
Energy Management for Periodic Real-Time Tasks
with Variable Assurance Requirements∗

Dakai Zhu, Xuan Qi Hakan Aydin
Department of Computer Science Department of Computer Science

University of Texas at San Antonio George Mason University
San Antonio, TX, 78249 Fairfax, VA 22030

{dzhu,xqi}@cs.utsa.edu aydin@cs.gmu.edu

Abstract

Reliability-aware power management (RAPM)
schemes, which consider the negative effects of voltage
scaling on system reliability, were recently studied to
save energy while preserving system reliability. The
existing RAPM schemes for periodic tasks may be, how-
ever, inherently unfair in that they can manage only some
tasks at the expense of the other remaining tasks. In this
work, we propose the flexible reliability-aware power
management framework, which allows the management
of all the tasks in the system, according to their assurance
requirements. Optimally solving this problem is shown
to be NP-hard in the strong sense and upper bounds
on energy savings are derived. Then, by extending the
processor demand analysis, a pseudo-polynomial-time
static scheme is proposed for the “deeply red” recovery
patterns. On-line schemes that manage dynamic slack
for better energy savings and reliability enhancement are
also discussed. The schemes are evaluated extensively
through simulations. The results show that, compared
to the previous RAPM schemes, the new flexible RAPM
schemes can guarantee the assurance requirements
for all the tasks, but at the cost of slightly decreased
energy savings. However, when combined with dynamic
reclaiming, the new schemes become as competitive
as the previous ones on the energy dimension, while
improving overall reliability.

1 Introduction

Energy has been recognized as a first-class resource in
computing systems, especially for battery-operated em-
bedded devices that have limited energy budget. As
a common strategy for saving energy, system compo-
nents are operated at low-performance (thus, low-power)
states, whenever possible. For instance, through dynamic

∗This work was supported in part by NSF awards CNS-0720651,
CNS-0720647 and NSF CAREER Award CNS-0546244.

voltage and frequency scaling (DVFS) [25], the supply
voltage and operating frequency of modern processors
can be scaled down to save energy. However, at low
processor operating frequencies, applications will gen-
erally take more time to complete. In the recent past,
several research studies explored the problem of mini-
mizing energy consumption while meeting all the timing
constraints for various system models [3, 18, 23], by ex-
ploiting the available static and/or dynamic slack in the
system.

More recently, the adverse effect of DVFS on sys-
tem reliability due to increased transient fault rates has
been studied [30]. With the continued scaling of CMOS
technologies and reduced design margins for higher per-
formance, it is expected that, in addition to the systems
that operate in electronics-hostile environments (such as
those in outer space), practically all digital computing
systems will be much more vulnerable to transient faults
[10]. Hence, for safety-critical real-time systems (such as
satellite and surveillance systems) where reliability is as
important as energy efficiency, reliability-cognizant en-
ergy management becomes a necessity.

Some recent studies addressed energy efficiency and
system reliability simultaneously [8, 9, 17, 19, 24, 26,
31]. However, most of the previous research either fo-
cused on tolerating a fixed number of faults [9, 17, 24, 31]
or assumed constant transient fault rate [26]. By taking
the negative impact of DVFS on system reliability (due
to increased transient fault rates at lower supply volt-
ages [30]) into consideration, we proposed and analyzed
reliability-aware power management (RAPM) schemes
for different real-time task models [27, 28, 29, 32]. Un-
like the ordinary power management schemes that ex-
ploit all the available slack for energy savings [3, 18, 23],
the central idea of RAPM is to reserve a portion of
available slack to schedule a recovery job for any job
whose execution is scaled down through DVFS [27].
The remaining slack is still used to save energy by reduc-
ing the execution frequency of the job. It should be noted

f

100 20 30

time

6040 50

J J J JJ J
J

J JJ
B B B B B B B

1,1 2,1 3,1
4,1 5,1

1,2 2,2 3,2
4,2

1,3 2,3 3,3
5,2

3,32,3
B

1,33,22,21,23,12,11,1 J J J
B

a. Schedule of the task-level static RA-PM when tasks τ1, τ2 and τ3 are managed [29]
f

100 20 30

time

6040 50

J J
B B

1,1 2,1
2,11,1 J

3,1 J
4,1

B
4,1 J

5,1 J
1,2

B
1,2

J
2,2

3,2
J

B
3,2

J
4,2

J
1,3 J

2,3

B
2,3 J

3,3

B
3,3

B
5,2J

5,2

b. Selecting jobs from every task for fairness.
f

100 20 30

time

6040 50

J
1,1

1,1
B

J
2,1

B
2,1 J

3,1

B
3,1 J

4,1

B
4,1 J

5,1

B
5,1 J

1,2

B
1,2 J

2,2

B
2,2 J

3,2

B
3,2 J

1,3
J J

2,3 3,3
J J

4,2 5,2

c. The deeply-red recovery pattern.

Figure 1. Motivational Example

that the recovery jobs are invoked for execution only if
their corresponding scaled tasks fail, and they are exe-
cuted at the maximum processing speed if invoked. It
has been proved that, with the help of recovery jobs, the
RAPM scheme can guarantee to preserve (even, enhance)
the system reliability, regardless of the extent of the fault
rate increases and processing frequency reductions [27].

Although the previously proposed static task-level
RAPM schemes for periodic real-time tasks can achieve
significant energy savings while preserving system reli-
ability [29, 32], a few problems remain open. For in-
stance, the previous schemes are based on managing ex-
clusively a subset of tasks (i.e., scheduling correspond-
ing recovery tasks and scaling down the execution of all
their jobs), while leaving out the remaining tasks (and all
their jobs). An interesting question is whether managing
a subset of jobs from every task could further increase
energy savings. Moreover, considering that the reliabil-
ity of any scaled job is actually enhanced with the help
of the scheduled recovery job [27], for real-time appli-
cations (e.g., ATR with multiple-channel satellite signal
processing [22]) where the overall performance is lim-
ited by the task with the lowest quality, the investigation
of the techniques to improve the quality-of-assurance
for all the tasks simultaneously is warranted.

In this paper, considering different quality of assur-
ance requirements (e.g., reliability enhancement require-
ments) of individual tasks, we study preemptive EDF-
based flexible RAPM schemes for periodic real-time
tasks. We develop schemes to manage a subset jobs for
every task according to individual tasks’ assurance re-
quirements such that the quality of assurance for all tasks
is improved simultaneously. Simulation results show the
effectiveness of the proposed schemes on guaranteeing
the assurance requirements of all tasks while achieving

considerable amount of energy savings.
The remainder of this paper is organized as follows.

Section 2 presents a motivational example and Section 3
presents system models. Section 4 and Section 5 elabo-
rate on the static and dynamic flexible RAPM problems,
respectively. Simulation results are presented and dis-
cussed in Section 6 and Section 7 concludes the paper.

2 Motivational Example
To illustrate various trade-off dimensions in the

RAPM problem, we consider a motivational example.
Consider a task set with five periodic tasks {τ1(2, 20),
τ2(2, 20), τ3(2, 20), τ4(3, 30), τ5(3, 30)}, where the first
number associated with each task is its worst-case exe-
cution time (WCET) and the second number is the task’s
period. The system utilization is 0.5 and the spare CPU
capacity (i.e., static slack) is found to be 0.5 (i.e. 50%).
The slack can be used for both energy and reliability man-
agement. In the task-level static RAPM scheme [29], for
any task that is selected for management, a recovery task
will be created with the same timing parameters as the
managed task. That is, a separate recovery job will be
created for all the jobs of the managed tasks.

In the example, although the spare CPU capacity is
enough to create a recovery task for every task, doing so
leaves no slack for energy management and no energy
savings can be obtained. Suppose that, the static task-
level RAPM scheme selects three tasks (τ1, τ2 and τ3) for
management, after creating the required recovery tasks
and scaling down the jobs of the managed tasks [29]. Fig-
ure 1a shows the schedule in the interval of [0, 60]. In the
figures, the X-axis represents time, the Y-axis represents
CPU processing speed (e.g., cycles per time units) and
the area of the task box defines the amount of work (e.g.,
number of CPU cycles) needed to execute the task. Here,

30% CPU capacity is used to accommodate the newly
created recovery tasks and the remaining spare CPU ca-
pacity (which is 20%) is exploited to scale all jobs of the
three managed tasks to the frequency of 0.6fmax (fmax

is assumed to be the maximum frequency). The recov-
ery job associated with Jq,r is assumed to have the same
WCET and is denoted by Bq,r.

Note that, with the recovery tasks, all scaled jobs of
the three managed tasks have a recovery job each within
their deadlines and system reliability will be preserved
[29]. However, such a greedy task selection does not
consider different requirements of individual tasks and
the task-level selection may result in unfairness. For the
case shown in Figure 1a, although the reliability of the
three managed tasks is enhanced due to the scheduled
corresponding recovery tasks, the reliability for the other
two tasks (τ4 and τ5) remains unchanged.

Instead of managing exclusively τ1, τ2 and τ3, we can
manage two out of three jobs for these three tasks and
one out of two jobs for τ4 and τ5. Figure 1b shows the
schedule within the interval considered, after a judicious
selection of jobs to be managed for each task. Here, after
scheduling the recovery jobs, all the selected jobs are also
scaled to the frequency of 0.6fmax and the same energy
savings is obtained as in Figure 1a. Moreover, tasks are
fairly treated and the reliability figures are simultaneously
enhanced for all the tasks.

3 System Models
3.1 Application and Task Models

We consider applications with a set of independent pe-
riodic real-time tasks {τ1, . . . , τn}, where task τi (i =
1, . . . , n) is represented by its WCET ci and period
pi. We assume preemptive Earliest-Deadline-First (EDF)
policy for scheduling the periodic tasks. It is assumed
that ci is given under the maximum processing frequency
fmax, and at the scaled frequency f , the execution time
of task τi is assumed to be ci · fmax

f . The utilization of
task τi is defined as ui = ci

pi
and U =

∑n
i=1 ui is the

system utilization. The j’th job Ji,j of task τi arrives at
time (j − 1) · pi and has the deadline of j · pi (j ≥ 1).

3.2 Energy Model

We adopt the system-level power model where the
power consumption of the computing system considered
is given by [30, 31]:

P (f) = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceffm) (1)

Here, Ps is the static power, Pind is the frequency-
independent active power, and Pd is the frequency-
dependent active power. The effective switching capac-
itance Cef and the dynamic power exponent m (in gen-
eral, 2 ≤ m ≤ 3) are system-dependent constants [5]

and f is the frequency. h̄ = 1 when the system is active
(i.e., computation is in progress); otherwise, h̄ = 0. De-
spite its simplicity, the above power model captures the
essential power components in a system.

By setting the derivative of Equation 1 to zero, a min-
imal energy-efficient frequency fee below which DVFS
ceases to be energy-efficient, can be obtained [30]. Con-
sequently, we assume that the frequency is never reduced
below the threshold fee for energy efficiency. More-
over, normalized frequencies are used (i.e. fmax = 1.0)
and we assume that the frequency can vary continuously1

from fee to fmax.

3.3 Fault and Recovery Models

Considering that transient faults occur much more fre-
quently than permanent faults [7, 13], especially with the
continued scaling of CMOS technologies and reduced de-
sign margins [10], we focus on transient faults in this pa-
per. At the end of jobs’ execution, the transient fault is
detected using sanity (or consistency) checks [20]. For
jobs with recovery job being scheduled, should a tran-
sient fault be detected, the system’s state is restored to
a previous safe state and the recovery job is executed.
Note that this approach exploits the temporal redundancy,
falls along the lines of backward error recovery tech-
niques [20], and was adopted in previous works as well
[2, 19, 26]. The recovery job may take the form of re-
execution of the job or a functionally comparable, alter-
native recovery block [2]. The results of this paper would
remain valid, as long as the worst-case execution time of
the recovery job does not exceed that of the (main) job.

Assuming that transient faults follow Poisson distri-
bution [26], the average transient fault rate for systems
running at frequency f (and corresponding supply volt-
age) can be modeled as [30]:

λ(f) = λ0 · g(f) (2)

where λ0 is the average fault rate corresponding to the
maximum frequency fmax. That is, g(fmax) = 1. Con-
sidering the negative effect of DVFS on the transient fault
rate, in general, we have g(f) > 1 for f < fmax [30].

3.4 Problem Description

In this work, we develop a flexible RAPM frame-
work that attempts to save energy while preserving and
enhancing reliability of every task, as specified by the
quality of assurance requirements (defined as the num-
ber of jobs should be managed). Following the idea in
the skip task model [6, 16], we use a single skip param-
eter ki to present the assurance requirement for task τi.
Specifically, for the purpose of enhancing system relia-
bility, (ki − 1) out of any consecutive ki jobs of task τi

1For discrete frequency levels, we can use two adjacent levels to
emulate the execution at any frequency [12].

need to have recovery jobs. Here, ki can range from 1
to ∞. With higher values of ki, more jobs need recov-
eries and better reliability enhancement can be obtained
for task τi. For the case of ki = ∞, all jobs of τi must
have recovery jobs. For the example in Figure 1b, the as-
surance parameters are given as k1 = k2 = k3 = 3 and
k4 = k5 = 2.

Note that the assurance parameters for tasks can be
determined following various rules (such as design re-
quirements, importance/criticality of tasks and/or fair-
ness). However, the discussion on how to choose the
best assurance parameters for tasks is beyond the scope
of this paper and will be addressed in our future work. In
this paper, for a set of tasks with given assurance re-
quirements, we focus on the flexible RAPM schemes
that maximize energy savings while ensuring such re-
quirements.

Considering the assurance requirements of tasks, the
manageability of a task set can be defined as the existence
of a schedule in which all the required recovery jobs can
be accommodated within the timing constraints. For task
sets with system utilization U ≤ 0.5, the spare capacity
(sc = 1−U) will be large enough to schedule a recovery
task for every task [29], regardless of different assurance
requirements for tasks.

However, without taking the assurance requirements
of tasks into consideration, scheduling a recovery task for
every task may not be the most energy efficient approach.
When more slack is used to schedule the unnecessary re-
covery jobs, less slack is left for energy savings. Define
the augmented system utilization of the task set with as-
surance requirements as:

AU = U +
n∑

i=1

(ki − 1) ∗ ci

ki ∗ pi
(3)

where the second summation term denotes the workload
from the required recovery jobs. It is easy to find out
that, if AU > 1, the spare capacity will not be enough to
schedule the required recovery jobs for all tasks and the
task set is not manageable.

Problem Statement In this work, for a set of peri-
odic real-time tasks with assurance requirements where
AU ≤ 1, the problems to be addressed are: a.) how to
effectively exploit the spare CPU capacity (i.e., static
slack) to maximize the energy savings while guaran-
teeing the assurance requirement for each task, and,
b.) how to efficiently use the dynamic slack that can
be generated at run-time, to further improve energy
savings and/or system reliability.

4 Static Flexible RAPM Schemes

Note that, there are two steps involved in the static
flexible RAPM problem. First, for each task, considering

the assurance requirements, the subset of jobs to which
recovery jobs will be allocated needs to be determined.
If all the required recovery jobs can be accommodated
within the timing constrains, we say that the task set is
schedulable with such job selection. Second, for a given
schedulable job selection, the scaled frequencies need to
be determined for the jobs with recoveries to save energy.
Here, we can see that the schedulability (as well as the
potential energy savings) of a task set directly depends
on, for each task, the selection of jobs to which recovery
jobs will be allocated.

4.1 Definitions

Recovery Patterns: Given a real-time task τi (i =
1, . . . , n) with the assurance requirement ki, the recov-
ery pattern is defined as a binary string of length ki:
RPi(ki) =“r0r1 · · · rki−1”. Here, the value of rj (j =
0, . . . , ki−1) is either 0 or 1, and

∑
rj = ki−1. Consider

the first ki jobs of task τi. If rj−1 = 1 (j = 1, . . . , ki),
then the j’th job Ji,j of task τi needs a recovery; other-
wise, if rj−1 = 0, no recovery is needed for Ji,j . For
simplicity, we assume that the recovery pattern will be
repeated for the remaining jobs of task τi. That is, the
(j + q · ki)’th job of task τi has the same recovery re-
quirement as job Ji,j , where q is a positive integer. By
repeating the recovery pattern, the assurance requirement
of a task will be satisfied.

For the example in Figure 1b, the recovery patterns
for the five tasks are: RP1(3) =“110”, RP2(3) =“101”,
RP3(3) =“011”, RP4(2) =“10” and RP5(2) =“01”.
Note that, in that example, these recovery patterns pro-
vide the best energy management opportunity and lead
to the maximum energy savings. However, as shown in
Section 4.2, finding such recovery patterns and the corre-
sponding optimal execution frequencies is not trivial.

Augmented Processor Demand: For a set of given re-
covery patterns for tasks with assurance requirements, as
the first step, we need to find out whether the task set
is manageable (i.e., the required recovery jobs can be
scheduled within timing constraints) or not. For such
purpose, we first re-iterate the concept of processor de-
mand and the fundamental result in the feasibility anal-
ysis of periodic task systems scheduled by preemptive
EDF [4, 15]. Then, the analysis is extended to the flexible
RAPM framework.

Definition 1 The processor demand of a real-time job set
Φ in an interval [t1, t2], denoted as hΦ(t1, t2), is the sum
of computation times of all jobs in Φ with arrival times
greater than or equal to t1 and deadlines less than or
equal to t2.

Theorem 1 ([4, 15]) A set of independent real-time jobs
Φ can be scheduled (by EDF) if and only if hΦ(t1, t2) ≤
t2 − t1 for all intervals [t1, t2].

For a set of tasks with assurance requirements and
given recovery patterns RPi(ki) (i = 1, . . . , n), by incor-
porating the workload from the required recovery jobs,
the augmented processor demand in the interval [t1, t2]
can be formally defined as:

APD(t1, t2) =
n∑

i=1

b∑

j=a

(1 + rx(i,j))ci (4)

where

a =
⌈

t1
pi

⌉
+ 1 (5)

b =
⌊

t2
pi

⌋
(6)

x(i, j) = (j − 1) mod ki (7)

That is, the augmented processor demand APD(t1, t2)
includes the workload of all jobs of the tasks, as well as
the required recovery jobs, with arrival times greater than
or equal to t1 and deadlines less than or equal to t2.

The recovery jobs introduce additional computational
demand that must be taken into consideration when as-
sessing the feasibility. Following similar reasoning as in
[2], we can obtain the following result.

Theorem 2 For a set of real-time tasks with assurance
requirements and given recovery patterns RPi(ki) (i =
1, . . . , n), all jobs and the required recovery jobs of the
tasks can be scheduled by preemptive EDF if and only if
APD(t1, t2) ≤ t2 − t1 for all the intervals [t1, t2].

Define the super-period of the task set SP as
LCM(k1p1, . . . , knpn), where the LCM() function de-
notes the least common multiple (LCM) of its arguments.
It is easy to see that the recovery patterns of tasks may
cross LCM(p1, . . . , pn) and all recovery patterns will re-
peat after the super-period SP . Therefore, to check the
schedulability of a set of real-time tasks with assurance
requirements and given recovery patterns, according to
Theorem 2, we need to check APD(t1, t2) ≤ t2 − t1 for
all intervals [t1, t2] where 0 ≤ t1, t2 ≤ SP . It is neces-
sary and sufficient to evaluate this function only at time
points that are period boundaries of tasks [2, 4].

If the workload is feasible with the given recovery pat-
terns, additional slack may still exist in the schedule and
this can be exploited to scale down the jobs with recov-
eries to save energy. In addition, jobs without statically
scheduled recoveries will have the default speed of fmax,
but these too can reclaim dynamic slack at run time for
reliability preservation and energy savings (Section 5).

Considering the scaled execution of managed jobs, the
augmented processor demand can be written as:

EAPD(t1, t2) =
n∑

i=1

b∑

j=a

(
1

fi,j
+ rx(i,j)

)
ci (8)

where fi,j is the processing frequency for job Ji,j . Here,
the energy consumption of job Ji,j will be E(i, j) =
P (fi,j) ci

fi,j
, in which P (f) is defined as in Equation (1).

With these definitions, the static flexible RAPM prob-
lem considered in this work can be formally stated as: for
a set of real-time tasks with assurance requirements, find
the recovery patterns and the scaled frequencies so as to:

Minimize
∑

i∈[1,n],j∈[1,SP/pi]

E(i, j) (9)

subject to

ki−1∑

j=0

rj ≥ ki − 1, i = 1, . . . , n (10)

fi,j = fmax, if rx(i,j) = 0 (11)
fi,j ≤ fmax, if rx(i,j) = 1 (12)

EAPD(t1, t2) ≤ t2 − t1, ∀t1, t2 ∈ [0, SP] (13)

where the first condition corresponds to the quality of
assurance requirements expressed through recovery pat-
terns, the second and third condition state that only jobs
with recoveries can be scaled down; and the last condi-
tion ensures that, with the recovery patterns and scaled
frequencies, the task set should be schedulable.

4.2 Intractability of the Static Problem

For a real-time task τi with assurance requirement ki,
there are ki different recovery patterns. Therefore, the
number of different combinations of tasks’ recovery pat-
terns is

∏n
i=1 ki, for a given task set with n tasks. To

find the optimal solution that maximizes energy savings,
all these combinations of recovery patterns for tasks need
to be examined, and scaled frequencies need to be deter-
mined. In fact, finding the optimal solution for the static
flexible RAPM problem turns out to be intractable:

Theorem 3 For a periodic real-time task set where tasks
have individual assurance requirements, the static flexi-
ble RAPM problem is NP-hard, in the strong sense.

Due to the space limitations, the proof of the theorem
is omitted and can be found in [33]. Moreover, the re-
port contains more deliberation and detailed comparison
of this result to other related intractability results [16, 21].
We underline that, due to this result, finding the optimal
solution even in pseudo-polynomial time seems to be un-
likely (unless NP = P).

4.3 Upper Bounds on Energy Savings

For a task set with system utilization U and spare
capacity sc = 1 − U , suppose that the utilization for
the managed workload is X (≤ min{U, sc}). After
accommodating the required recovery jobs, the remain-
ing spare capacity (i.e., sc − X) could be used to scale

down the managed workload to save energy. Consid-
ering the convex relation between energy and process-
ing frequency [5], to minimize the energy consumption,
the managed workload should be scaled down uniformly
(if possible) and the scaled frequency will be f(X) =
max{fee,

X
X+(sc−X)}= max{fee,

X
sc}. Without consid-

ering the energy consumed by recovery jobs (which are
only executed when the corresponding scaled jobs fail
with a very small probability), the amount of total fault-
free energy consumption of the task set within LCM can
be calculated as:

E(X) = LCM · Ps + LCM(U −X)(Pind + Cef · fm
max)

+LCM · X

f(X)
(Pind + Cef · f(X)m) (14)

where the first part is the energy consumption due to
static power, the second part captures the energy con-
sumption of unscaled workload, and the third part repre-
sents the energy consumption of the managed workload.
An Absolute Upper Bound As shown in [29], by dif-
ferentiating Equation (14), E(X) is minimized when

Xopt = min

{
U, sc ·

(
Pind + Cef

m · Cef

) 1
m−1

}
(15)

Therefore, without considering the assurance require-
ments for individual tasks, the absolute upper bound on
the energy savings will be:

ESabs−upper = E(0)− E(Xopt). (16)

where E(0) denotes the energy consumption when no
task is managed (i.e., all tasks are executed at fmax). This
bound actually provides an upper limit on energy savings
for all possible RAPM schemes.
K-Upper Bound with Assurance Parameters Taking
the assurance parameters of tasks into consideration, we
can get a tighter upper bound on the energy savings for
the flexible scheme. Note that, for a task set where each
task has its assurance requirement, the workload for the
jobs that need recoveries is:

Uassurance =
n∑

i=1

(ki − 1) ∗ ci

ki ∗ pi
(17)

Assuming that, after accommodating the required recov-
ery jobs, all such jobs are scaled down uniformly using
the remaining slack, a tighter upper bound on the energy
savings within LCM can be given as:

ESk−upper = E(0)− E(Uassurance) (18)

4.4 Deeply-Red Recovery Pattern

In the real-time scheduling literature addressing the
skip model, the “deeply-red” execution pattern has been

frequently adopted [6, 16]. In fact, if a task set is
schedulable under the deeply-red execution pattern, it
will be schedulable for any other execution patterns.
Also, with the deeply-red pattern, only the intervals that
start at time 0 and end at a time instance no larger than
LCM(pi, . . . , pn) need to be considered for processor
demand evaluation (as opposed to the super-period SP).

In a similar vein, in this work, we will adopt the
“deeply-red” recovery patterns. Specifically, a deeply-
red recovery pattern is defined as the one with leading 1’s
followed by a single 0. Following the same line of rea-
soning as in [6, 16], and using the augmented processor
demand function APD() defined in Equation (4), we can
obtain:

Theorem 4 For a real-time task set, if all tasks with as-
surance requirements adopt the deeply-red recovery pat-
tern, the task set can be scheduled by preemptive EDF
if and only if APD(0, L) ≤ L for ∀L, 0 ≤ L ≤
LCM(p1, . . . , pn).

Define the manageable workload for a set of tasks
with assurance requirements in the interval [t1, t2] as:

MW (t1, t2) =
n∑

i=1

b∑

j=a

rx(i,j)ci (19)

where a, b and x(i, j) are the same as defined in Equa-
tions (5), (6) and (7), respectively. If APD(0, L) < L,
additional slack exists and it can be used to scale down
the execution of the jobs with recoveries to save energy.
Assuming that all manageable jobs are scaled down uni-
formly [1], the scaled frequency fdr can be calculated as:

fdr = max
{

MW (0, L)
MW (0, L) + (L−APD(0, L))

}
(20)

where 0 < L ≤ LCM(p1, . . . , pn). Note that, when
evaluating fdr, it is sufficient to consider L values that
correspond to period boundaries of tasks, which will re-
sult in pseudo-polynomial time complexity.

In the example shown in Figure 1c where the deeply-
red recovery pattern is used for every task, the scaled fre-
quency can be calculated as 9

11 . Here, we can see that,
although the deeply-red recovery pattern simplifies the
feasibility test, the required recovery jobs may “clash” in
time (i.e. may need to be scheduled during the same time
interval). The performance of this simplified scheme is
evaluated and compared to the upper bounds on energy
savings in Section 6.

5 Dynamic Online RAPM Schemes

Note that, the statically scheduled recovery jobs are
executed only if their corresponding scaled jobs fail. Oth-
erwise, the CPU time reserved for those recovery jobs

is freed and becomes dynamic slack at run-time. More-
over, it is well-known that real-time tasks typically take
a small fraction of their WCETs [11]. Therefore, sig-
nificant amount of dynamic slack can be expected at run
time, which should be exploited to further save energy
and/or enhance system reliability.

In [29], an effective dynamic slack management
mechanism, called wrapper-task approach, has been
studied for periodic tasks. In that scheme, wrapper tasks
are used to represent dynamic slack generated at run-
time. A primary feature of the scheme is that the slack
reserved for recovery blocks is preserved across preemp-
tion points during the execution of the slack reclaiming
algorithm: this is essential for reliability preservation in
every RAPM scheme.

We have extended the wrapper task approach to the
flexible RAPM framework. The detailed discussion of
the algorithm is omitted due to space limitations and the
interested readers are referred to [29, 33] for more details.
However, we would like to emphasize that the dynamic
slack reclamation through the management of wrapper
tasks will not cause any timing constraint violation.

6 Simulation Results and Discussions
To evaluate the performance of the proposed schemes,

we developed a discrete event simulator using C++.
In the simulations, we implemented the flexible static
RAPM scheme (Flexible) where all tasks have the
deeply-red recovery pattern. For simplicity, if a task set
is not manageable with the deeply-red recovery pattern,
we assume that no recovery jobs will be scheduled and
no power management will be applied (i.e., all tasks will
be executed at fmax). The dynamic RAPM scheme is
also implemented. In addition, we consider two different
schemes for comparison. First, the scheme of no power
management (NPM), which does not schedule any recov-
ery job and executes all tasks/jobs at fmax while putting
system to sleep states when idle, is used as the baseline.
Second, as an example to the task-level static RAPM
scheme, we consider the one with smaller-utilization-
task-first (SUF) heuristic, which is shown to have very
good performance [29].

The parameters employed in the simulations are sim-
ilar to the ones used in [29]. Focusing on active power
and assuming Ps = 0, Pind = 0.05, Cef = 1 and
m = 3, the energy efficient frequency can be calculated
as fee = 0.29 [30]. Moreover, the transient faults are
assumed to follow the Poisson distribution with an aver-
age fault rate of λ0 = 10−6 at the maximum frequency
fmax (and corresponding supply voltage). For the fault
rates at lower frequencies/voltages, we adopt the expo-
nential fault rate model g(f) = λ010

d(1−f)
1−fee and assume

that d = 2 [30]. That is, the average fault rate is 100
times higher at the lowest frequency fee (and correspond-
ing supply voltage).

We consider synthetic real-time task sets where each
task set contains 10 periodic tasks. The periods of tasks
(p) are uniformly distributed within the range of [10, 20].
The WCET (c) of a task is uniformly distributed in the
range of 1 and its period. Finally, the WCETs of tasks are
scaled by a constant such that the desired system utiliza-
tion is reached [18]. For the assurance requirements of
tasks, we consider two different settings. In the first set-
ting, all tasks have the same assurance requirement (e.g.,
k = 2). In the second setting, the assurance parame-
ters of tasks are randomly generated within the range of
[2, 10]. For each run of the simulation, approximately 20
million jobs are executed. Moreover, each result point in
the graphs corresponds to the average of 100 runs.

6.1 Performance of the Static Schemes

Reliability: Note that, under RAPM schemes, the re-
liability of any task that assumes recovery jobs will be
improved [27]. Define the probability of failure (i.e.,
1−reliability) PoFi(S) of a task τi under any scheme
S as the ratio of the number of failed jobs over the to-
tal number of jobs executed. By considering the NPM
scheme as the baseline, the reliability improvement of a
task τi under a scheme S can be defined as:

RIi(S) =
PoFi(NPM)

PoFi(S)
=

of failed jobs under NPM
of failed jobs under S

That is, larger RIi(S) values indicate better reliability
improvement. Moreover, to quantify the fairness on reli-
ability improvement to tasks, following the idea in [14],
the fairness index of a scheme S is defined as:

FI(S) =
(
∑

i RIi(S))2

n
∑

i RIi(S)2
(21)

From this equation, we can see that, the value of fairness
index has the range of (0, 1], and the higher values mean
that tasks are treated more fairly.

In the first set of experiments, we consider task sets
with 10 tasks that have the same assurance parameter k.
Figure 2 shows the reliability improvements and the fair-
ness index for the static schemes. In the figures, “Flex-
ible:k=i” means that all tasks have the same assurance
parameter k = i in the static flexible RAPM problem.
The X-axis represents the system utilization.

For applications where the system reliability is deter-
mined by the task with lowest reliability, Figure 2a shows
the minimum reliability improvement among all the tasks.
Here, as mentioned before, larger numbers mean better
improvement. From the figure, we can see that, when the
system utilization is low (e.g., U ≤ 0.4), the task-level
static scheme SUF manages all the tasks and performs
better than the flexible scheme. However, when the sys-
tem utilization is large (e.g., U ≥ 0.4), at least one task
will not be managed and its reliability will not have any

 0

 2

 4

 6

 8

 10

 12

 14

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
in

im
um

 R
I

system utilization (U)

SUF
Flexible:k=4
Flexible:k=2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
ve

ra
ge

 R
I

system utilization (U)

SUF
Flexible:k=4
Flexible:k=2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

F
ai

rn
es

s
In

de
x

system utilization (U)

SUF
Flexible:k=4
Flexible:k=2

a. minimum RI b. average RI c. fairness index

Figure 2. Reliability improvement and fairness index for the static schemes.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

a. k = 2 b. k = 4 c. k ∈ [2, 10]

Figure 3. Normalized energy consumption for the static schemes.

improvement. For the flexible scheme, the minimum re-
liability improvement of the tasks is rather stable and di-
rectly related to the assurance parameter k. For example,
when k = 4, only 1 out of 4 jobs will not have a recovery
job for each task and, compared to NPM, the reliability
improves approximately by a factor of 4. The same re-
sult is obtained for the case of k = 2. However, for large
system utilization (e.g., U ≥ 0.6), the flexible RAPM
scheme cannot always guarantee the assurance require-
ments for all the tasks (e.g., when AU > 1).

If the overall system reliability depends on the total
number of successfully executed jobs in the entire task
set, Figure 2b shows that the average reliability improve-
ment of the tasks under SUF is better than the flexible
RAPM scheme. Indeed, while SUF always tries to man-
age as many jobs as possible up to the workload Xopt, the
manageable jobs under flexible scheme are limited by the
assurance parameters of tasks. Figure 2c further shows
the fairness index of the tasks under different system uti-
lizations. Here, we can see that, with the same assurance
parameter, the flexible scheme provides excellent fairness
to tasks. From the results, we conclude that the task-level
SUF scheme should be used if the overall system reliabil-
ity depends on the average behavior of tasks. However,
if the system reliability is limited by the task with lowest
reliability improvement, or fairness is targeted for tasks,
the flexible scheme should be employed.

Energy Savings: For different settings of the assur-
ance requirements for tasks, Figure 3 shows the normal-

ized energy consumption for the static flexible RAPM
scheme. For comparison, the energy consumption for
SUF and the upper bounds is also shown. Here, “K-
UPPER” denotes the upper bound that considers the as-
surance requirements of tasks and “ABS-UPPER” is for
the absolute upper bound. Note that, higher energy con-
sumption means less energy savings.

From the results, we can see that the energy consump-
tion of SUF is very close to the absolute bound (ABS-
UPPER), which coincides with our previous results [29].
For the flexible RAPM scheme, its energy performance
is almost the same as that of K-UPPER at low system
utilization (e.g., U ≤ 0.3) since all manageable jobs are
scaled down to the same frequency (e.g., fee). However,
at high system utilization, due to the scheduling conflicts
of the required recovery jobs under deeply-red recov-
ery patterns, the scaled frequency of the flexible scheme
is higher than that of K-UPPER (which assumes all re-
maining static slack can be used by DVFS) and thus con-
sumes more energy. Moreover, when compared to SUF,
as shown in Figure 3a, the flexible RAPM scheme per-
forms worse with k = 2 due to limited number of man-
ageable jobs. For larger values of k (Figures 3b and 3c),
the energy performance difference between the flexible
RAPM scheme and SUF becomes smaller.

Therefore, we can conclude that the flexible static
RAPM scheme can guarantee such quality of assurance
requirements and/or provide fairness to tasks, but at the
cost of slightly increased energy consumption. Moreover,

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 1 2 3 4 5 6 7 8 9 10

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

WCET/BCET

Flexible
SUF

SUF+DYN
Flexible+DYN

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1 2 3 4 5 6 7 8 9 10

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

WCET/BCET

Flexible
SUF

SUF+DYN
Flexible+DYN

 1e-09

 1e-08

 1e-07

 1e-06

 1 2 3 4 5 6 7 8 9 10

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

WCET/BCET

SUF
SUF+DYN

Flexible
Flexible+DYN

a. normalized energy for k = 4 b. normalized energy for k ∈ [2, 10] c. probability of failure for k ∈ [2, 10]

Figure 4. Energy and reliability improvement with dynamic schemes at U = 0.5.

we can see that, when choosing the assurance require-
ments for tasks, in addition to satisfying tasks’ reliability
requirements, to maximize the energy savings, the over-
all manageable workload should consider Xopt and use it
as a reference.

6.2 Dynamic Schemes
In this section, we evaluate the dynamic schemes for

their energy savings and reliability enhancements over
static schemes. Here, the augmented dynamic algorithm
[29] is applied on top of the static flexible scheme (re-
ferred as “Flexible+DYN”) as well as the static task-level
SUF scheme (referred as “SUF+DYN”).

To emulate the run-time behaviors of real-time
tasks/jobs, the variability of a task’s workload is con-
trolled by the ratio of WCET

BCET (that is, the worst-case
to best-case execution time ratio), where larger values
of the ratio imply more dynamic slack can be expected
from the early completion of tasks/jobs. At run time, the
actual execution time of a real-time job follows a nor-
mal distribution with mean and standard deviation being
WCET+BCET

2 and WCET−BCET
6 , respectively [3].

Figure 4 shows the performance improvement of the
dynamic scheme over static schemes on both energy and
reliability, when U = 0.5. Similar results are obtained
for other utilization values and are omitted due to space
limitation. Note that, even if the ratio WCET

BCET = 1 (i.e.,
there is no variation in the execution time of tasks), dy-
namic slack is still available at run time due to the on-
line removal of statically scheduled recovery jobs when
there is no error during the execution of their correspond-
ing scaled jobs. From Figures 4a and 4b (which cor-
respond to tasks having the same assurance requirement
k = 4 and tasks with different assurance requirements
randomly generated between [2, 10], respectively), we
can see that the dynamic scheme can significantly im-
prove the energy performance over static schemes (up to
33% for the flexible scheme and 20% for SUF). How-
ever, the performance improvement is rather stable after
WCET
BCET ≥ 3. This is because, with larger values of the
ratio, excessive dynamic slack is available from jobs’ the
early completion and almost all jobs can reclaim the slack
and run at the frequency fee.

Moreover, we can see that the difference of the energy
performance between the static schemes (from 10% to
15% for the cases considered) has effectively disappeared
with the dynamic extension (only around 2%). The rea-
son is that, although the managed jobs and their scaled
frequency are limited under the flexible RAPM scheme,
the slack generated from the removal of statically sched-
uled recovery jobs under the dynamic algorithm can be
re-used to manage more jobs and/or to further scale down
the execution of managed jobs for more energy savings.
Therefore, although the static flexible RAPM scheme it-
self may perform worse than task-level SUF scheme in
terms of energy savings, the dynamic version can recu-
perate its energy inefficiency while still guaranteeing the
individual assurance requirements of tasks statically.

For the case of randomly generated assurance require-
ments for tasks, Figure 4c shows the overall probability
of failure (i.e., 1−reliability) of the system under differ-
ent schemes considered. From the results, we can see
that, by allowing the statically unscaled jobs (which have
no recovery job initially) to reclaim dynamic slack, addi-
tional recovery jobs can be scheduled online and the dy-
namic algorithm can further improve system reliability.
For larger values of WCET

BCET , the actual execution time of
jobs becomes shorter and the reliability for all schemes
increases slightly.

7 Conclusion

In this paper, we presented a flexible reliability-aware
power management (RAPM) framework for periodic
tasks with variable assurance requirements. Extending
the existing RAPM frameworks (that manage all the jobs
of the selected tasks at the expense of some other un-
selected tasks), the main tenet of the work is to pro-
vide quality of assurance guarantees to all the tasks by
considering their individual assurance requirements. We
showed that the problem, in general, is NP-Hard in the
strong sense. Then, we proposed static and dynamic
schemes that are experimentally shown to perform suc-
cessfully to achieve energy savings and improve reliabil-
ity.

References

[1] T. AlEnawy and H. Aydin. Energy-constrained scheduling
for weakly-hard real-time systems. In Proc. of The 26rd

IEEE Real-Time Systems Symposium, Dec. 2005.
[2] H. Aydin. Exact fault-sensitive feasibility analysis of real-

time tasks. IEEE Trans. on Computers, 56(10):1372–
1386, 2007.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez.
Dynamic and aggressive scheduling techniques for power-
aware real-time systems. In Proc. of IEEE Real-Time Sys-
tems Symposium, 2001.

[4] S. Baruah, R. Howell, and L. Rosier. Algorithms and com-
plexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor. Real-Time Systems, 2,
1990.

[5] T. D. Burd and R. W. Brodersen. Energy efficient cmos
microprocessor design. In Proc. of The HICSS Confer-
ence, Jan. 1995.

[6] M. Caccamo and G. Buttazzo. Exploiting skips in periodic
tasks for enhancing aperiodic responsiveness. In Proc.
of the 18th IEEE Real-Time Systems Symposium (RTSS),
Dec. 1997.

[7] X. Castillo, S. McConnel, and D. Siewiorek. Deriva-
tion and caliberation of a transient error reliability model.
IEEE Trans. on computers, 31(7):658–671, 1982.

[8] A. Ejlali, M. T. Schmitz, B. M. Al-Hashimi, S. G. Mire-
madi, and P. Rosinger. Energy efficient seu-tolerance in
dvs-enabled real-time systems through information redun-
dancy. In Proc. of the Int’l Symposium on Low Power and
Electronics and Design (ISLPED), 2005.

[9] E. M. Elnozahy, R. Melhem, and D. Mossé. Energy-
efficient duplex and tmr real-time systems. In Proc. of The
23rd IEEE Real-Time Systems Symposium, Dec. 2002.

[10] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,
N. S. Kim, and K. Flautner. Razor: circuit-level correction
of timing errors for low-power operation. IEEE Micro,
24(6):10–20, 2004.

[11] R. Ernst and W. Ye. Embedded program timing analysis
based on path clustering and architecture classification. In
Proc. of The Int’l Conference on Computer-Aided Design,
pages 598–604, 1997.

[12] T. Ishihara and H. Yauura. Voltage scheduling problem for
dynamically variable voltage processors. In Proc. of The
Int’l Symposium on Low Power Electronics and Design,
1998.

[13] R. Iyer, D. J. Rossetti, and M. Hsueh. Measurement and
modeling of computer reliability as affected by system ac-
tivity. ACM Trans. on Computer Systems, 4(3):214–237,
Aug. 1986.

[14] R. Jain, D. Chiu, and W. Hawe. A quantitative measure
of fairness and discrimination for resource allocation in
shared computer systems. Technical Report TR-301, DEC
Research, Sep. 1984.

[15] K. Jeffay and D. L. Stone. Accounting for interrupt han-
dling costs in dynamic priority task systems. In Proc. of
the IEEE Real-Time Systems Symposium, Dec. 1993.

[16] G. Koren and D. Shasha. Skip-over: algorithms and com-
plexity for overloaded systems that allow skips. In Proc.
of the IEEE Real-Time Systems Symposium (RTSS), pages
110–117, Dec. 1995.

[17] R. Melhem, D. Mossé, and E. M. Elnozahy. The interplay
of power management and fault recovery in real-time sys-
tems. IEEE Trans. on Computers, 53(2):217–231, 2004.

[18] P. Pillai and K. G. Shin. Real-time dynamic voltage scal-
ing for low-power embedded operating systems. In Proc.
of 18th ACM Symposium on Operating Systems Princi-
ples, Oct. 2001.

[19] P. Pop, K. Poulsen, V. Izosimov, and P. Eles. Schedul-
ing and voltage scaling for energy/reliability trade-
offs in fault-tolerant time-triggered embedded sys-
tems. In Proc. of the 5th IEEE/ACM Int’l Conference
on Hardware/software codesign and System Synthesis
(CODES+ISSS), pages 233–238, 2007.

[20] D. K. Pradhan. Fault Tolerance Computing: Theory and
Techniques. Prentice Hall, 1986.

[21] G. Quan and X. Hu. Enhanced fixed-priority scheduling
with (m,k)-firm guarantee. In Proc. of the IEEE Real-Time
Systems Symposium, Nov. 2000.

[22] J. A. Ratches, C. P. Walters, R. G. Buser, and B. D.
Guenther. Aided and automatic target recognition based
upon sensory inputs from image forming systems. IEEE
Tran. on Pattern Analysis and Machine Intelligence,
19(9):1004–1019, 1997.

[23] S. Saewong and R. Rajkumar. Practical voltage scaling for
fixed-priority rt-systems. In Proc. of the 9th IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium, 2003.

[24] O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-
aware software-based fault tolerance in real-time systems.
In Proc. of The Int’l Symposium on Low Power Electronics
Design, 2002.

[25] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In Proc. of The First
USENIX Symposium on Operating Systems Design and
Implementation, Nov. 1994.

[26] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-
aware fault tolerance in fixed-priority real-time embedded
systems. In Proc. of Int’l Conference on Computer Aided
Design, Nov. 2003.

[27] D. Zhu. Reliability-aware dynamic energy management
in dependable embedded real-time systems. In Proc. of
the IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, 2006.

[28] D. Zhu and H. Aydin. Energy management for real-time
embedded systems with reliability requirements. In Proc.
of the Int’l Conf. on Computer Aidded Design, Nov. 2006.

[29] D. Zhu and H. Aydin. Reliability-aware energy manage-
ment for periodic real-time tasks. In Proc. of the IEEE
Real-Time and Embedded Technology and Applications
Symposium, 2007.

[30] D. Zhu, R. Melhem, and D. Mossé. The effects of en-
ergy management on reliability in real-time embedded
systems. In Proc. of the Int’l Conf. on Computer Aidded
Design, 2004.

[31] D. Zhu, R. Melhem, D. Mossé, and E. Elnozahy. Analy-
sis of an energy efficient optimistic tmr scheme. In Proc.
of the 10th Int’l Conference on Parallel and Distributed
Systems, 2004.

[32] D. Zhu, X. Qi, and H. Aydin. Priority-monotonic en-
ergy management for real-time systems with reliability
requirements. In Proc. of the IEEE International Con-
ference on Computer Design (ICCD), 2007.

[33] D. Zhu, X. Qi, and H. Aydin. Energy manage-
ment for periodic real-time tasks with variable assur-
ance requirements. Technical Report CS-TR-2008-007,
Dept. of Computer Science, UTSA, 2008. available at
http://www.cs.utsa.edu/˜dzhu/papers/tr-08-007.pdf.

