Proc. of the 22" IEEE Real-Time Systems Symposium, Dec. 2001
Scheduling with Dynamic Voltage/Speed Adjustment Using Slack Reclamation in
Multi-Processor Real-Time Systems *

Dakai Zhu, Rami Melhem, and Bruce Childers
Computer Science Department
University of Pittsburgh
Pittsburgh, PA 15260
{zdk,melhem, childers}@cs.pitt.edu

Abstract

The power consumption of modern high-performance pro-
cessors is becoming a major concern because it leads to in-
creased heat dissipation and decreased reliability. While many
techniques have been proposed to reduce power consumption
for uni-processors, there has been considerably less work on
multi-processor systems. In this paper, we focus on power-
aware scheduling for multi-processor real-time systems. Based
on the idea of slack sharing among processors, we propose
two novel scheduling algorithms for task sets with and with-
out precedence constraints. These scheduling techniques re-
claim the time unused by a task to reduce the execution speed
of future tasks, and thus reduce the total energy consumption
of the system. Simulation results indicate that our algorithms
achieve up to 60% energy savings on multi-processor systems
with variable voltage processors.

1 Introduction

In recent years, processor performance has increased at
the expense of drastically increased power consumption [14].
Thus heat dissipation has become a major problem because
it requires more expensive packaging and cooling technology
and decreases reliability [18], especially for multi-processor
systems. In order to reduce heat dissipation and to increase
reliability, many hardware and software techniques have been
proposed to lower processor power consumption [1, 2, 4, 5, 7,
8, 10]. Processors running on multiple supply voltages (ie.,
multiple power levels) have become available in recent years
[15], making power management at the processor level possi-
ble. Using this feature, several software techniques have been
proposed to adjust the supply voltage, especially in the area of
mobile computing [6, 8, 11, 12], where devices are battery op-
erated and have a restricted power budget. At the high end of
computing systems, especially multi-processor systems, where

*This work has been supported by the Defense Advanced Research Projects
Agency through the PARTS project (Contract F33615-00-C-1736).

heat dissipation and reliability are major concerns, fewer tech-
niques have been proposed for power management.

In uni-processor systems, several voltage/speed adjustment
schemes have been explored and shown to dramatically save
energy [4, 6, 8, 11, 12]. Optimal preemptive scheduling al-
gorithms for independent tasks running on a single proces-
sor with variable speed are described in [4] and [11]. For
multi-processor systems with fixed application sets and pre-
dictable execution time, static power management (SPM) can
be accomplished by deciding beforehand the best supply volt-
age/speed for each processor [7]. However, to our knowledge,
no results have been reported in the literature about dynamic
adjustment of processor voltage and speed at run-time for real-
time multi-processor systems.

Our work addresses dynamic processor supply voltage
and speed adjustment for multi-processor real-time systems.
Changing processor voltage/speed changes task execution time
and affects the scheduling of tasks to processors. For real-
time systems, this may cause a violation of timing require-
ments. This paper describes novel techniques that dynamically
adjust processor voltage/speed while still meeting timing re-
quirements. We propose scheduling algorithms that use shared
slack reclamation on variable voltage/speed processors for task
sets without precedence constraints (independent tasks) and
task sets with precedence constraints (dependent tasks). All
the algorithms are proven to meet timing constraints. Simula-
tion results show that our techniques save up to 60% of energy
compared to static power management techniques.

This paper is organized in the following way. The task
model, energy model and power management schemes are de-
scribed in Section 2. Power-aware scheduling with dynamic
processor voltage/speed adjustment using shared slack recla-
mation for independent tasks is addressed in Section 3. In Sec-
tion 4, the algorithms for dependent tasks are proposed and
proven to meet timing requirements. Simulation results are
given in Section 5. Section 6 discusses related work and Sec-
tion 7 concludes the paper.



2 Models and Power Management
2.1 Energy Model

Processor power consumption is dominated by dynamic
power dissipation Py, which is given by: Py = Cey x V.2, % f,
where Vyq is the supply voltage, C.; is the effective switched
capacitance and f is the processor clock frequency. Processor
speed S, represented by f, is almost linearly related to the sup-
ply voltage: f = k * (Vag — V;)?/Vaa, where k is constant
and V; is the threshold voltage. The energy consumption for a
specific task is, thus, almost proportional to Cey * Vfd [1, 2].
To decrease processor speed, we can reduce the supply volt-
age. This reduces processor power consumption cubically and
reduces task energy consumption quadratically at the expense
of linearly decreasing speed and increasing a task’s latency.

2.2 Task Model

We assume a frame based real-time system in which a
frame of length D is executed repeatedly [19]. A set of tasks
' = {T1,...,T,} is to execute within each frame and is to
complete before the end of the frame. The precedence con-
straints among the tasks in I' are represented by a graph G.
Because of the periodicity of the schedule, we consider only
the problem of scheduling I in a single frame with deadline
D.

We assume a multi-processor system with NV homogeneous
processors sharing a common memory. Our goal is to develop
an algorithm that minimizes energy consumption for all tasks
while still meeting the deadline. In specifying the execution of
a task T;, we use the tuple (¢}, af), where ¢} is the estimated
worst case execution time (WCET) and a} is the actual execu-
tion time (AET), both based on maximal processor speed. We
assume that for a task T;, the value of ¢; is known before ex-
ecution, while a} is determined at run time. The precedence
constraints are represented by G = {T', E'}, where F is a set
of edges, such that there is an edge, T; — T; € F, if and only
if T; is a direct predecessor of T;, which means that T; will be
ready to execute only after T; finishes execution.

2.3 Power Management Schemes

First, we consider the worst case in which all tasks use their
worst case execution time (referred to as canonical execution).
In this case, if the tasks finish well before D at the maximal
processor speed, Sp,qz, We can reduce the processor’s supply
voltage and speed to finish the tasks just-in-time and thus to
reduce energy consumption. The basic idea of static power
management is to calculate beforehand the minimum proces-
sor speed that will ensure that the canonical execution of tasks
finishes just-in-time. The tasks are then run with reduced sup-
ply voltage and speed to save energy [6, 7]. In this paper, the
minimal processor speed to ensure that all tasks finish just-in-
time is referred to as S;;;.

In addition to static power management, we may reduce en-
ergy further by using both dynamic supply voltage and speed

adjustment. Since tasks exhibit a large variation in actual exe-
cution time, and in many cases, only consume a small fraction
of their worst case execution time [9], any unused time can be
considered as slack and can be reused by the remaining tasks
to run slower while still finishing before D [6]. In this case,
processor power and energy consumption is reduced.

To get maximal energy savings, we combine static power
management and dynamic voltage/speed adjustment. In the
following algorithms, we assume that canonical execution is
first checked to see whether a task set can finish before D or
not. If not, the task set is rejected; otherwise, .S;;; is calcu-
lated and used so that the canonical execution will finish just
at time D. Our algorithms then apply dynamic voltage/speed
adjustment. In the rest of the paper, we normalize worst case
execution time and actual case execution time of task 7; such
that, ¢; = ¢} * Spaz/Sjie and a; = a} * Spaz/Sjic. Task T;
will be characterized by (¢;, a;). In the following sections, we
consider both independent and dependent tasks.

3 Power-Aware Scheduling for Independent
Tasks

Without precedence constraints, all tasks are available at
time 0 and are ready to execute. There are two major strategies
to scheduling independent tasks in multi-processor systems:
global and partition scheduling [3]. In the global scheduling
strategy, all tasks are in a global queue and each processor se-
lects from the queue the task with the highest priority for ex-
ecution. In the partition scheduling strategy, each task is as-
signed to a specific processor and each processor selects a task
for execution from its own queue.

In global scheduling, the priority of the tasks in the queue
affects which task goes where, the workload of each processor,
and the total time needed to finish the execution of all tasks. In
general, the optimal solution of assigning task priority to get
minimal execution time is NP-hard [3]. Furthermore, we show
in Section 3.3 that the priority assignment that minimizes exe-
cution time may not lead to minimal energy consumption. Ex-
pecting that longer tasks generate more dynamic slack during
execution, in this paper, we use the longest task first heuris-
tics (LTF, based on the task’s WCET) when determining task’s
priority. The difference between the total execution time us-
ing optimal priority assignment and that using longest task first
priority assignment is very small. Given a specific priority as-
signment, tasks are inserted into the global queue in the order
of their priority, with the highest priority task at the front. We
also number the tasks by their order in the global queue when
using longest task first priority assignment. That is, the k"
task in the global queue is identified as T}.

To emphasize the importance of task priority on schedul-
ing, we consider the simple example of a task set executing
on a dual-processor system shown as in Figure 1. Here, I' =
{T17T27T37T47T5}7 Tl = (107 7)7 T2 = (874)7 T3 = (676)7
T, = (6,6), Ts = (6, 6). Consider the canonical execution in



global scheduling and assume that D = 20. In the following
figures, the X-axis represents time, the Y-axis represents pro-
cessor speed (in cycles per time unit), and the area of the task
box defines the number of CPU cycles needed to execute the
task. From Figure 1(a) we see that the longest task first priority
assignment meets the deadline D. But the optimal priority as-
signment in (b) results in less time. It is easy to see that some
order, such as I35 — T4y — 15 — 1y — T, will miss the
deadline.

Queue

T ‘B‘T@‘H‘Ts‘

I
I
Toln
I

L | |T LT T

0 20 Time 0 20 Time

a. LTF priority assignment b. Optimal priority assignment

Figure 1. Global Scheduling for 2-Processor Systems

For partition scheduling, the assignment of tasks to proces-
sors to balance workload while achieving minimal execution
time is also NP-hard [3] and must be handled by heuristics.
In this paper, we use longest task first partitioning, which dis-
patches the longest task from the remaining tasks to the proces-
sor with the minimal workload (based on task’s WCET). For
the above example, the optimal partitioning is T'y = {7}, T2}
and Ty = {T3, T4, T5}, where T'q is the sub-task set assigned
to processor Py and I'; is assigned to processor P. The LTF
partition gives I'y = {71, T4} and Ty = {T3,75,T5}. With
partition scheduling, each processor can independently apply
the slack reclamation and speed adjustment schemes discussed
in [6].

First, we extend the greedy slack reclamation (GSR) scheme
[6] to global scheduling, and we show that this scheme may fail
to meet the deadline. Then we propose a novel slack reclama-
tion scheme for global scheduling: shared slack reclamation
(SSR). To simplify the problem and our discussion, we assume
that processor supply voltage and frequency can be changed
continuously, and we do not consider the run-time overhead of
changing processor supply voltage and speed. In the conclu-
sion, we briefly discuss the implications of these two assump-
tions.

3.1 Global Scheduling with Greedy Slack
Reclamation

This is an extension of the dynamic power management
scheme for uni-processor systems from Mossé et al [6]. In the
scheme of greedy slack reclamation, any slack on one proces-
sor is used to reduce the speed of the next task running on this
processor.

Consider the example: T' = {Ty, Ty, T3, T4, T5, Ts}, D =
9,77 = (5,2), T, = (4,4), T5 = (3,3), Ty = (2,2),

Queue

IR RN

1
N
1]
1B % PRRIES

9 Time 0 9 Time

(=)

a. Canonical Execution b. Actual execution with NPM

Figure 2. Global Scheduling with No Power Management

ueue
el [ o [nufslw) 6 [ 5[5 [u]s]
| |
I
T ‘
il Imrenlk,
I I
I I
T- T- T, | Tz
2 : 2 4175 :
0 9 Time 0 9 Time

(a) (b)

Figure 3. Global Scheduling with Greedy Slack Reclamation

Ts = (2,2),Ts = (2, 2). Figure 2 (a) shows that the canonical
execution can meet the deadline D. Figure 2 (b) shows that,
with no power management and slack reclamation, execution
with actual execution time (AET) can finish before D. While
Figure 3 shows that when tasks use their actual execution time,
T finishes at time 2 with a slack of 3 time units. With GSR,
this slack is given to the next task 75 that runs on P;. Thus,
Tz will execute in 6 units of time and the processor speed is
reduced to 3/6 * S;;; accordingly. When T3 uses up its time,
T misses the deadline DD. Hence, even when canonical exe-
cution finishes before D, global scheduling with greedy slack
reclamation cannot guarantee that all tasks finish before D.

3.2 Global Scheduling with Shared Slack
Reclamation (GSSR)

Time

Figure 4. Global Scheduling with Shared Slack Reclamation

In the above example, greedy slack reclamation gives all of
the slack to 73. This means that 73 can start execution at time
2 at a speed of 3/6 * S;;; with 6 time units and finish execution



at time 8. There is only 1 time unit left for 7T which misses
the deadline at time unit 9. In this case, it would be better to
share the 3 units of slack by splitting it into two parts; i.e., give
2 units to T3, and 1 unit to Ty4. With slack sharing, T3 starts
at time 2, executes for 5 time units at the speed of 3/5 * S it
and ends at time 7. T} starts at time 4, executes for 3 time units
at the speed of 2/3 x S;s¢ and ends at time 7. Thus, both T5
and Ts meet the deadline. Figures 4 (a) and (b) demonstrate
the operations of this scheme. When P; finishes 77 at time
2, it finds that it has 3 units of slack. But only 2 of these time
units are before P’s expected finish time based on T5’s WCET.
After fetching T5, P; gives 2 units (the amount of slack before
Py’s expected finish time) to 73 and shares the remaining slack
with Ps.

From a different point of view, sharing the slack may be
looked at as Ty being allocated 4 time units on Py instead of 5,
with Ty being allocated 5 time units on Py instead of 4. Here
Ty has 2 units of slack and Ty has 1 unit of slack. So, in some
sense, the situation is similar to Ty being assigned to Py and
T, being assigned to Py, and all the tasks that are assigned to
P in canonical execution will now be assigned to Py and visa
versa.

Before formally presenting our algorithm, we define the es-
timated end time (EET) for a task executing on a processor as
the time at which the task is expected to finish execution if it
consumes all of the time allocated for it. The start time of the
next task (STNT) for a processor is the time at which the next
task is estimated to begin execution on this processor.

3.2.1 GSSR for Dual-Processor Systems (GSSR-2)

Each processor invokes the scheduling algorithm in Figure 5
at the beginning of execution or when a processor finishes ex-
ecuting a task. A shared memory is used to hold control in-
formation, which must be updated within a critical section (not
shown in the algorithm). The shared memory holds the com-
mon queue, Ready-Q, which contains all ready tasks and an
array to record ST NTy and STN'T; for processor P, and Ps,
respectively. Initially, all tasks are put into Ready-Q, and the
STNTs of the processors are set to 0. In the algorithm, id
represents the current processor while id represents the other
processor, ¢ is the current time, and S;4 is the speed of P;4.

At the beginning of execution or when P;4 finishes a task at
time ¢, if there are no more tasks in Ready-Q, P;q will stall
and sleep; otherwise, P;4 will select the next task T} from
Ready-Q (line 3). If ST'N'T;4 is larger than ST' NI, it means
that T}, should follow STNTE in the canonical execution, so
P;4 exchanges ST'N'T;4 with ST NI to make T}, still follow
STNT (line 4). Here, we try to emulate the timing of the
canonical execution. P;4 then calculates its speed S;4 to exe-
cute T} based on the timing information and begins execution.
By exchanging ST NT;q with ST NI, P;4 shares part of its
slack (specifically, STNT;q — STNTr;) with Pr.

From the algorithm, we notice that at any time (except when

1 While (Ready-Q # )

2 {

3 Ty = Dequeue (Ready-Q);

4 if (STNTi;a > STNTz)
STNTiq <+ STNTz;

EET, = STNT;q + Ck;

STNT;q = EETy;

Sia = Sjir * ck/(EETk - t) ;

Execute Tk at speed Siq;

O 0 3 O\ W

Figure 5. The GSSR-2 Algorithm invoked by P;

Ready-Q is empty), the value of STNT; and STNT; of the
processors are always equal to the biggest two F ET's of the
tasks running on the two processors. One of these two tasks
is the most recently started task (from line 4, 5, 6). The task
that starts next will follow the relatively smaller ST/NT'. These
properties are used to prove the algorithm’s correctness (in the
sense that, shared slack reclamation does not extend the finish
time of the task set and execution with shared slack reclamation
will use no more time than in the canonical execution).

3.2.2 Analysis of the GSSR-2 Algorithm

For the canonical execution, we define the canonical estimated
end time, EET{, for each task Tj,. From the definition, we
know that F E'T}, is the latest time at which T} will finish its
execution. If EET, = EFET; for every task and the canon-
ical execution can finish before time D, then any execution
will finish before D. To prove that EET, = EET, for every
Tj, we define the function mazy{X1,..., X} = {X4, Xs},
where X, and X, are the two largest elements in the set
{X1,..., Xn}. Wealso define the history set H (¢) as the set of
tasks that have started (and possibly finished) execution before
or at time 7.

Lemma 1 For GSSR-2, at any time t, if T}, is the most recently
started task, then:

EFET, € maz:{EET;|T; € H(t)};
Moreover:
{STNT,STNT:} = max{EET;|T; € H(t)}.

Proof The proofis by inductionon 7Ty, k =1,...,n.
Initially, after 77 and T start execution and before any of
them finish, at any time ¢:

H(t) = {T, Tz };

EET, € maz{EET;|T; € H(t)}; and
(STNTy, STNT,} = maz,{ EET,|T; € H(t)}.



Assuming that, at any time ¢, Ty_; is the most recently
started task, we have:

H(t)y={T1,...,Th-1};

EETi_1 € mazy{ FET;|T; € H(t) };
{STNT,,STNT:} = max{EET;|T; € H(t)};

And without loss of generality, assume STNT; < STNT;.

After T}, started and before T}y starts, at any time £, T
is the most recently started task. Hence H (¢) = {T4,...,Tx}
and from line 4, 5, 6 of the algorithm:

EET, = min{STNT,,STNT:} + c
= STNT + cg;
Then,
EFET, € maz2{EET;|T; € H(t)};

The new values of ST NT; and STN'T; are thus given by:

(STNTy,STNT,} = {STNT,, EET:}
= maz{FET|T; € H(t)};
Oa

Theorem 1 For global scheduling with shared slack reclama-
tion in 2-processor systems (GSSR-2), if canonical execution
completes at a time D, then any execution will complete by
time D.

Proof We prove this theorem by showing that, for any
execution under GSSR-2: FET; = FETS. The proof is by
inductionon Ty, k= 1,...,n.

Initially, GSSR-2 sets EFET and EET, at the beginning
of execution without any consideration to the actual execution
time of 77 and 7. Hence, FET) = EFITY and FET, =
EETS.

Assume that EET; = EETf fori=1,..., k— 1. Without
loss of generality, at any time ¢ before T}, starts, Ti_1 is the
most recently started task and

maxo{EET;|T; € H(t)} = {EET;_q, FETy_1},a > 1.
From Lemma 1:
{STNT,,STNTy} = {EET;_,, FET;_1}.

When T}, begins to run:

EET, min(STNTy, STNTy) + e
= min(FEETy_q, FETy_1) + ci;
EETS = min(STNTy, STNTy) + ci
(

= min(FET;_,, EET;_) + cx;

Thus, whether EET),_, > EFET,_1or EET,_, < EET,_1,
we have:
EET, = FET;.

So, EET; = EET¢,i=1,...,n.

O
Consider the example from Figure 1 when every task uses
its actual execution time. Assuming that power consumption is
equal to S®*C., if no slack is reclaimed, the energy consump-
tion is computed to be 29 * C;. Under global scheduling with
shared slack reclamation and longest task first priority assign-
ment, the energy consumption is computed to be 21.83 x C'.
Note that if we use the optimal priority assignment as in Figure
1 (b) which optimizes the execution time, the energy consump-
tion is computed to be 21.97 + C. ;. Hence, the opitmal priority
assignment in terms of execution time is not optimal for energy
consumption.

3.2.3 GSSR for N (> 2) Processors Systems (GSSR-N)

Global scheduling with shared slack reclamation can be ex-
tended to N-processor systems as shown in Figure 6. The dif-
ference between this algorithm and GSSR-2 is how the mini-
mum STNT is determined (line 4). The extended algorithm
can be proved to meet the finish time of canonical execution
by replacing mazy with maz v in the proof of Lemma 1 and
Theorem 1, where maxz y { H (¢)} is the set of the N-largest el-
ements from the set H (t). For brevity, the proof is omitted.

1 While (Ready-Q # )
2 {
3 Ty = Dequeue(Ready-Q);
4 Find P, such that:
STNT, = min{STNT:,..
if(STNT;qa > STNT,)
STNT;q < STNT,
EET, = STNT;q + c;
STNT;q = EETy;
Sia = Sjir * ck/(EETk - t) ;
Execute Tk at speed Siq;

., STNT,};

(9}

O 03N

10 }
Figure 6. The GSSR-N Algorithm invoked by P;4

In the next section, we discuss scheduling with shared slack
reclamation for dependent tasks. The idea of slack sharing is
the same as the one used for independent tasks. A new con-
cern, however, is to maintain the execution order implied in
the canonical execution of the dependent tasks.

4 Power-Aware Scheduling for Dependent
Tasks

List scheduling is a standard technique used to schedule task
sets with precedence constraints [3, 13]. A task becomes ready
for execution when all of its predecessors finish execution. The
root tasks that have no predecessors are ready at time 0. List
scheduling puts tasks into a ready queue as soon as they be-
come ready and dispatches tasks from the front of the ready
queue to processors. When more than one task is ready at the



same time, finding the optimal order that minimizes execution
time is NP-hard [3]. In this section, we use the same heuristic
as in global scheduling and put into the ready queue first the
longest (based on WCET) among the tasks that become ready
simultaneously . We number the tasks by the order at which
they are added to the ready queue during canonical execution.
That is, the k*” task entering the ready queue in canonical ex-
ecution is identified as T}.

An example of canonical execution with list scheduling is
shown in Figure 7. Here T' = {T1,Ts, 15,14, T5,Ts}, D =
12. The precedence graph is shown in Figure 7 (a) and the
canonical execution is shown in Figure 7 (b). Task nodes are
labeled with the tuple (¢;, a;).

2,2 3,3
— ()
\4,4 6.6

(m)—=(%)

3,1 /,6

a. Precedence Graph

Ready Time y 0 v2 v3 v6
Queue Tl T2 T3 T4 TS T6

Time

0 12

b. Canonical Execution, finish at D=12

Figure 7. List Scheduling for Dual-Processor Systems

From the figure, we see that 7} and T are ready at time
0. 75 and Ty are ready at time 2 when their predecessor T4
finishes execution. 75 is ready at time 3 and 7§ is ready at time
6.

Due to dependencies among tasks, the readiness of a task
during non-canonical execution is dependent on the actual ex-
ecution time of its predecessors. From the discussion of inde-
pendent tasks, we know that greedy slack reclamation cannot
guarantee completion before D (i.e., the completion time of
canonical execution). We next show that the straightforward
application of shared slack seclamation to list scheduling may
not guarantee that timing constraints are met.

4.1 List Scheduling with Shared Slack Recla-
mation

Consider the example from Figure 7 and assume that ev-
ery task uses its actual execution time. In Figure 8, whenever
one task is ready it is put into the queue. From Figure 8, it
is clear that list scheduling with shared slack reclamation does
not finish execution by time 12 (the finish time of canonical
execution).

Ready Ti
eady 1mev0

Queue Tl T2 T5 T3 T4 T6

A |

I T T

(e
—
(3]

Time

Figure 8. List Scheduling with Shared Slack Reclamation

The reason why list scheduling with shared slack reclama-
tion takes longer than the canonical execution is that the ready
time of the tasks change, and thus the order at which the tasks
are added to the queue is different from the canonical execu-
tion order. In the example, T5 is ready before T3 and Ty, which
leads to T3 being assigned to P, rather than P;. This in turn
leads to the late completion of all tasks and the deadline being
missed.

4.2 Fixed-Order List Scheduling with
Shared Slack Reclamation (LSSR)

For the example in Figure 8, we need to prevent 75 from
executing before 75 and T4 to guarantee that execution does
not take longer than canonical execution. Recall that the exe-
cution order of tasks has been known during the first step when
checking the canonical execution, so we can put all tasks into
Global-Q in the canonical execution order. Then whenever a
processor is free, it will check the task at the head of Global-Q
to see whether it is ready or not. If the task is ready, the pro-
cessor will select it; otherwise the processor goes to sleep. The
detail of the algorithm is described below.

4.2.1 LSSR for Dual-Processor Systems (LSSR-2)

As in GSSR-2, we assume that the shared memory holds the
control information. Figure 9 shows the LSSR-2 algorithm.
Each processor (P;4) invokes the LSSR-2 algorithm at the be-
ginning of execution, when a task finishes execution on P;4, or
when P;; is sleeping and signaled by another processor. We
use the function wait() to put an idle processor to sleep and the
function signal( Py ) to wake processor Pj.



In the algorithm, RT} is the ready time of task 7; dur-
ing canonical execution at speed S;;; and all other variables
are the same as before. RT7(¢ = 1,...,n) are calculated
as: RT = maz{EFET{|T, — T; € E}. Initially, all
tasks are put in Global-Q in the canonical execution order.
STNT;q(id = 1,2) are set to 0 (not shown in the following
figure).

1 if (Head(Global-Q) is ready)

2 {

3 Tr = Dequeue (Global-Q);

4 if (STNT;q > STNT:)
STNTiq ¢+ STNT

EETy = maz{RT;,STNT;a,t} + ck;

STNT;qa = EETy;

Sia = Sjit * ck/(EETk — t) ;

if (Head(Global-Q) is ready) AND(P; is Idle))
Signal(Pr7);

10 Execute T}, at speed Siq;

11} else wait();

O 0 3 N

Figure 9. The LSSR-2 Algorithm invoked by P;4

If the algorithm is invoked by a signal from another proces-
sor, it will begin at the 'waiting for signal’ point (line 11). If
the algorithm is invoked at the beginning or when P;, finishes
a task, it begins at line 1. If the head of Global-Q is ready,
P;4 picks a task Ty from the head of Global-Q (line 3). After
selecting T}, P;q calculates the speed S;4 to execute 7. Then
Py signals Pr7if P is sleeping and the head of Global-Q is
ready (line 11). Finally, P;4 runs Ty at the speed of S;4.

Based on this algorithm, we prove that at any time STNT;
and STN'T; of the processors are always equal to the largest
two F ET's of the tasks that have been started or finished, and
one of them will be the task most recently started.

4.2.2 Analysis of LSSR-2 Algorithm

Similar to GSSR-2, at any time (except when Global-Q is
empty), the value of STNT; and STNT, of the processors
are always equal to the biggest two F E'T's of the tasks running
on the two processors. One of these two tasks is the most re-
cently started task (from line 4, 5, 6). The task that starts next
will follow the relatively smaller STNT.

Lemma 2 For LSSR-2, at any time t, if T}, is the most recently
started task, then:

EFET, € maz2{EET;|T; € H(t)};
Moreover:
{STNT,STNT:} = max{EET;|T; € H(t)}.

Proof The proof is by inductionon 7,7 = 1,...,n and is
very similar to the proof of Lemma 1.

Initially, after 77 and T start execution and before any of
them finish, at any time ¢:

H(t) = {1, Tz };
EET, € maz{EET;|T; € H(t)};and

{STNT, STNT,} = max,{ EET}|T; € H(t)}

Assume that before 7T}, started execution, 1) _; is the most
recently started task. At any time ¢, we have:

H(t) ={T1,..., Ti-1};

EET,_1 € max{EET;|T; € H(t)};and
(STNTy, STNT,} = mazs{ EET,|T; € H(t)}:

And without loss of generality, assume STNT; < STNT;.
After T}, starts and before any more tasks finish, 7}, is the
most recently started task, and at any time ¢:

Ht)={T,..., T };

From line 4, 5 and 6 of the algorithm in Figure 9:

EET max{min{STNT,, STNT:}, RT;,t} + cx

max{STNTy, RT;,t} + cx;

Then,
EFET, € maz2{EET;|T; € H(t)};

The new values of ST NT; and STN'T; are thus given by:

{STNT,,STNT,} = {STNT,, EET:}

max{EET;|T; € H(t)};

O

Theorem 2 For list scheduling with shared slack reclamation
in 2-processor systems (LSSR-2), if canonical execution com-
pletes at a time D, then any execution will complete by time

D.

Proof We prove this theorem by showing that, for any
execution of LSSR-2: EET; = EETS,i = 1,...,n. The
proofis by inductionon 7;,2 = 1, ..., n. Recall that tasks are
numbered by the order in which they entered Global-Q dur-
ing canonical execution and they are always executed in the
canonical execution order.

Initially, LSSR-2 sets FET) and FET; at the beginning
of execution without any consideration to the actual execution
time of 71 and T5. Hence, EET; = EET;,fori =1, 2.

Assume that EET; = FETS,: = 1,...,k — 1. Without
loss of generality, at any time before T}, starts, T4 is the most
recently started task and

mazy{ EET,|T; € H(t)} = {EETs_o, EETs_1},a > 1.



From Lemma 2:
{STNT,,STNT,} = {EET;_,, FET;_1}.

When T}, starts at time ¢ (non-canonical execution) or ¢’
(canonical execution):

EET, = maz{min{STNT,,STNT,}, RT,t} + ci
= max{min{EET;_q, EET;_1}, RT;,t} + ci;
EETS = maz{min{STNT,,STNTy}, RT;,t'} + cx

= maz{min{EET;_,, EET;_,}, RT{,t'} + c;
When T}, starts, either
t < RT{ and t' < RT{

or
t < min{STNT;,STNT;} and

t' < min{STNTy, STNTy}

we will have:

max{min{EETy_q, FET;_1}, RT{, t}
= mazx{min{EFET;_,, EET;_,}, RT{,t'};

Thus EET, = EETE.
So, EET; = EET¢,i=1,...,n.

4.2.3 LSSR for N (> 2) Processor Systems (LSSR-N)

The LSSR-2 algorithm may be extended to any number of pro-
cessors by checking all processors and getting the minimal
STNT as shown on line 4 in Figure 10. The minimal STNT
is the time the next start task should follow. If in the canonical
execution, LSSR-N finishes before D, LSSR-N will finish be-
fore D for any case. The proof is similar to the one above and
is omitted for brevity.

5 Performance Comparison

In this section, we empirically demonstrate how shared
slack reclamation reduces energy consumption. We compare
the energy consumed when using the combination of static
power management and dynamic supply voltage/speed adjust-
ments by shared slack reclamation with that when using only
static power management.

5.1 GSSR and Partition Scheduling with
Greedy Slack Reclamation vs. SPM

First, we describe the simulation experiments. To get the ac-
tual execution time for each task, we define «; as average/worst
case ratio for 7;’s execution time, and the actual execution time
of T; will be generated as a normal distribuation around «; * ¢;.
For independent task sets, we specify the lower (¢nin) and

1 if (Head(Global-Q) is ready)
2 {
3 Ty = Dequeue (Global-Q);
4 Find P, such that:
STNT, = min{STNTy,...,STNT,};
5 if (STNT;q > STNT,;)
STNT;qa < STNT,
6 EETy = maz{RT;,STNT;a,t} + ck;
7 STNT;qa = EETy;
8 Sia = Sjit *ck/(EETk —t) ;
9 if (Head(Global-Q) is ready) AND (P, is Idle))
10 Signal(Prm,);
11 Execute T}, at speed Siq;

12} else wait();

Figure 10. The LSSR-N Algorithm invoked by P;

upper (¢mq,) bounds on the task’s WCET and the average o
for the tasks in the set, which reflects the amount of dynamic
slack in the system. The higher the value of «, the less the dy-
namic slack. A task’s WCET is generated randomly between
(Cmin,s Cmaz) and ¢ is generated as a uniform distribuation
around «. For simplicity, energy consumption is assumed to
be proportional to [ S3(¢) dt * C.y and the idle speed is set
to 0.1 % Sp, 4 When the processor is idle. In the following ex-
periments, energy is normalized to the energy consumed when
using only SPM.

100 T T T T T T T T
90 1
z
©v 80 GSSR —+— 1
g PGSR ------
g 70 r 1
E 60 g
8
g .
= 50 1
g
= x°
g 40 1
s 30 /x" 1
10 1
3
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
alpha

Figure 11. Energy Consumed by GSSR and PGSR vs. SPM

The results reported in this section are obtained by running
the task set 100 times.There are 100 tasks in the task set. We
set the value of WCET as ¢in = 1 and ¢y = 50. In Fig-
ure 11, the number of processor is 2. « is varied from 0.1 to
1.0. We compare the global scheduling with shared slack recla-
mation with partition scheduling with greedy slack reclama-
tion(PGSR). For PGSR, we use longest task first partitioning
to divide the tasks among processors, and then apply greedy
slack reclamation scheme on each processor [6]. Shared slack



reclamation is one form of greedy. From the figure, we see that,
global scheduling with shared slack reclamation consumes less
energy than partition scheduling with greedy slack reclama-
tion. The reason is that, with slack sharing longer tasks get
more slack while short tasks get less. This balances the speed
for each task and reduces energy consumption. When the aver-
age/worst case ratio(c) is about 0.5 (that is, on the average we
have 50% of time as dynamic slack), global scheduling with
shared slack reclamation results in energy saving of more than
60% versus static power management. When « increases, there
is less dynamic slack and compared to SPM the energy saving
of GSSR decreases.

To see the shared slack reclamation scheme’s performance
on systems with different number of processors, in Figure 12,
we change the number of processors and set & = 0.5. Com-
pared to SPM, the energy saving of GSSR is almost the same
when the processor number is less than or equal to 8. Because
of lack of parallelism when the processor number is more than
8, the energy saving of GSSR decreases dramatically.

70 T T T T T T

65 - GSSR —+— b

60 b

55 1 b

50 b

45+ ]

Energy consumption normalized to SPM

40 + ]

35 " " " " " "
0 5 10 15 20 25 30 35

Number of processors

Figure 12. Energy Consumption of GSSR with Different Num-
ber of Processors

5.2 LSSR vs. SPM

For dependent tasks, we first consider an example with 20
tasks. The dependence graph for these tasks is generated ran-
domly and shown in Figure 13 (a). The tasks’ WCET are gen-
erated randomly from 1 to 50 and we assume a 2-processor
system. In Figure 14, we vary a from 0.1 to 1.0. The energy
saving of fixed-order list scheduling with shared slack recla-
mation compared to that from static power management varies
from 0% when « is 1.0 to 72% when « is 0.1. When « in-
creases, there is less dynamic slack and compared to SPM the
energy saving of LSSR decreases. On average, when « is 0.5,
the energy saving is approximately 40%.

We next consider two matrix applications, matrix-
multiplication and Gaussian-elimination, and measure the ef-

b. Matrix—Multiplication

OnyOny ;Q
(v /()
7

c. Gaussion Elimination

Figure 13. Dependent Graph

100 T T T T T T T T
Random Graph —+—
s 90t Matrix-Multiplication ------ ]
a Gaussion Elimination ---%---- .
“ LW
e ]
= 80 o >
3 am— >
g 70 A
E )6 ( e
= 60 i
g LK
IS X
§ 50 g |
> 40 r /«"' g
20 X
g "__.,
m 30 f 4
20 . . . . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
alpha

Figure 14. Energy consumed by LSSR vs. SPM

fectiveness of our techniques for these benchmarks. The de-
pendence graph for matrix-multiplication is shown in Figure
13 (b) and Gaussian-elimination (assuming a 5 X 5 matrix) is
shown in Figure 13 (c) [16]. The worst case execution time of
each task is dertemined by the operations involved. We con-
duct the same experiments as above, achieving similar energy
savings for fixed-order list scheduling with shared slack secla-
mation. The results are also shown in Figures 14.

For Gaussian-elimination, we also considered a 20 x 20



90 T T T T T T

80 LSSR —+— b

70 b

50 1

40 + ]

Energy consumption normalized to SPM
D
S
T
.

30 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Number of processors

Figure 15. Energy Consumption of LSSR with Different Num-
ber of Processors for Gaussian-elimination

matrix to allow more parallelisms between tasks. With fixed
a = 0.5, we change the number of processors, and show the
result in Figure 15. For this application, when the number of
processor is larger than 8, most processors become idle (due to
the lack of parallelism among tasks) and compared to SPM the
energy consumption of LSSR increases dramatically.

6 Related Work

For uni-processor systems, Yao et al describe an optimal
preemptive scheduling algorithm for independent tasks run-
ning with variable speed [4]. When deciding processor speed
and supply voltage, Ishihara and Yasuura consider the require-
ment of completing a set of tasks within a fixed interval and
the different switch activities for each task [11]. By assign-
ing lower voltages to the tasks with more switch activities
and high voltage to the tasks with less switch activities, their
scheme can reduce energy consumption by 70%. Lee et al pro-
posed a power-aware scheduling technique using slack recla-
mation, but only in the context of systems with two voltage
levels [12]. Their algorithms have an offline phase in which
voltage is set for each task based on a task’s WCET and an on-
line phase which adjusts the voltage on-the-fly to reclaim slack
from prior tasks. Hsu et al describe a performance model to
determine the efficient processor slow down factor under com-
plier control [8]. Based on a superscalar target architecture
and a machine with similar power dissipation to the Transmeta
Crusoe TM5400, their simulation results show the potential of
their proposed optimization technique. Mosse et al proposed
and analyzed several techniques to dynamically adjust proces-
sor speed with slack reclamation [6] . The best scheme is an
adaptive one that takes an aggressive approach while providing
safeguards that avoid violating application deadline. For multi-
processor systems, with fixed application sets and predictable
execution time, static power management can be accomplished

by deciding beforehand the best supply voltage/speed for each
processor. Flavius proposed two system-level designs for low-
energy on architecture with variable voltage processors, and
the simulation results show that both approach can save 50%
of energy when deadline is relaxed by 50% [7].

Most of this previous work focused on uni-processor sys-
tems, and only a few focused on multi-processor systems. The
work reported in this paper focuses on multi-processor systems
with dynamic power management, which is different from
static power management [7]. Our techniques are particularly
beneficial for super-dense servers in which heat dissipation can
adversely affect system cost and reliability.

7 Summary and Future Work

In this paper, we introduce the concept of slack sharing on
multi-processor systems to reduce energy consumption. Based
on this concept, we propose two novel power-aware scheduling
algorithms for independent and dependent tasks. In both cases,
we prove that scheduling with slack reclamation will not cause
the execution of tasks to finish later than the completion time in
the canonical execution, where each task uses its worst case ex-
ecution time. Our simulation results show that the scheduling
algorithm with shared slack reclamation result in substantial
energy saving compared to static power management.

Specifically, if canonical execution of a task set can fin-
ish before time D, then the two proposed algorithms, GSSR
and LSSR, will finish the execution of the tasks before D. We
show that, compared to static power management, GSSR and
LSSR achieve considerable energy saving when the task’s ex-
ecution time is smaller than their worst case execution time.
With lower energy consumption, GSSR and LSSR potentially
increase the reliability of the system.

Note that the energy results reported in this paper are based
on the assumption that the processor supply voltage and speed
can be scaled and changed continuously. In current proces-
sors, however, the processor voltage and speed can only be
changed in incremental steps. The algorithms presented in this
paper can be easily adapted to discrete voltage and speed lev-
els. Specifically, after calculating a given CPU speed, setting
the speed to the next higher discrete CPU speed will always
guarantee that the deadline is met. The energy consumption,
however, may be slightly higher than the one obtained from
our algorithm with continuous voltage and speed. We are cur-
rently modifying our techniques and simulation infrastructure
to account for discrete voltages and speeds.

The results reported do not account for the overhead of ad-
justing processor speed and supply voltage. However, in all of
our schemes, speed adjustment is done only when the context
switches between two tasks, and thus speed adjustment over-
heads can be added to the context switch overhead. With the
knowledge that it takes only a few hundred cycles to adjust
the processor speed and supply voltage [17], we do not expect
GSSR and LSSR to increase the overhead substantially.



References

[1] T.D.Burd and R. W. Brodersen. Energy Efficient CMOS Micro-
processor Design. Proc. HICSS Conference, pp. 288-297, Maui,
Hawaii, January 1995

[2] A.Chandrakasan, S.Sheng and R.Brodersen. Low-power CMOS
Digital Design. IEEE Journal of Solid-state circuit, pp. 473-484,
April 1992.

[3] M.L.Dertouzos and A.K.Mok. Multiprocessor on-line schedul-
ing of hard-real-time tasks. IEEE Trans. On Software Engineer-
ing, SE-15 (12): 1497-1505, 1989

[4] F.Yao, A.Demers and S.Shenker. A scheduling model for re-
duced CPU energy. In 36th Annual Symposium on Foundations
of Computer Science. pages 374-382, Milwaukee, Wisconsin,
October. 1995

[5] T.D. Burd and R.W. Brodersen. Processor design for portable
systems Journal of VLSI Signal Processing, 13(2/3):203-222,
August 1996

[6] D. Mossé, H. Aydin, B. Childers and R. Melhem. Compiler-
Assisted Dynamic Power-Aware Scheduling for Real-Time Ap-
plications, Workshop on Compiler and OS for Low Power,
Philadelphia , PA, October 2000

[7]1 G. Flavius. System-Level Design Methods for Low-Energy Ar-
chitectures Containing Variable Voltage Processors. The Power-
Aware Computing Systems 2000 Workshop at ASPLOS 2000,
Cambridge, MA, November 2000.

[8] C.H.Hsu, UXKremer and M.S. Hsiao. Compiler-directed dy-
namic frequency and voltage scheduling. Proceedings of Work-
shop on Power-Aware Computer Systems (PACS), Cambridge,
MA, November 2000

[9] REmst and W.Ye. Embedded Program Timing Analysis
based on Path Clustering and Architecture Classification. In
Computer-Aided Design (ICCAD)97. pp. 58-604. San Jose, CA,
November 1997.

[10] L.Hong, G.Qu, M.Potkonjak and M.Srivastava. Synthesis Tech-
niques for Low-Power Hard Real-Time Tasks on Variable Volt-
age Processors. In Proceeding of 19th IEEE RTSS98, Madrid,
December 1998

[11] T.Ishihara and H.Yauura. Voltage Scheduling Problem for Dy-
namically Variable Voltage Processors. Proceedings of the 1998
International Symposium on Low Power Electronics and De-
sign, pp.197 — 202, Monterey, CA, August 1998.

[12] C.M. Krishna and Y.H.Lee. Voltage Clock Scaling Adaptive
Scheduling Techniques for Low Power in Hard Real-time Sys-
tems. In Proceeding of the G6thIEEE Real-Time Technology
and Applications Symposium (RTAS00), Washington D.C., May
2000

[13] K.D.Cooper, P.J.Schielke and D.Subramanian. An Experimental
Evaluation of List Scheduling. TR98-326, Dept. of Computer
Science, Rice University, September 30, 1998

[18] D.Singh and V. Tiwari. Power Challenges in the Internet World.

Cool Chips Tutorial in conjunction with the 32" Annual In-

ternational Symposium on Micro-architecture, Haifa, Israel,
November 1999

[19] F Liberato, S. Lauzac, R. Melhem and D. Mosse. Fault Toler-

ant Real-Time Global Scheduling on Multiprocessors, Euromi-
cro Workshop in Real-Time Systems, York, England June 1999

Appendix

In this appendix we define the acronyms used in this paper.
AET : actual execution time of a task

EET : estimated end time of a task’s execution

GSR : greedy slack reclamation

GSSR : global scheduling with shared slack reclamation
LTF : longest task first

LSSR : fixed-order list scheduling with shared slack reclamation
PGSR : partition scheduling with greedy slack reclamation
RT : ready time of a task

SPM : static power management

SSR : shared slack reclamation

STNT : start time of next task on a processor

WCET : worst case execution time of a task

[14] http://www.microprocessor.sscc.ru/

[15] http://www.transmeta.com/crusoe/family.html

[16] M.Cosnard and D.Trystram. Parallel Algorithms and Architec-
tures, International Thomson Computer Press, 1995.

[17] W.Namgoong, M.Yu and T.Meng. A High-Efficiency variable-
voltage CMOS dynamic DC-DC switching regulator. In IEEE
International Solid-State Circuits Conference pp. 380-381, San
Francisco, February 1997



