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Abstract

Recently, the negative effect of the popular power
management technique Dynamic Voltage and Frequency
Scaling (DVFS) on the system reliability has been iden-
tified. As a result, various reliability-aware power
management (RAPM) schemes have been studied for
uniprocessor real-time systems. In this paper, we in-
vestigate global-scheduling-based RAPM (G-RAPM)
schemes for a set of frame-based real-time tasks run-
ning on a homogeneous multiprocessor system. An im-
portant dimension of the problem is how to select the
appropriate subset of tasks for energy and reliability
management (i.e., schedule a recovery for each selected
task and scale down their executions). We show that
making this decision optimally (i.e., the static G-RAPM
problem) is NP-hard. Then we propose two efficient
G-RAPM heuristics, which rely on local and global task
selections, respectively. Moreover, to reclaim dynamic
slack generated at runtime, we extend the slack shar-
ing based global dynamic power management scheme
to the reliability-aware settings. The proposed schemes
are evaluated through extensive simulations. The results
show that our static G-RAPM heuristics can preserve
system reliability while achieving significant energy sav-
ings (within 3% of an upper bound for most cases).
Moreover, G-RAPM with global task selection provides
better opportunities for dynamic slack reclamation and
up to 15% more energy savings can be obtained at run-
time compared to that of local task selection.

1 Introduction

Energy management has become an important re-
search area in the last decade, in part due to the prolifera-
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tion of embedded computing devices and remains as one
of the grand challenges for the research and engineering
community, both in industry and academia [12]. One
common strategy to save energy in computing systems is
to operate system components at low-performance (and
thus low-power) states, whenever possible. As one of
the most effective and widely-deployed power manage-
ment techniques, dynamic voltage and frequency scal-
ing (DVFS) exploits the convex relation between pro-
cessor dynamic power consumption and processing fre-
quency/supply voltage [3] and scales down simultane-
ously the processor processing frequency and supply
voltage to save energy [22].

For real-time systems where tasks have stringent tim-
ing constraints, scaling down system processing fre-
quency (speed) may cause deadline misses and special
provisions are needed. In the recent past, many re-
search studies explored the problem of minimizing en-
ergy consumption while meeting the deadlines for var-
ious real-time task models by exploiting the available
static and/or dynamic slack in the system [2, 16, 19, 29].
However, recent studies show that DVFS has a direct
and adverse effect on the transient fault rates (especially
for those induced by electromagnetic interference and
cosmic ray radiations) [6, 9, 30]. Therefore, for safety-
critical real-time embedded systems (such as nuclear
plants and avionics control systems) where reliability is
as important as energy efficiency, reliability-cognizant
energy management becomes a necessity.

One cost-effective approach to tolerate transient
faults is the backward error recovery technique, in
which the system state is restored to a previous safe state
and the computation is re-performed [18]. By adopting
such a recovery approach while considering the nega-
tive effects of DVFS on transient faults, we have intro-
duced a reliability-aware power management (RAPM)
scheme [25]. The central idea of the RAPM scheme
is to exploit the available slack to schedule a recovery



task at a task’s dispatch time before utilizing the remain-
ing slack for DVFS to scale down the execution of the
task and save energy, thereby preserving the system re-
liability [25]. Following this line of research, several
RAPM schemes have been proposed to consider vari-
ous task models, scheduling policies and reliability re-
quirements [5, 20, 24, 26, 27, 28, 31, 32], all of which
have focused on uniprocessor systems. For dependent
tasks represented by directed acyclic graphs (DAGs) to
be executed on multiprocessor systems, Pop et al. devel-
oped a constraint-logic-programming (CLP) based solu-
tion to minimize energy consumption, which transforms
the user-defined reliability goals to tolerate a fixed num-
ber of transient faults through re-execution [17].

There are two paradigms in multiprocessor real-time
scheduling: the partitioned and global approaches [7,
8]. With the emergence of multicore processors where
processing cores on a chip can share the last level cache,
it is expected that the migration cost for global schedul-
ing will be significantly reduced. Different from all the
existing work, in this paper, for a set of frame-based
real-time tasks that share a common deadline, we study
global scheduling based RAPM (G-RAPM) schemes to
minimize energy consumption while preserving system
reliability in multiprocessor real-time systems.

After showing that the static G-RAPM problem is
NP-hard, we propose two static G-RAPM heuristic
schemes. Depending on how to exploit the system slack
and when to select the appropriate subset of tasks for en-
ergy and reliability management, the proposed heuristics
are characterized by global and local task selections, re-
spectively. Here, a recovery block will be scheduled for
each selected task and the executions of selected tasks
will be scaled down accordingly. The remaining tasks
that are not selected run at the maximum frequency to
preserve reliability. Due to the uneven time allocation
for tasks in the G-RAPM schemes, the execution orders
(i.e., priorities) of tasks are determined through a re-
verse dispatching process in the global queue to ensure
that all tasks can finish their executions in time. More-
over, to reclaim the dynamic slack generated from early
completion of tasks’ executions and/or unused recovery
blocks for more energy savings, we extend our previ-
ous work on slack sharing in global-scheduling-based
dynamic power management to the reliability-aware set-
tings.

The simulation results show that, the proposed
G-RAPM schemes can preserve system reliability while
achieving significant energy savings (within 3% of the
upper bound for most cases) in multiprocessor real-time
systems. By giving managed tasks higher priorities,
G-RAPM with global task selection provides better op-
portunities for online dynamic slack reclamation and can
obtain about 15% more energy savings compared to that

of G-RAPM with local task selection.
The remainder of this paper is organized as follows.

Section 2 presents system models considered in this
work. Section 3 reviews the key idea of RAPM and for-
mulates the global scheduling based RAPM (G-RAPM)
problem for multiprocessor real-time systems, which is
shown to be NP-hard. In Section 4, two static heuristic
schemes are proposed. The dynamic G-RAPM schemes
are presented in Section 5 and Section 6 discusses the
simulation results. We conclude the paper in Section 7.

2 System Models

2.1 Power Model

Considering the linear relation between processing
frequency and supply voltage [3], the dynamic volt-
age and frequency scaling (DVFS) technique decreases
supply voltage for lower frequency requirements to re-
duce the system’s dynamic power consumption [21]. To
avoid ambiguity, for the remainder of the paper, we will
use the term frequency change to stand for both sup-
ply voltage and frequency adjustments. With the ever-
increasing static leakage power due to scaled feature
size and increased levels of integration, as well as other
power consuming components (such as memory), power
management schemes that focus on individual compo-
nents may not be energy efficient at the system level.
Therefore, system-wide power management becomes a
necessity [1, 13, 15, 19].

In our previous work, we proposed and used a system-
level power model for uniprocessor systems [1, 30] and
similar power models have also been adopted in other
studies [13, 15, 19]. In this paper, by following the same
principles, the power consumption for a system with k
identical processors is expressed as:

P (f) = Ps +
k∑

i=1

(Pind + Pd,i)

= Ps +
k∑

i=i

(Pind + Cef · fm
i ) (1)

Here, Ps is the static power used to maintain the ba-
sic circuits of the system (e.g., keeping the clock run-
ning), which can be removed only by powering off the
whole system. For each processor, there are two parts
for its active power: the frequency-independent active
power (Pind, which is a constant and assumed to be
the same for all processors) and frequency-dependent
active power (Pd, which depends on the supply volt-
age and processing frequency of each processor). When
there is no workload on a given processor, we assume



that the corresponding Pind value can be effectively re-
moved by putting the processor into power saving sleep
states [4]. The effective switching capacitance Cef and
the dynamic power exponent m (which is, in general, no
smaller than 2) are system-dependent constants [3]. fi is
the processing frequency for the i’th processor. Despite
its simplicity, this power model includes all essential
power components of a system and can support various
power management techniques (e.g., DVFS and power
saving sleep states).

Due to the energy consumption related to Pind, it
may not be energy-efficient to execute tasks at the
lowest available frequency that guarantees timing con-
straints and an energy-efficient frequency fee, below
which the system consumes more total energy, does ex-
ist [1, 15, 19, 30]. Considering the prohibitive overhead
of turning on/off a system (e.g., tens of seconds), we
assume that the system will be on and Ps is always con-
sumed. By putting processors to sleep states for sav-
ing energy when idle, we can get the energy-efficient
frequency for each processor as fee = m

√
Pind

Cef ·(m−1)

[1, 30].
Consequently, for energy efficiency, the processing

frequency for any task should be within the range of
[fee, fmax]. Moreover, we use normalized frequencies
in this work and it is assumed that fmax = 1. For sim-
plicity, the time overhead for adjusting frequency (and
supply voltage) is assumed to be negligible1.

2.2 Fault Model

There are various reasons that could lead to run-time
faults, such as hardware failures, electromagnetic inter-
ferences, and the effects of cosmic ray radiation. In this
paper, we will focus on transient faults, which have been
shown to be dominant [14]. The inter-arrival rate of
transient faults is assumed to follow Poisson distribution
[23]. Moreover, for DVFS-enabled computing systems,
considering the negative effect of DVFS on transient
faults, the average transient fault rate λ(f) at a scaled
frequency f(≤ fmax) (and corresponding supply volt-
age V ) can be given as [30]:

λ(f) = λ0 · g(f) (2)

where λ0 is the average fault rate at fmax (and Vmax).
That is, g(fmax) = 1. The fault rate will increase at
lower frequencies and supply voltages. Therefore, we
have g(f) > 1 for f < fmax.

1Such overhead can be easily incorporated into the execution time
of the applications under consideration when scaling down the pro-
cessing frequency [2, 29].

More specifically, in this work, we consider an expo-
nential fault rate model, where g(f) is given by [26]:

g(f) = 10
d·(1−f)
1−fee (3)

Here d (> 0) is a constant, representing the sensitivity
of fault rates to DVFS.

Transient faults are assumed to be detected by us-
ing sanity (or consistency) checks at the completion of a
task’s execution [18]. Once a fault is detected, backward
recovery technique is employed and a recovery task (in
the form of re-execution) is dispatched for fault toler-
ance [23, 25]. Again, for simplicity, the overhead for
fault detection is assumed to be incorporated into the
worst-case execution time of tasks.

3 RAPM and Problem Formulation

3.1 RAPM with Recovery Tasks

Df

t+1t t+2 t+3 t+4 t+5

time
T

Df

t+1t t+2 t+3 t+4 t+5

time

T

S

RT

S

a. Ordinary power management

b. Reliability−aware power management

Figure 1. Ordinary and Reliability-Aware
Power Management [25].

Before formally presenting the problem to be ad-
dressed in this paper, we first review the fundamental
ideas of RAPM schemes through an example. Suppose
that a task T is dispatched at time t with the WCET of 2
time units. If task T needs to finish its execution by its
deadline (t + 5), there will be 3 units of available slack.
As shown in Figure 1a, without paying special attention
to the negative effects of DVFS on task reliability, the
ordinary (and reliability-ignorant) power management
scheme will exploit all the available slack to scale down
the execution of task T for the maximum energy savings.
However, such ordinary power management scheme can
lead to the degradation of task’s reliability by several or-
ders of magnitude [25].

Instead of using all the available slack for DVFS to
save energy, as shown in Figure 1b, the RAPM scheme
reserves a portion of the slack to schedule a recovery



task RT for task T to recuperate the reliability loss due
to energy management before scaling down its execution
using the remaining slack [25]. The recovery task RT
will be dispatched (at the maximum frequency fmax)
only if a transient fault is detected when task T com-
pletes. With the help of RT , the overall reliability of
task T will be the summation of the probability of T
being executed correctly and the probability of having
transient fault(s) during T ’s execution while RT being
executed correctly, which has been shown to be no worse
than task T ’s original reliability when no power man-
agement is applied [25]. That is, regardless of differ-
ent fault rate increases at scaled processing frequencies,
by scheduling an additional recovery task, the RAPM
scheme can guarantee to preserve the original reliability
of a real-time task while still obtaining energy savings
using the remaining slack (if any) [25].

3.2 Problem Formulation

In this work, we consider a set of n independent real-
time tasks to be executed on a multiprocessor system
with k identical processors. The tasks share a common
deadline D, which is also the period (or frame) of the
task set. The worst-case execution time (WCET) for
task Ti at the maximum frequency fmax is denoted as
ci (1 ≤ i ≤ n). When task Ti is executed at a lower fre-
quency fi, it is assumed that its execution time will scale
linearly and task Ti will need time t = ci

fi
to complete its

execution in the worst case. To address the negative ef-
fects of DVFS on transient faults and preserve system
reliability, a recovery task will be scheduled for each
task whose execution will be scaled down. Moreover,
it is assumed that any faulty scaled task will be recov-
ered sequentially on the same processor and that a given
task cannot run in parallel on multiple processors.

Since the system is assumed to be on all the time and
the static power Ps is always consumed, we focus on
managing the energy consumption related to system ac-
tive power. At the scaled frequency fi, the active energy
consumption to execute task Ti is given as:

Ei(fi) = (Pind + Ceffm
i ) · ci

fi
(4)

Note that, not all tasks will be selected for power man-
agement due to workload constraints and/or energy effi-
ciency. We use hi = 1 to indicate that task Ti is selected
for management; otherwise, if Ti is not selected, hi = 0.
As discussed before, for tasks that are not selected, they
will run at the maximum processing frequency fmax to
preserve their reliability.

Considering the fact that the probability of having
faults during a task’s execution is rather small, we fo-
cus on the energy consumption for executing all primary

tasks and try to minimize the fault-free energy consump-
tion. More specifically, the global scheduling based
RAPM (G-RAPM) problem to be addressed in this pa-
per is to: find the priority assignment (i.e., execution
order of tasks), task selection (i.e., hi) and the scaled
frequencies of tasks (i.e., fi) to ensure the schedula-
bility of the tasks and at the same time to:

minimize
∑n

i=1 Ei(fi) (5)
subject to

fee ≤ fi < fmax, if hi = 1 (6)
fi = fmax, if hi = 0 (7)

Here, Equation (6) restricts the scaled frequency of any
task to the range of [fee, fmax). Equation (7) states that
the un-selected tasks will run at fmax.

Note that, when there is only one processor (i.e.,
when k = 1), the problem will be reduced to that of op-
timal RAPM problem for uniprocessor systems, which
has been studied in our previous work and shown to be
NP-hard [26]. Therefore, for the static G-RAPM prob-
lem, finding the optimal solution to minimize the fault-
free energy consumption will be NP-hard as well. In
what follows, we focus on two static heuristic solutions,
which will be evaluated against the theoretically ideal
upper bound on energy savings in Section 6.

4 Static Global Scheduling Based RAPM

There are a few inter-related key issues in solving the
static G-RAPM problem, such as priority assignment,
slack determination, and task selection. Depending on
how the available slack is determined and utilized, we
study in this section two heuristic schemes that are based
on local and global task selection, respectively.

4.1 G-RAPM: Local Task Selection

It has been shown that the optimal priority assign-
ment to minimize the scheduling length of a set of
real-time tasks on multiprocessor systems under global
scheduling is NP-hard [7]. Moreover, our previous
study revealed that such priority assignment, even if it
is found, may not lead to the maximum energy savings
due to the runtime behaviours of tasks [29]. Therefore,
to get the static mapping of tasks to processors and de-
termine the amount of available slack on each proces-
sor, we adopt the longest-task-first (LTF) heuristic for
the initial priority assignment. If the task set is schedu-
lable under the worst-fit and LTF heuristics, the amount
of available slack on each processor can be determined.
Then, the existing RAPM solutions for uniprocessor sys-
tems [26] can be applied for the tasks that are statically
mapped on each processor individually.
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Figure 2. Canonical task-to-processor
mapping and local task selection.

For example, consider a task set with five tasks
T1(4.5), T2(4), T3(4), T4(3) and T5(2), which will
be executed on a 2-processor system with the common
deadline of 18. The numbers in the parentheses are the
WCETs of tasks. With LTF priority assignment and
worst-fit assignment, the canonical mapping2 of tasks
to processors (assuming all tasks will use their WCETs)
is shown in Figure 2. Here, three tasks (T1, T4 and T5)
are mapped on processor P1 with 8.5 units of slack. The
other two tasks (T2 and T3) are mapped on the second
processor P2 with 10 units of slack.

In [26], we have shown that, for a single processor
system with slack S, to maximize energy savings under
RAPM, the optimal aggregate workload for the selected
tasks should be:

Xopt = S ·
(

Pind + Cef

m · Cef

) 1
m−1

(8)

Assume that Pind = 0.1, Cef = 1 and m = 3 [26], we
can get Xopt,1 = 5.147 and Xopt,2 = 6.055 for the first
and second processor in the above example, respectively.
Again, if the largest task is selected first [26, 27], we can
see that tasks T1 and T2 will be selected for management
on the two processors, respectively.
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RT2 = 4
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D

Figure 3. Final static schedule for G-RAPM
with local task selection.

After scheduling their recovery tasks RT1 and RT2,
and scaling down the execution of tasks T1 and T2 by
utilizing the remaining slack on each processor, the fi-
nal canonical schedule is shown in Figure 3. Note that,
due to the uneven slack allocation among the tasks un-
der the G-RAPM scheme, the execution order (i.e., the
order of tasks being dispatched from the global queue)

2The mapping of tasks to processors at runtime may change de-
pending on the actual execution time of tasks.
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Figure 4. Task T5 misses the deadline fol-
lowing the original execution order.

can be different from the one following the initial prior-
ity assignment. If we blindly follow the original order of
tasks in the global queue, tasks may not be able to finish
on time and deadline violation can occur. For instance,
after the first four tasks are dispatched and all tasks (in-
cluding recovery tasks, if any) take their WCETs, Fig-
ure 4 shows that there is not enough time on any of the
processors and task T5 will miss the deadline.

Therefore, to overcome such timing anomalies in
global scheduling, after obtaining the final canonical
schedule from the G-RAPM with local task selection,
we should re-assign tasks’ priorities (i.e., the order of
tasks in the global queue) according to the final sched-
ule. For this purpose, based on the start times of tasks in
the final schedule, we can reverse the dispatching pro-
cess and re-enter the tasks to the global queue from the
last task to the first task. For instance, the final order
of tasks in the global queue (i.e., their priorities) for the
above example can be obtained as shown in Figure 3.

The formal steps of the G-RAPM scheme with lo-
cal task selection are summarized in Algorithm 1. Here,
the first step to get the canonical schedule with any
given initial priority assignment of tasks involves order-
ing tasks based on their priorities (with the complexity
of O(n · log(n))) and dispatching tasks to processors
(with O(k · n) complexity). The second step can be
done in O(n) time by selecting tasks on each proces-
sor. The last step of getting the final priorities of tasks
through reverse dispatching can also be done in O(n)
time. Therefore, the overall complexity for Algorithm 1
will be O(max(n · log(n), k · n)).

Algorithm 1 G-RAPM with local task selection
1: Step 1: Get the canonical schedule from any initial

priority assignment (e.g., LTF);
2: if (schedule length > D) report failure and exit;
3: Step 2: For each processor PROCi: apply

the uniprocessor RAPM scheme in [26] for tasks
mapped to that processor (i.e., determine its avail-
able slack Si; calculate Xopt, select tasks and cal-
culate the scaled frequency);

4: Step 3: Get the final execution order (i.e., priority
assignment) of tasks in the global queue from the
final canonical schedule obtained in Step 2.



4.2 G-RAPM: Global Task Selection

Note that, for G-RAPM with local task selection, af-
ter obtaining the amount of available slack and the opti-
mal workload desired to be managed for each processor,
it is not always possible to find a subset of tasks that
have the exact optimal workload. Such deviation of the
managed workload from the optimal one can accumulate
across processors and thus lead to less energy savings.
Instead, we can take a global approach when determin-
ing the amount of available slack and selecting tasks for
management.

For instance, we can see that the overall workload of
all tasks in the above example is W = 17.5. With the
deadline of 18 and two processors, the total available
computation time will be 2·18 = 36. Therefore, the total
amount of available slack will be S = 36−17.5 = 18.5.
That is, we can view the system by putting the proces-
sors side by side sequentially (i.e., the same as having
the execution of the tasks on a processor with deadline
of 36). In this way, we can calculate that the overall
optimal workload of the selected tasks to minimize en-
ergy consumption as Xopt = 11.2. Following the same
heuristic as the longest task first, three tasks (T1, T2 and
T3, with the aggregated workload of 11.5) are selected
to achieve the maximum energy savings.
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T2 = 4

D

RT1 = 4.5

RT2 = 4 T4 = 3

T3 = 4 T5 = 2

RT4 = 3

3

4

Xopt = 11.2

Figure 5. Canonical task-to-processor
mapping with global task selection.

However, we may not be able to use the remaining
slack to uniformly scale down the execution of the se-
lected tasks. Otherwise, scheduling the task set with
managed tasks will require perfect balancing, which
may not be feasible. Note also that, the selected tasks
should have higher priorities and are mapped in the front
of the schedule to provide better opportunity for slack
reclamation at runtime. Therefore, before assigning the
scaled frequency to the selected tasks, we first map those
tasks and their recovery tasks. Then the unselected tasks
(again, following the LTF heuristic) are mapped to pro-
cessors. The resulting canonical mapping for the exam-
ple is shown in Figure 5.

Here, there are 3 and 4 units of slack that can be uti-
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Figure 6. Final canonical schedule with
global task selection.

lized to scale down the selected tasks on the processors,
respectively. The resulting final schedule is shown in
Figure 6. Again, to address the deadline violation prob-
lem due to uneven slack allocation, the final priority as-
signment (i.e., order of tasks in the global queue) should
be obtained through the reverse dispatching process as
discussed earlier. For the example, with the parameters
for the power model given in Section 4.1, it can be calcu-
lated that G-RAPM with global task selection can save
32.4% energy when compared to that of no power man-
agement, while G-RAPM with local task selection saves
only 26.6% (an improvement of 5.8%). Moreover, by
scheduling the managed tasks in the front of the sched-
ule, the scheme with global task selection can provide
more opportunities to reclaim the dynamic slack from
free of the recovery tasks at runtime, which is further
evaluated and discussed in Section 6.

Note that, the global task selection scheme may have
a large value for Xopt. However, to ensure that any
selected task (and its recovery task) can be success-
fully mapped to a processor, any task Ti with ci > D

2
should not be selected. Taking this point into consid-
eration, the steps for the G-RAPM with global task se-
lection can be summarized in Algorithm 2. Similarly,
the complexity of Algorithm 2 can also be found as
O(max(n · log(n), k · n)).

5 Dynamic G-RAPM Schemes

In general, real-time tasks only take a small portion
of their WCETs and dynamic slack can be expected at
runtime [10]. Moreover, when the execution of a scaled
task completes successfully, the time reserved for its re-
covery can be freed and becomes dynamic slack as well.
Therefore, to exploit such dynamic slack at runtime and
obtain better energy savings, we investigate dynamic G-
RAPM schemes in this section.

In our previous work, we have studied a global
scheduling based power management scheme based on
the idea of slack sharing for multiprocessor real-time



Algorithm 2 G-RAPM with global task selection
1: Step 1:
2: S = k ·D −∑

ci; //Calculate global slack
3: Calculate Xopt;
4: Select tasks (with ci < D

2 ) for management;
5: Map selected tasks to processors (e.g., by LTF);
6: Map unselected tasks to processors (e.g., by LTF);
7: if (schedule length > D) report failure and exit;
8: Step 2:
9: Calculate scaled frequency for selected tasks on

each processors;
10: Step 3: Get the final execution order (i.e., priority

assignment) of tasks in the global queue from the
final canonical schedule obtained in Step 2.

systems [29]. The basic idea is to mimic the timing of
the canonical schedule at runtime to ensure that all tasks
can finish in time. That is, when a task completes early
on a processor and generates some dynamic slack, the
processor should share part of this slack appropriately
with another processor that is supposed to complete its
task early in the canonical schedule. After that, the re-
maining slack can be utilized to scale down the next
task’s execution to save energy. We have proven that,
with proper slack sharing at runtime, all tasks can com-
plete their executions in time under the global schedul-
ing based power management scheme [29].

The slack sharing approach can also be applied on
top of the canonical schedules generated from the static
G-RAPM schemes (with either local or global task se-
lection). Different from previous work where dynamic
slack is only used for scaling down the processing fre-
quency of tasks, the dynamic slack reclamation should
be differentiated for scaled tasks that have statically
scheduled recovery tasks and the ones that do not have
recovery tasks yet.

If the next task to be dispatched is a scaled tasks,
the dynamic slack can be utilized to further scale down
the processing frequency (as low as fee) for more en-
ergy savings. Otherwise, if the next task has not been
scaled down (without any recovery) and the reclaimable
dynamic slack is larger than the task’s size, a recovery
task will be scheduled first and remaining slack is used
to scale down the execution of the next task. If the re-
claimable dynamic slack is not enough to schedule the
recovery task, no power management will be applied to
the next task, which should run at the maximum fre-
quency fmax to preserve its reliability.

The algorithm is very similar to the dynamic power
management algorithm in [29] and is omitted due to
space limitation. However, we want to point out that,
the dynamic slack reclamation with slack sharing will
not extend the completion time of any task (including its

recovery task, if available) in the static G-RAPM sched-
ule. Therefore, regardless of task migrations at runtime,
all tasks can complete their executions in time.

6 Simulations and Evaluations

To evaluate the performance of our proposed
G-RAPM schemes on energy savings and reliability, we
developed a discrete event simulator. For easy of pre-
sentation, the scheme of no power management (NPM),
which executes all tasks at fmax and puts processors
to power savings sleep states when idle, is used as the
baseline and normalized energy consumption will be re-
ported. Note that, as discussed in Section 2.1, the static
power Ps will always be consumed for all schemes,
which is set as Ps = 0.01. We further assume that
m = 3, Cef = 1, Pind = 0.1 and normalized fre-
quency is used with fmax = 1. In these settings, the
energy efficient frequency can be found as fee = 0.37
(see Section 2.1).

For transient faults that follow the Poisson distribu-
tion, the lowest fault rate at the maximum processing
frequency fmax (and corresponding supply voltage) is
assumed to be λ0 = 10−5. This number corresponds to
10,000 FITs (failures in time, in terms of errors per bil-
lion hours of use) per megabit, which is a realistic fault
rate as reported in [11, 33]. The exponent in the expo-
nential fault model is assumed to be d = 3 (see Equa-
tion (3)). That is, the average fault rate is assumed to be
1000 times higher at the energy efficient speed fee (and
corresponding supply voltage). The effects of different
values of d have been evaluated in our previous work
[25, 26, 30].

We consider synthetic task sets where each task set
contains 100 real-time tasks, which will be executed on
a system with 16 processors. The cases with other num-
ber of tasks and processors have also been evaluated
and similar results have been obtained. For each task,
its WCET is generated following a uniform distribution
within the range of [10, 100]. Moreover, to emulate the
actual execution time at runtime, we define αi as the ra-
tio of average over worst-case execution time for task Ti

and the actual execution time of tasks follows a uniform
distribution with the mean of αi · ci. The system load
is defined as the ratio of overall workload of all tasks
over system processing capacity γ =

∑
ci

k·D , where k is
the number of processors and D is the common deadline
of tasks. Each result point in the figures is the average
of 100 task sets and the execution of each task set is re-
peated for 5, 000, 000 times.
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Figure 7. Static G-RAPM Schemes

6.1 Static G-RAPM Schemes

First, assuming that all tasks take their WCETs, we
evaluate the performance of the static G-RAPM schemes
with local and global task selection, which are denoted
as GL-RAPM and GG-RAPM in the figures, respectively.
For comparison, the ordinary static power management
(SPM), which uniformly scales down the execution of all
tasks based on the schedule length, is considered. More-
over, by assuming that there exists a subset of tasks with
aggregated workload being exactly as Xopt and those
tasks are selected and scaled down uniformly (see Sec-
tion 4.2), the fault-free energy consumption of the task
set is calculated, which provides an upper-bound on en-
ergy savings for any optimal static solution and denoted
as OPT-Bound.

Figure 7(a) first shows the normalized energy con-
sumption of the static G-RAPM schemes under different
system loads (which is represented in the X-axis). From
the figure we can see that, the static G-RAPM with lo-
cal and global task selection schemes perform roughly
the same in terms of energy savings. It comes from the
fact that, in most cases, the managed workload of the se-
lected tasks under both schemes has little difference. As
system load increases, less static slack is available and in
general more energy will be consumed for all schemes
(with less energy savings). For moderate to high sys-
tem loads, the normalized energy consumption under the
static G-RAPM schemes is very close (within 3%) to
that of OPT-Bound, which is in line with our previous re-
sults for uniprocessor systems [26, 27]. However, when
system load is low (e.g., γ = 0.3), almost all tasks will
be managed under the static G-RAPM schemes and run
at a scaled frequency close to fee = 0.37, which may
incur higher probability failure and thus more energy is
consumed by the recovery tasks. Therefore, the nor-

malized energy consumption for GL-RAPM and GG-
RAPM increases. Compared to that of OPT-Bound that
does not include energy consumption of recovery tasks,
the difference becomes large when γ = 0.3.

Figure 7(b) further shows the probability of failure,
which is the ratio of the number of failed tasks (by
taking the recovery tasks into consideration) over to-
tal number of tasks executed.We can see that the static
G-RAPM schemes can preserve system reliability (by
having lower probability of failure of executing the
tasks) when compared to that of NPM. In contrast, al-
though SPM can save more energy, it can lead to signif-
icant system reliability degradation (up to two orders of
magnitude) at low to moderate system loads.

6.2 Dynamic G-RAPM Schemes

In this section, we evaluate the performance of the
dynamic slack reclamation schemes by varying α from
0.3 to 0.9. Here, GL-RAPM+DYN represents the case
of applying dynamic slack reclamation on top of the
static schedule generated by the G-RAPM with local
task selection. Similarly, GG-RAPM+DYN stands for
the G-RAPM with global task selection. Again, for
comparison, the ordinary dynamic power management
(DPM) on top of the static schedule from SPM is also
included.

First, at low system load γ = 0.4, Figure 8(a)
shows the normalized energy consumption of the dy-
namic schemes. We can see that applying dynamic slack
reclamation on top of two static schedules will achieve
almost the same energy savings. The reason is that,
when γ = 0.4, there is around 60% static slack avail-
able and the optimal workload to manage is 36%. That
is, almost all tasks will be managed statically and run
at f = 0.42 under both static schemes, which leave lit-
tle space (with the limitation of fee = 0.37) for further
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Figure 8. Dynamic RAPM Schemes with system load γ = 0.4
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Figure 9. Dynamic RAPM Schemes with system load γ = 0.8

energy savings under dynamic schemes. When α de-
creases, more dynamic slack will be available and more
tasks can be scaled to the energy efficient frequency
for slightly more energy savings. Not surprisingly, Fig-
ure 8(b) shows that system reliability can be preserved
under the dynamic G-RAPM schemes, while the ordi-
nary DPM resulting in increased probability of failure
by three orders of magnitude.

Figure 9 further shows the results for a higher system
load γ = 0.8. Here, we can see that applying dynamic
slack reclamation to the static schedule of the G-RAPM
with global task selection can lead to more energy sav-
ings (up to 15%) compared to that of local task selec-
tion. The main reason is that, at high system utilization
γ = 0.8, very few tasks can be managed statically. By
scheduling these managed tasks at the front of the sched-
ule, GG-RAPM provides more opportunities for remain-
ing tasks to reclaim the dynamic slack and yields more
energy savings. Moreover, by managing more tasks at
run time, the dynamic scheme on GG-RAPM schedule
also has better system reliability as more tasks will have
recovery tasks (shown in Figure 9(b)).

7 Conclusions

In this paper, for real-time tasks that share
a common deadline, we studied global-scheduling-
based reliability-aware power management (G-RAPM)
schemes for multiprocessor real-time systems. After
showing that the problem is NP-hard, we propose two
efficient static heuristics, which rely on global and lo-
cal task selections, respectively. To overcome the timing
anomaly in global scheduling, the tasks’ priorities (i.e.,
execution order) are determined through a reverse dis-
patching process. Moreover, we extended our previous
work on dynamic power management with slack sharing
to the reliability-aware settings.

Simulation results confirm that, the proposed
G-RAPM schemes can preserve system reliability while
achieving significant energy savings in multiprocessor
real-time systems. The energy savings for the static
schemes, for most cases, are within 3% of a theoret-
ically computed ideal upper-bound. Moreover, by as-
signing higher priorities to scaled tasks with recoveries,
the G-RAPM with global task selection provides better



opportunities for dynamic slack reclamation at runtime.
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