy savings are signifi

off a node. The variabléook_back is set to 4, which means the  cantdespite being not as much as for the stable load; thecsuse

front-end computes the average load over the last 4 secBots. in the realistic trace, there are some very long requestathie

shut_down_threshold andturn_on_threshold are 4 seconds. the load unbalanced and thus consume more energy and bétause
To validate the theoretical power consumption for VOVO-CVS these experiments the impact of the energy consumed duoiog b

and LAOVS, we generated a synthetic workload in which the re- time is significant.

quests lengths (in cycles) and the request arrival ratearstant.

This will result in perfect balance in load distribution Whetfront- 25 . . . .
end. We generated various such workloads for different @&e LAOVS vs. RR —+—
clusters. The performance of LAOVS is never worse than therot — 20k LADVS vs. VOVO-CVS e i
two policies (see Figure 6). In most of the experiments, LAV §
outperforms RR and VOVO-CVS, both of which use the same num- 2 15} -
ber of nodes (both plots in Figure 6 are very similar; the ratad § "
shows that the number of nodes is the same). Note that thgyener 3 10 - /,f*¥ s
savings are higher at low system loads because when thersyste g +
load is high, most of the nodes have to be active to keep uptigth w5t s
request arrival rate, independent of the request distobuech-
nique. However, when the system load is low, various number o 0 L L L L
active nodes can service the load and LAOVS will choose the op 0 2 4 6 8 10
timal number. The values @bok_back, boot time, and thresholds N
have very little significance in the case of the synthetickhoad. 20 T T T T
RR —+—
LAQVS ---x---
60 . . . . g 5r VOVO-CVS ---%--- 7]
= N f 2 —+—— §
% 50 - aj: N:é x| é 10 + e
g 20 L N=8 8- | (;; o | |
& 30| ' 4 2 VA
§ 20 | - Toor ' | | |
? 5 1 1 1 1
2 10} - 0 2 4 6 8 10
0 H——R— N
0 0.8 1
Figure 7. Simulation results on the 41-minute traceSBT, with
S 60 : : : : a boot time of 33 seconds (delay for RR is close to zero, since i
o N=2 —— never turns off any nodes)
G s0f & No6 w T
Q w0 N=8 2 | Clearly, the time and energy spent during boot will have a
9 significant impact on the effectiveness of any on-off schelroe
2 30} i our PowerPC 750 platform, boot time is long (33 seconds) due t
a copying and uncompressing the operating systems from SUROM
S 201 b to main memory (SDRAM). The long boot time results in higher
§ 10l i delay in LAOVS than VOVO-CVS. However, non-volatile memory
e is currently being rapidly developed, such as FRAM [9] andboa
g O R - nanotube memories [12]. When using such technology, thé boo
0 0.8 1 time will be drastically reduced, to the millisecond rangjlee same
Load holds true for the energy consumed during boot time. We ddrie

boot time in our simulator and Figure 8 shows the energy gavin

Figure 6. Energy savings of LAOVS as a function of load, com- and average delay versus boot time. From Figure 8, we can see

pared to RR (top) and VOVO-CVS (bottom) that LAOVS outperforms VOVO-CVS both in terms of energy and
average delay for boot times below 20 seconds.

The above experiments assume that the load is perfectly bal- We also looked into how summing up the average loads of all
anced across the active nodes. While this assumption magfee s nodes to estimate the system load would improve VOVO-CVS.
for some applications, our two applicatiorB8T and CAF) have In Figure 8, VOVO-CVSL1 is the modified VOVO-CVS with the
much more unpredictable behavior, as shown in Tables 1 and 2.use of summation of all average loads of all nodes to estimate



the system load. As we can see from the figure, VOVO-CVS1 First, we show the results when the RR policy is used at the
achieves a significant improvement over VOVO-CVS, but i sti  front-end and both nodes are always kept on. The solid line in
outperformed by LAOVS in general; one exception when thetboo Figure 9 is the normalized arrival rate (Y-axis on the riglates

time is 30 seconds and the size of the cluster is 4. The exxepti of the plot) of events used in our experiments. Notice that th

is because we did not consider the time and energy during bootarrival rate is a rough indicator of system load. The arnigée of1

in our model; in that case, LAOVS turns on servers more often corresponds to the maximum number of events that can beéddndl
than VOVO-CVS1 and the gain from using the optimal number by two nodes at the maximum voltage/frequency level. Thesme

of servers and the threshold scheme cannot offset the loggeof  arrival rate of this trace i286%.

energy during boot. However, when the boot time is below 20 The other two curves in Figure 9 are the power consumption
seconds, LAOVS is always better than VOVO-CVS1 in terms of for each PowerPC 750 system when there is no power management

energy and average delay. (NPM) being employed on each node. From the plots, we can see
that the power consumption of PowerPC 750 systems under NPM
6.3 Experiments on A Testbed is independent of event arrival rate (i.e., system load).

As a proof of concept, to build a real system in a hardwardqoiat

we implemented our scheme on a testbed consisting of IBM Pow-
erPC 750 nodes. This platform, provided by our industriatrgas
with RR as the request distribution policy at the front-eadly

had 2 nodes available at the time of testing. Our goal wasombd t
extensive evaluation in comparison to other schemes (&#opis
section), but to implement a proof-of-concept system, ke tac-

tual measurement, and to evaluate power management gdiicie

a certain extent. Our collected data can be seen through elbr w
interface [1].

The voltage/frequency scaling of PowerPC 750 processors is
done through external voltage/frequency regulation. Tokage
scaling takes aroungms for each0.1V adjustment and the fre-
guency scaling takes negligible amount of time. Linux isclinghe
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power consumption (W)
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nodes and the power management (DVS and on/off) is supported — :
through APIs. To power on/off a node, programs just needmal se 0 500 .1000 1500 2000
out a specific message to a host machine that has been wired to time (second)

all nodes. Powering off a node takes into effect inmediatéijte

powering on a node (booting from ROM including uncompregsin  Figure 10.The power consumption for PowerPC 750 systems with

the kernel) takes 33 seconds. The power consumption of eath p  LAOVS being used at the front-end

in anode (e.g., processor, memory and I/O) was measurec&nd ¢

lected using a data acquisition system. Figure 10 shows the power consumption for each PowerPC
In our experiments, we used an additional node to be the-front 750 system when LAOVS is used at the front-end. The power

end, which emulates the sensors that generate events; we rep consumption of) corresponds to the node being powered down

results of the 41-minute trace 8BT. The front-end sends events  during that period. When DVS is employed on each node, Fityire

to nodes every second. On each node, a self-adaptive DV&eche shows that using DVS in each node consumes much less power

is employed, which uses the utilization information durthg last than not using any power management. However, we can also see
interval (i.e., one second) to determine the frequenctdgel level that nodes may be mistakenly powered down due to the inaecura
for next interval. For our LAOVS policy, whenever a node ches estimation of system load based only on the feedback of load
its voltage/frequency or becomes idle, a feedback messaggni information from each node (network communication delagris

to the front-end. of the factors). The solution to this problem is left for frework.

Table 6. System energy consumption for different front-end distri-

8 bution and node DVS policies, normalized to RR/NPM

3 Policies Energyk.J) %

c 6 RR/NPM 37.7 100.0

2 5 @ RR/DVS 13.4 355

IS ] LAOVS/NPM 26.3 69.5

a7 4 E LAOVS/DVS 10.7 28.4

c =

8 3 5 -

5 Table 6 shows the total energy consumption in the system when

= 2 different policies are employed. We can see that d@8lys% en-

g 1 ergy was consumed by LAOVS compared to RR when NPM is em-

ployed on nodes. When DVS is used on each node, LAOVS uses

0 L L L around7% less energy compared to RR.

0 500 1000 1500 2000
time (second) 7. Conclusions

- - _In this work, we studied energy-efficient policies for emted
Figure 9. The power consumption for PowerPC 750 system with applications using clusters. We proposed a new power manege
RR being used at the front-end policy that is implemented on a front-end node, which cardat
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Figure 8. Simulation results for various boot times



the request/load distribution. The main novel aspects opolicy
are that it has been designed directly for processors wibrelie
frequencies, does not make any assumption on the powereiney
relationship, accounts for the idle power of nodes when ngaki
decisions about nodes being active or inactive, and insluale
threshold scheme to prevent the system from reacting td-ted
temporary workload changes in the presence of unstablenimep
workload.

We implemented our policy in our suite of simulators [1], and
for proof of concept, in a testbed at the site of one of our gtdal
partners. The testbed consists of PowerPC 750 nodes. Siomula
and implementation results show that our proposed poliefféc-
tive and outperforms previously proposed policies.

Unlike VOVO-CVS, LAOVS can be extended to heterogeneous
clusters, which is part of our ongoing work. Future work vailso
investigate how to dynamically adapt the LAOVS system paam
ters to a changing workload.
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