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Recent studies show that, voltage scaling, which is an efficient energy management technique, has
a direct and negative effect on system reliability because of the increased rate of transient faults
(e.g., those induced by cosmic particles). In this work, we propose energy management schemes
that explicitly take system reliability into consideration. The proposed reliability-aware energy
management schemes dynamically schedule recoveries for tasks to be scaled down to recuperate
the reliability loss due to energy management. Based on the amount of available slack, the
application size and the fault rate changes, we analyze when it is profitable to reclaim the slack
for energy savings without sacrificing system reliability. Checkpoint technique is further explored
to efficiently use the slack. Analytical and simulation results show that, the proposed schemes can
achieve comparable energy savings as ordinary energy management schemes (which are reliability-
ignorant) while preserving system reliability. The ordinary energy management schemes that
ignore the effects of voltage scaling on fault rate changes could lead to drastically decreased
system reliability.

Categories and Subject Descriptors: C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; C.4 [Performance of Systems]: Fault tolerance, performance
attributes; D.4.5 [Operating Systems]: Reliability—Checkpoint/restart

General Terms: Systems, Algorithms, Management

Additional Key Words and Phrases: Power management, dynamic voltage scaling

1. INTRODUCTION

The performance of modern computing systems has increased at the expense of
dramatically increased power consumption. The increased power consumption re-
duces the operation time for battery-operated embedded systems (e.g., PDAs and
cell phones) as well as increases the operation cost for high performance parallel
systems (e.g., data centers and server farms), where the excessive amount of heat
generated requires high cooling capacity. Many hardware and software techniques
have been proposed to manage power consumption in modern computing systems
and power aware computing has become an important research area recently. As
an efficient energy management technique, voltage scaling, which reduces system
supply voltage for lower operation frequencies [Weiser et al. 1994; Yao et al. 1995],
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has been used extensively in the recently proposed power management schemes
[Aydin et al. 2001; Mossé et al. 2000; Pillai and Shin 2001; Saewong and Rajkumar
2003].

Another traditionally important avenue in real-time systems research is fault tol-
erance. For safety-critical real-time systems, where the consequence of a failure can
be catastrophic, faults must be detected, and appropriate recovery operations must
be completed before the deadline. It has been reported that transient faults occur
much more frequently than permanent faults [Castillo et al. 1982; Iyer and Rossetti
1984; Iyer et al. 1986]. Moreover, with continuing scaling of CMOS technologies
and adjustment of design margins for higher performance, it is expected that, in
addition to the systems that traditionally operate in electronics-hostile environ-
ments (such as those in outer space), practically all digital systems will be much
more vulnerable to the transient faults [Ernst et al. 2004; Wang et al. 2004]. In
this work, we will focus on transient faults and explore the backward error recovery
techniques, which restore the system state to a previous safe state and repeat the
computation [Pradhan 1986], to tolerate them.

However, both voltage scaling and backward recovery techniques rely on the
active use of system slack. When more slack time is dedicated as temporal redun-
dancy for backward recovery to increase system reliability, less slack is available
for energy management to save energy. Therefore, there is an interesting trade-off
between system reliability and energy consumption [Zhu et al. 2004]. Moreover,
it has been shown that voltage scaling has a direct effect on the rate increases of
transient faults, especially for those induced by cosmic ray radiations, which further
complicates the interplay between system reliability and energy efficiency.

Due to the effects of cosmic ray radiations, soft errors (i.e., transient faults)
can be caused by the atmospheric nuclear/high energy particles (alpha-particles,
protons and neutrons) when they strike the sensitive region in a semiconductor
device. In general, the error rate is exponentially related to the critical charge
(which is the smallest charge required to cause a soft error in a circuit node) of a
circuit [Hazucha and Svensson 2000]. Since the critical charge is proportional to
system supply voltage [Seifert et al. 2001], when system supply voltage is reduced,
the critical charge decreases and low energy cosmic particles could cause an error.
Considering the number of particles with lower energy is much more than that of
particles with higher energy in the cosmic rays [Ziegler 1998], scaling down voltages
and frequencies for energy savings could lead to dramatically increased transient
fault rates [Zhu et al. 2004]. Therefore, voltage scaling has a severe effect on system
reliability [Ernst et al. 2004; Shivakumar et al. 2002; Zhu et al. 2004] and should
be carefully evaluated before it is applied, especially for safety-critical embedded
real-time applications, such as satellite and surveillance systems, where both high
level of reliability and low energy consumption are important.

Traditionally, to achieve a certain level of system reliability in the worst case,
only static slack in a system has been explored as temporal redundancy. However,
as real-time applications exhibit large variations in actual execution time, and in
many cases, only consume a small fraction of their worst case execution time [Ernst
and Ye 1997], large amount of dynamic slack is available during run-time. As
mentioned earlier, simply reclaiming this dynamic slack for energy savings through
ACM Transactions on Embedded Computing Systems, Vol. VV, No. NN, MMM 20YY.
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voltage scaling technique could dramatically reduce system reliability due to in-
creased failure rates as well as extended execution time [Ernst et al. 2004; Zhu
et al. 2004]. Therefore, for dependable embedded real-time systems (such as the
ones deployed in out-space explorers), where both high system reliability and low
energy consumption are equally important, special considerations are needed when
exploiting dynamic slack for energy savings.

Though fault tolerance through redundancy and energy management through
voltage and frequency scaling have been well studied in the context of real-time
systems independently, there are relatively less research addressing the combination
of fault tolerance and energy management [Ejlali et al. 2005; Elnozahy et al. 2002;
Melhem et al. 2004; Rashid et al. 2005; Unsal et al. 2002; Zhang and Chakrabarty
2004]. In this work, we propose schemes that utilize dynamic slack for energy sav-
ings while taking system reliability into consideration. Specifically, the proposed
reliability-aware energy management schemes dynamically schedule recoveries for
tasks to be scaled down using dynamic slack to recuperate the reliability loss due
to energy management. To the best of our knowledge, this is the first work that ad-
dresses the complications of exploring dynamic slack for both energy and reliability.
The main contributions of this paper are three-fold:

—First, we propose a reliability-aware dynamic energy management scheme that
can achieve significant energy savings without degrading system reliability.

—Second, depending on the amount of available slack and the size of the applica-
tion, we identify the situation when it is profitable to reclaim dynamic slack for
energy savings without sacrificing system reliability.

—Third, checkpointing techniques are further explored for the reliability-aware
dynamic energy management scheme to efficiently use dynamic slack.

Analytical and simulation results show that ignoring the effects of voltage scaling
on fault rates changes could lead to drastically decreased system reliability and
the proposed schemes can achieve comparable energy savings as ordinary energy
management schemes while preserving system reliability.

The remainder of this paper is organized as follows. The models and problem de-
scription are presented in Section 2. Reliability-aware dynamic energy management
is proposed and analyzed in Section 3 and Section 4 further explores checkpointing
techniques to efficiently use dynamic slack. The simulation results are presented
and discussed in Section 5. Section 6 addresses the closely related work and Sec-
tion 7 concludes the paper.

2. MODELS AND PROBLEM DESCRIPTION

2.1 Power Model

For embedded systems, the power is consumed mainly by the processor, memory,
I/O interfaces and underlying circuits. While the power consumption is dominated
by dynamic power dissipation, which is quadratically related to supply voltage and
linearly related to frequency [Burd and Brodersen 1995], the static leakage power
is ever-increasing and cannot be ignored, especially with the scaled feature size and
increased levels of integration [Jejurikar et al. 2004; Sinha and Chandrakasan 2001].
To incorporate all the power consuming components in an embedded system while
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keeping the power model simple, the power consumption in a system is divided into
two major components: static power and active power [Zhu et al. 2004].

The static power, which may be removed only by powering off the whole sys-
tem, includes (but not limited to) the power to maintain basic circuits, keep the
clock running and the memory in power saving sleep modes [Lebeck et al. 2000].
The active power is further divided into two parts: frequency-independent active
power and frequency-dependent active power. Frequency-independent active power
consists of part of memory and processor power as well as any power that can be
efficiently removed by putting systems into sleep state(s) and is independent of
system supply voltages and processing frequencies [Intel-Corp. 2001; Lebeck et al.
2000]. Frequency-dependent active power includes processor’s dynamic power and
any power that depends on system supply voltages and processing frequencies [Burd
and Brodersen 1995; Sinha and Chandrakasan 2001]. Considering the almost lin-
ear relation between supply voltage and operating frequency [Burd and Brodersen
1995], voltage scaling reduces the supply voltage for lower frequencies [Pering et al.
1998]. In this paper, we use frequency changes to stand for changing both supply
voltage and frequency and adopt the power model developed in [Zhu et al. 2004]:

P = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceffm) (1)

where Ps is the static power, Pind is the frequency-independent active power and
Pd is the frequency-dependent active power. Both Ps and Pind are system depen-
dent constants. h̄ = 1 if the system is active (defined as having computation in
progress); otherwise (i.e., the system is in sleep mode or turned off) h̄ = 0. The
effective switching capacitance Cef and the dynamic power exponent m (in general,
larger than or equal to 2) are system/application dependent constants [Burd and
Brodersen 1995] and f is the processing frequency. For easy discussion, normalized
frequencies are used and the maximum frequency fmax is assumed to be 1 (with
corresponding normalized supply voltage Vmax = 1). The maximum frequency-
dependent active power is denoted by Pmax

d and we assume Ps = αPmax
d and

Pind = βPmax
d .

From Equation (1), intuitively, lower frequencies result in less frequency-dependent
active energy consumption. But with reduced speed, the application will run longer
and thus consume more static energy and frequency-independent active energy.
Hence, in general, an energy-efficient frequency, below which voltage scaling starts
to consume more total energy, does exist1. In real-time applications, the time and
energy overhead of turning on/off a device that is actively used by the applica-
tion may be prohibitive [Bohrer et al. 2002]. For the time interval considered (e.g.,
within application’s deadline), we assume that the working system is always on (but
several components may be put to low-power sleep states for energy savings) and
Ps is always consumed. Consequently, the total energy consumption of a running
application at frequency f can be modeled as:

E = Ps ·D + (Pind + Ceffm) · c

f
(2)

1We note that this conclusion has been also reached by several research groups, though through
different energy modeling techniques [Elnozahy et al. 2002; Fan et al. 2003; Jejurikar et al. 2004;
Irani et al. 2003; Saewong and Rajkumar 2003].
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where D is the operation interval, c is the worst case execution time of the appli-
cation at the maximum frequency fmax and c

f is the execution time of the appli-
cation at frequency f . That is, although Ps affects the total energy consumption,
the amount of energy savings from voltage scaling is independent of it. For easy
discussion, in what follows, we assume Ps = 0 and focus on active power2.

From Equation 2, it is easy to find out that the energy efficient frequency is [Zhu
et al. 2004]:

fee = m

√
β

m− 1
(3)

For energy consideration, we should never run at a frequency below fee, since doing
so consumes more energy. For simplicity, we assume that fee ≥ flow, where flow

is the lowest frequency in the system, and define the minimum energy efficient
frequency as fmin = max{flow, fee} = fee. Moreover, frequency is assumed to be
able to change continuously from fmax to fmin. For voltage scaling capable modern
processors that have only a few discrete frequency/voltage levels [Intel-Corp. 2001],
after reclaiming the slack and obtaining the desired frequency, running the task at
the next higher discrete frequency level will always ensure to meet the task’s timing
constraints. Moreover, one can also use two adjacent discrete speed levels to emulate
the execution at any frequency [Ishihara and Yauura 1998].

2.2 Fault Model

During the execution of an application, a fault may occur due to various reasons,
such as hardware failures, software errors and the effects of cosmic ray radiations.
Since transient faults occur much more frequently than permanent faults [Castillo
et al. 1982; Iyer and Rossetti 1984; Iyer et al. 1986], in this paper, we focus on
transient faults, especially the ones caused by cosmic ray radiations, and explore
backward recovery techniques to tolerate them. It is assumed that faults are detected
using sanity or consistency checks [Pradhan 1986]. Should an error be detected, the
system’s state is restored to a previous safe state and the computation is repeated.

Transient faults that are caused by radiations in semiconductor circuits have been
known and well studied since the late 1970s [Ziegler 1998]. However, considering the
various factors that affect the transient fault rate (such as cosmic ray flux, technol-
ogy feature size, chip capacity, supply voltage and operating frequency), obtaining
a precise and formal model is an extremely challenging task [Semiconductor 2004;
Shivakumar et al. 2002; Ziegler 2004]. In general, transient fault rate, also known as
soft error rate (SER), which is exponentially-related to the critical charge (Qcrit),
of a circuit is given by the following equation [Hazucha and Svensson 2000]:

SER ∝ F ×A× e−
Qcrit

Qs (4)

where Qcrit is the smallest charge needed to cause a soft error; A and Qs are circuit-
related constants; and F is the neutron flux (i.e., radiation intensity). Moreover,
the critical charge is proportional to system supply voltage [Seifert et al. 2001].
When the system supply voltage is reduced, the critical charge decreases, which will

2For systems with multiple processing units, some processing units may be powered off for energy
efficiency and the energy savings will be affected by Ps [Xu et al. 2005; Zhu et al. 2005].
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increase the transient fault rate. For example, increased SERs have been observed
with lower supply voltages for both memory [Ziegler 2004] and processors [Seifert
et al. 2001].

Based on these observations, we have studied the effects of low power techniques
on transient fault rates [Zhu et al. 2004]. Assuming that radiation-induced tran-
sient faults follow a Poisson distribution with an average fault rate λ [Zhang and
Chakrabarty 2003], for systems running at frequency f (f ≤ fmax, and corre-
sponding supply voltage V ), the function giving the average transient fault rate is
generally expressed as [Zhu et al. 2004]:

λ(f) = λ0g(f) (5)

where λ0 is the average fault rate corresponding to the maximum frequency fmax =
1 (and supply voltage Vmax). That is g(fmax) = 1.

When supply voltage is scaled down, with smaller critical charges, lower energy
particles could cause an error with a higher probability [Ziegler 1998]). Considering
the exponential term in Equation (4), and the fact that the number of low-energy
particles is two magnitude higher than that of the high-energy particles [Ziegler
1998], a more specific fault rate model for voltage scaling has been suggested in our
previous study [Zhu et al. 2004]:

λ(f) = λ0g(f) = λ010
d(1−f)
1−fmin (6)

where d (> 0) is a constant. The maximum average fault rate is assumed to be
λmax = λ010d, which corresponds to the lowest frequency fmin (and supply voltage
Vmin). That is, reducing the supply voltage and frequency for energy savings results
in exponentially increased fault rates and larger d indicates that the fault rate is
more sensitive to voltage scaling. Although the exponential fault rate model is used
in the analysis and simulations, the reliability-aware energy management schemes
proposed in this paper are very generic and do not rely on any specific fault model.

2.3 Problem Description

In this work, we consider a real-time application that consists of a set of aperi-
odic tasks that share a common deadline D. Note that, for periodic applications,
D can also represent the period. The worst case execution time (WCET) of task
Ti at the maximum frequency fmax is assumed to be ci (i = 1, · · · , n). When all
tasks use their WCETs at the maximum frequency fmax, it is assumed that all
tasks can finish their execution within the deadline D and the task set is sched-
uleable. Moreover, considering that the reliability of a real-time system depends
on the correct execution of all tasks in an application, without loss of generality,
the application reliability, R0 =

∏n
i=1 R0

i , is assumed to be satisfactory. Here,
R0

i = e−λ0ci is the probability of task Ti being executed correctly (from the Poisson
fault arrival pattern and the average fault rate λ0). That is, no recovery tasks are
statically scheduled to achieve the required reliability3 R0, which will be preserved
at run-time.

3When recovery tasks are statically scheduled to satisfy higher levels of reliability requirements,
our proposed schemes will treat such recovery tasks as normal tasks and preserve the higher levels
of reliability that should be achieved.
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Due to early completion of tasks at run time, dynamic slack will exist during the
execution of tasks [Ernst and Ye 1997]. For a given amount of available slack
S, we focus on the problem of how to use S for energy savings without
sacrificing system reliability, while taking the effects of voltage scaling
on fault rates into consideration.

In order to preserve the reliability, R0, of an application, for simplicity, we focus
on maintaining the reliability of individual tasks in this work. That is, we propose
schemes to keep the probability of task Ti being correctly executed no less than
R0

i (i = 1, · · · , n). Recoveries of tasks will be scheduled dynamically if needed.
The overall performance of the proposed schemes for the whole application will be
evaluated through simulations in Section 5.

When errors are detected at a task’s completion, the task may be re-executed to
recover from transient faults. In the next Section, we first consider the case where
the amount of available slack S is no less than ck, the size of the next task Tk, and
propose a reliability-aware dynamic energy management scheme which dynamically
schedules a recovery task (i.e., a simple re-execution) for Tk to recuperate the
reliability loss due to energy management. Section 4 further explores checkpointing
techniques to efficiently use the available slack, especially for the cases where S is
smaller than ck.

3. RELIABILITY-AWARE DYNAMIC ENERGY MANAGEMENT

Although sophisticated dynamic power management schemes that explore tasks’
statistical information have been proposed [Aydin et al. 2001; Mossé et al. 2000],
we will focus on the greedy scheme for it’s simplicity. Exploring other advanced
schemes is beyond the scope of this paper and will be considered in our future
work. We first illustrate the problem of the ordinary greedy power management
on reliability in Section 3.1. Then Section 3.2 presents the new reliability-aware
greedy energy management scheme and the analysis.

3.1 Ordinary Greedy Power Management

In ordinary greedy power management, all the available dynamic slack will be used
to scale down the processing of the next task for energy savings provided that such
allocation complies with task’s timing constraints [Aydin et al. 2001; Mossé et al.
2000] and/or the minimum energy-efficient frequency limitation [Zhu et al. 2004].
For example, as shown in Figure 1a, due to the early completion of previous tasks,
there are 3 units of available dynamic slack at time t, that is, S = 3. The WCET
of the next ready task Tk is ck = 2. In the figures, the X-axis represents time, the
Y-axis represents processing frequency (e.g., cycles per time unit), and the area of
the task box defines the workload (e.g., number of cycles) of the task. Recall that
Dk is the deadline of task Tk.

Suppose that β = 0.1 (i.e., Pind = 0.1Pmax
d ) and m = 3, we have the minimum

energy efficient frequency fee = 0.37 (recall that fmax = 1, Section 2) [Zhu et al.
2004]. Therefore, all the available dynamic slack S can be allocated to task Tk

and the processing speed of Tk can be reduced from fmax = 1 to f = 2
2+3 = 0.4

as shown in Figure 1b. From Equation 1, it is easy to find that scaling down the
processing of Tk could save 63% of the active energy.

However, as discussed in Section 2, with reduced processing frequency and supply
ACM Transactions on Embedded Computing Systems, Vol. VV, No. NN, MMM 20YY.
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a. at time t, slack S is available
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c. Reliability−aware greedy scheme

S

Fig. 1. Ordinary and Reliability-Aware Greedy Schemes.

voltage, the processing of task Tk is more susceptible to transient faults [Ernst et al.
2004; Zhu et al. 2004]. Suppose that the exponent in the fault rate model is d = 2
(see Equation 6 in Section 2), the probability of having fault(s) during the execution
of task Tk at the reduced speed will be:

ρk = 1−Rk = 1− e−λ010
d(1−f)
1−fmin (S+ck)

= 1− e−λ010
d(1−f)
1−fmin

ck
f = 1− e−λ0ck10

2(1−0.4)
1−0.37 1

0.4

≈ 1− (R0
k)200 = 1− (1− ρ0

k)200 ≈ 200ρ0
k (7)

where ρ0
k is the probability4 of having fault(s) when task Tk uses its WCET at the

maximum processing frequency fmax. That is, though 63% active energy is saved
by scaling down the processing of task Tk, it leads to approximately 200 times
higher in the probability of failure! The increase in the probability of failure during
the processing of individual tasks will degrade the overall system reliability, which
is unbearable, especially for safety-critical systems where the requirement for high
levels of reliability is strict.

3.2 Reliability-Aware Greedy Scheme

In addition to being used by energy management schemes for energy savings, slack
time can also be used as temporal redundancy to increase system reliability. To
recuperate the reliability loss due to energy management, we can reserve some
slack as temporal redundancy for scheduling recoveries/backups for tasks to be
scaled down. For simplicity, here we assume that the recovery is in the form of
re-execution and it has the same size of the task to be recovered [Pradhan 1986].

The reliability-aware greedy (RA-Greedy) power management scheme will dynam-
ically schedule a recovery for the task to be scaled before applying slack reclamation

4Note that, ρ0
k is a small number (usually < 10−4).
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for energy savings. The recovery will be executed (if needed) at the maximum fre-
quency fmax = 1. Notice that, in this section, the amount of dynamic slack S is
assumed to be no less than ck, the size of next task Tk. After reserving ck units of
dynamic slack for the recovery task, the remaining dynamic slack (S − ck, if any)
can be used to scale down the execution of Tk for energy savings. For example, as
shown in Figure 1c, a recovery task RCk is scheduled for task Tk which uses 2 units
of dynamic slack. The remaining 1 unit of dynamic slack allows task Tk to run at
a lower frequency fk = 2

2+1 = 0.66 and save energy.

3.2.1 System Reliability under RA-Greedy. With the additional recovery task
RCk, the reliability Rk of task Tk will be the summation of the probability of
primary task Tk being executed correctly and the probability of having fault(s)
during Tk’s execution while RCk being executed correctly. Notice that, if the
execution of the primary task Tk is faulty, the recovery task RCk will be executed
at the maximum frequency fmax and the probability of its fault-free execution is
e−λ0ck = R0

k. Therefore, we have:

Rk = e−λ(fk)S +
(
1− e−λ(fk)S

)
R0

k > R0
k (8)

where λ(fk) is the fault rate at the reduced frequency fk. From the above equation,
we can see that, under the RA-Greedy scheme, with the help of the additional
recovery task RCk, the reliability of task Tk is always better than R0

k regardless
different fault rate increases (i.e., different values of d in Equation 6) and the reduced
processing frequency fk of the primary task Tk. That is, when the amount of
dynamic slack is no less than the size of the next task, by dynamically
scheduling a recovery task before applying energy management, the RA-
Greedy scheme can guarantee to achieve better reliability for individual
tasks, and thus preserve system reliability.

3.2.2 Expected Energy Consumption under RA-Greedy. Recall that we assume
Ps = 0 and focus on active power in this paper. Suppose that the energy con-
sumption to execute task Tk for time ck at the maximum frequency fmax is E0

k =
(Ps + Pind + Pmax

d )ck = (Pind + Pmax
d )ck = (β + 1)Pmax

d ck. Considering the prob-
ability of RCk being executed, the expected energy consumption for processing task
Tk will be:

Ek = (Pind + Ceffm
k )S + (1− e−λ(fk)S) · E0

k

= E0
k

[
1− e−λ(fk)S +

(β + cm
k

Sm ) S
ck

1 + β

]
(9)

Intuitively, the more the available dynamic slack is allocated for energy manage-
ment, the lower the processing frequency can be for executing task Tk, and thus
more energy savings can be obtained. However, due to the limitation of the min-
imum energy efficient frequency fee, the maximum amount of dynamic slack that
should be allocated to task Tk for energy management is limited, which can be
easily calculated as ck

fee
− ck. Consider the amount of slack reserved for recovery

is ck, the maximum amount of usable dynamic slack that may be applied when
processing Tk will be USmax = ( ck

fee
− ck) + ck = ck

fee
. When more dynamic slack

ACM Transactions on Embedded Computing Systems, Vol. VV, No. NN, MMM 20YY.



10 · Dakai Zhu

than USmax is available, part of the slack will be saved for future tasks due to
energy consideration.

Moreover, with reduced processing frequency and supply voltage, the fault rate
increases and the execution of Tk takes more time, which results in higher prob-
ability of having fault(s) during the execution of Tk. Therefore the probability
of recovery task RCk being executed increases, which may overshadow the energy
savings and lead to more expected energy consumption. However, considering the
exponential component in Equation 9, it is hard to obtain a simple close formula for
the optimal amount of dynamic slack that minimizes the expected energy consump-
tion. In what follows, we present some analytical results to illustrate the relation
between the expected energy consumption, the amount of available dynamic slack
and the fault rate changes due to energy management.
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Fig. 2. The normalized expected energy consumption vs. the amount of available
dynamic slack for different frequency-independent power (i.e., β = 0.1 and 0.4).

Without loss of generality, in the analysis, we assume ck = 1 and λ0 = 10−6

(which corresponds to 100,000 FITs, failure in time in terms of errors per billion
hours of use per megabit, that is a reasonable fault rate as reported [Semiconductor
2004; Ziegler 2004]). Moreover, we assume α = 0 (i.e., Ps = 0) and m = 3. Figure 2
shows the expected energy consumption for executing task Tk, normalized to E0

k,
versus the amount of available dynamic slack under different frequency-independent
power (β) and fault rate changes (d). Notice that, one unit (ck) of dynamic slack is
reserved for the recovery task and the minimum amount of dynamic slack considered
is ck. From Section 2, for different frequency-independent power β = 0.1 and 0.4,
the corresponding energy efficient frequencies are fee = 0.37 and 0.58, which in
turn limits the maximum amount of dynamic slack used by RA-Greedy scheme
USmax = ck

fee
to be 2.70ck and 1.72ck, respectively (see the X-axis in the figure).

From the figures we can see that, for the different fault rate increases considered
(i.e., d = 2, 4 and 5), when the amount of available dynamic slack is more than
ck (= 1), the size of the next task Tk, dynamic slack is available for energy man-
agement. The expected energy consumption to execute Tk is less than E0

k and up
to 60% of energy savings is expected when β = 0.1 and d ≤ 4. As the amount of
available dynamic slack increases, more slack is available for energy management
ACM Transactions on Embedded Computing Systems, Vol. VV, No. NN, MMM 20YY.
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and the expected energy consumption for executing task Tk generally decreases.
However, when the fault rate increases dramatically with reduced processing fre-
quencies and supply voltages (e.g., d = 5), as more dynamic slack is available and
the reduced frequency approaches fee, more expected energy may be consumed
due to the increased probability of recovery task being executed. In this case, the
optimal amount of dynamic slack to minimize expected energy consumption is less
than USmax.

Notice that, when the fault rate increase is not that severe (e.g., d ≤ 4), the
maximum amount of usable dynamic slack USmax limited by fee is very close to
the optimal amount of slack that minimizes the expected energy consumption.
Considering the difficulty of finding the close formula for the optimal amount of
slack, for the simulations in Section 5, the amount of dynamic slack that will be
allocated for energy management is only limited by fee (i.e., up to USmax − ck

amount of dynamic slack will be used for energy management). Moreover, for
higher frequency-dependent active power (i.e., β = 0.4), fee increases and USmax

decreases, which results in less energy savings (note the difference in the scale of
Y-axis in Figure 2).

We have shown that the RA-Greedy scheme can achieve significant energy savings
while guaranteeing to preserve system reliability regardless the negative effects of
voltage scaling on transient fault rates. However, the amount of slack needed by
the RA-Greedy scheme may be considerable, especially for large tasks. To utilize
the slack more efficiently, instead of scheduling a whole recovery task, checkpoints
may be employed to re-compute only the faulty section for more energy savings as
well as better system reliability [Krishma and Singh 1993; Lee et al. 1999; Melhem
et al. 2004].

4. CHECKPOINTING FOR BETTER PERFORMANCE

Checkpointing techniques insert checkpoints during the execution of a task. Within
a checkpoint, the state of a system is checked and correct states are saved to a stable
storage [Pradhan 1986]. When faults are detected, the execution is rolled back to
the latest correct checkpoint and re-compute the faulty section by exploring the
temporal redundancy [Krishma and Singh 1993; Lee et al. 1999]. Checkpoints can
be uniformly or non-uniformly distributed among an application [Melhem et al.
2004]. In this work, we consider uniformly distributed checkpoints only.

For example, Figure 3a shows that there are 2 units of dynamic slack available
at time t, which is less than ck = 3, the size of the next ready task Tk. Apparently,
the RA-Greedy scheme could not use this slack and it may be wasted (e.g., if Tk

is the last task). If the overhead of employing one checkpoint is r = 0.125 and 3
checkpoints are inserted, Figure 3b illustrates the case of one recovery section being
scheduled. Here there is 0.5 units of remaining dynamic slack, which can be used to
scale down the processing of the primary task sections for energy savings as shown
in Figure 3c.

The more the checkpoints are, the smaller a task section is. Thus, less slack is
needed for recoveries. However, checkpoints also take time and consume energy.
Therefore, there is a tradeoff regarding the number of checkpoints that should
be employed to minimize the response time [Krishma and Singh 1993] or energy

ACM Transactions on Embedded Computing Systems, Vol. VV, No. NN, MMM 20YY.
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Fig. 3. Reliability-Aware Energy Management with Checkpoints.

consumption [Melhem et al. 2004]. For simplicity, we focus on the optimal number
of checkpoints that minimize the recovery overhead and explore the efficient usage
of the slack to save energy while preserving system reliability. That is, for given
amount of available slack S and the next task Tk, we study the relation
between the checkpoint overhead, the amount of energy savings and the
number of recovery sections needed to preserve system reliability.

4.1 Checkpoints with Single Recovery Section

To compensate the reliability loss due to energy management and checkpoint over-
head, at least one recovery section is needed. In this Section, we consider first the
simple case that only has a single recovery section and analyze its performance on
system reliability. When one recovery is not enough to recuperate the reliability
loss, the analysis is further generalized to multiple recovery sections in Section 4.2.

For easy discussion, we assume that the overhead of taking one checkpoint is
r = γ · ck, where ck is the WCET of the next task Tk. If n checkpoints are inserted
during the execution of Tk, the size of one recovery section will be ck

n and we have:

S ≥ n · r + (r +
ck

n
) = (nγ + γ +

1
n

)ck (10)

In order for n to have a real (non-imaginary) solution, we can easily find that the
minimum amount of slack needed due to timing constraints is Stime

min = (γ +2
√

γ)ck

with the optimal number of checkpoints being nopt =
⌊√

1
γ

⌋
or nopt =

⌈√
1
γ

⌉
.

However, considering the integer property of nopt and the energy overhead incurred
by checkpoints, the minimum amount of slack needed for energy savings Senergy

min

should be larger than Stime
min as illustrated in Section 4.2.2.

With the optimal number of checkpoints nopt and one recovery section, the
amount of available slack for energy management will be S − (nopt + 1)r − ck

nopt
,

which can be used to scale down the execution of the primary sections. Therefore,
ACM Transactions on Embedded Computing Systems, Vol. VV, No. NN, MMM 20YY.
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the reduced frequency to execute the primary sections will be

fckpt =
ck + nopt · r

S + ck − r − ck

nopt

(11)

and each primary section will take tprimary =
S+ck−r− ck

nopt

nopt
time units. From

Section 2, the fault rate at frequency fckpt will be λ(fckpt) = λ010
d(1−fckpt)

1−fmin and
the probability of having fault(s) during the execution of one primary section is
ρprimary = 1 − e−λ(fckpt)tprimary . Notice that, the recovery section is executed at
fmax and the probability of having fault(s) during the execution of the recovery

section is ρrecovery = 1 − e
−λ0(r+

ck
nopt

). Therefore, the reliability of executing task
Tk is

Rckpt
k = (1− ρprimary)nopt + nopt · ρprimary(1− ρprimary)nopt−1(1− ρrecovery)(12)

where the first part is the probability of all primary sections being executed correctly
and the second part is the probability of having fault(s) during the execution of
exactly one primary section while the recovery section being executed correctly.

From Equation 12, Rckpt
k is determined by the amount of available dynamic slack

S, checkpoint overhead r and fault rate changes d. For a given checkpoint overhead,
more dynamic slack leads to lower reduced frequency for the primary sections, which
in turn leads to higher probability of failure and lower reliability Rckpt

k . However,
due to the complexity of Equation 12, it is hard to find the close formula for S
to ensure Rckpt

k ≥ R0
k and we illustrate the relation between S and Rckpt

k in the
following analysis.

Figure 4 shows the normalized probability of failure, 1−Rckpt
k

1−R0
k

, when executing
task Tk with different amount of available dynamic slack under different checkpoint
overheads. Here, we limit the analysis to the case of S < ck since the RA-Greedy
scheme can guarantee system reliability when S > ck. The same as before, we
assume m = 3, λ0 = 10−6 and ck = 1. Moreover, β is assumed to be 0.1 and we
have fee = 0.37. Therefore, for a given checkpoint overhead r = γck, the amount
of dynamic slack considered will be in the range of Stime

min (= γ + 2
√

γ) and 1.
From the figure, we can see that, with one recovery section, the normalized

probability of failure to execute task Tk is lower than 1 most of the time. The
exception comes from the case where the checkpoint overhead is low (i.e., γ = 0.01;
see Figure 4a) which leaves more slack for energy management and the reduced
frequency is close to fee. With the exponent of fault rate model being d = 5, the
fault rate at fee is 105 time higher than λ0 = 10−6 and leads to worse than R0

k

reliability. However, with moderate fault rate increase (e.g., d ≤ 4), for the cases
we considered, checkpoints with one recovery section could obtain higher reliability
when executing task Tk.

Moreover, the faster the fault rate increases (i.e., larger values of d) with reduced
frequencies and supply voltages, the higher the probability of failure and the lower
the reliability. Assuming constant fault rate (e.g., d = 0) is too optimistic and could
lead to lower reliability than expected when exploring slack for energy management,
which is the same observation as our previous results [Zhu et al. 2004].

From the above analysis, we can see that checkpointing with single recovery
ACM Transactions on Embedded Computing Systems, Vol. VV, No. NN, MMM 20YY.
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Fig. 4. The normalized probability of failure vs. the amount of available dynamic
slack for different checkpoint overhead (i.e., γ = 0.01, 0.05 and 0.10).

section may not be enough to compensate the reliability loss due to energy man-
agement. In the next Section, we consider to exploit multiple recovery sections
to enhance reliability, especially for the case of more slack being available (e.g.,
S > ck).

4.2 Checkpoints with Multiple Recovery Sections

Suppose that b (≥ 1) recovery sections are needed/scheduled to preserve system
reliability. Equation 10 can be generalized as:

S ≥ n · r + b · (r +
ck

n
) =

(
(n + b)γ +

b

n

)
ck (13)

With the optimal number of checkpoints nb,opt (i.e.,
⌊√

b
γ

⌋
or

⌈√
b
γ

⌉
), the minimum

amount of slack needed due to timing constraints can be found as Stime
b,min = (b · γ +

2
√

b · γ)ck. When more slack is available, the remaining slack S − nb,opt · r − b(r +
ck

nb,opt
) (if any) can be used by energy management schemes to scale down the

execution of the primary sections for energy savings. The reduced frequency to
execute the primary sections will be

fb,ckpt =
ck + nb,opt · r

ck + S − b(r + ck

nb,opt
)

(14)
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4.2.1 Reliability for Multiple Recovery Sections. From Equation 14, each pri-

mary section will take tb,primary =
ck+S−b(r+

ck
nopt

)

nopt
time units. Considering that

the fault rate at frequency fb,ckpt is λ(fb,ckpt) = λ010
d(1−fb,ckpt)

1−fmin (see Section 2),
the probability of having fault(s) during the execution of one primary section is
ρb,primary = 1 − e−λ(fb,ckpt)tb,primary . Notice that, the recovery sections are exe-
cuted at fmax and the probability of having fault(s) during the execution of one

recovery section is ρb,recovery = 1− e
−λ0(r+

ck
nb,opt

)
.

With b recovery sections, the reliability Rk(b) of task Tk will be the summation of
the probability of all primary sections being executed correctly and the probability
of having any x (x = 1, . . . , b) faulty primary sections while there are x recovery
sections being executed correctly. Notice that, the recovery sections are activated
one at a time when they are needed. For example, to recover x faulty primary
sections, if there is no faults during the execution of the first x recovery sections,
it is not necessary to invoke the remaining recovery sections. Otherwise, the next
recovery section is activated and so on, until there are x recovery sections are
correctly executed. Therefore, we have

Rk(b) =

b∑
x=0

[(nb,opt
x

)
· (1− ρb,primary)nb,opt−x · ρx

b,primary · Pr(b, x, ρb,recovery)
]
(15)

where
(nb,opt
x

)
is the number of combinations of having x faulty sections in the nb,opt

primary sections. Pr(b, x, ρb,recovery) is the probability of x faulty primary sections
being successfully recovered by the b recovery sections. Notice that, when x = 0, no
faulty primary section needs to be recovered and there is Pr(b, 0, ρb,recovery) = 1.
Therefore, we have

Pr(b, x, ρb,recovery) =
{

1 x = 0
(1− ρb,recovery)x−1(1− ρb−x+1

b,recovery) x ≥ 1 (16)

From Equations 14, 15 and 16, clearly it is not practical to seek the close formula for
the minimum number of recovery sections needed to ensure Rk(b) ≥ R0

k. In what
follows, we show some analysis results regarding the number of recovery sections
employed and the reliability achieved versus the amount of available slack.

Notice that, the reduced frequency fckpt is limited by the energy efficient fre-
quency fee. From Equation 14, we can find that the maximum amount of slack can
be used to processing Tk to be

USmax
b,ckpt =

(
1 + nb,opt · γ

fee
+ b

(
γ +

1
nb,opt

)
− 1

)
ck (17)

Figure 5 shows the normalized probability of failure, 1−Rckpt
k

1−R0
k

, for different num-
bers of recovery sections. Here, the same parameters as in last Section are used and
the checkpoint overhead is assumed to be γ = 0.05. From the figures, we can see
that, as the number of recovery sections increases, the minimum amount of slack
needed increases, which is close to ck when three recovery sections (i.e., b = 3)
are scheduled (Figure 5b). Moreover, as the amount of slack increases, more slack
is available for energy management which leads to lower processing frequencies,
higher fault rates and thus lower levels of reliability achieved, which is the same
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Fig. 5. The normalized probability of failure vs. the amount of available dynamic
slack.

observation as in Section 4.1.
For the case of low fault rate increase (e.g., d ≤ 2), when there are three recovery

sections (Figure 5b), the normalized probability of failure is less than 10−7 and is
not shown in the figures, which is the same for d = 0 and b = 2 in Figure 5a. When
the fault rate increase is high (e.g., d = 5), even three recovery sections cannot
guarantee R0

k (i.e., the normalized probability of failure is larger than 1). However,
as shown in next Section, for the cases where R0

k is preserved, compared with the
RA-Greedy scheme, checkpointing will result in smaller recovery sections, and more
energy savings may be expected.

4.2.2 Expected Energy Consumption with Checkpoints. With reduced frequency
fb,ckpt (see Equation 14), the energy consumption for executing one primary section

is Eprimary =
(
β +

(
fb,ckpt

fmax

)m)
Pmax

d · tb,primary. Recall that recovery sections are
executed (if needed) at the maximum frequency fmax. The energy consumption for
executing one recovery section will be Erecovery = (γ + 1

nb,opt
)E0

k, where E0
k is the

energy consumption to execute task Tk for time ck at fmax.
Notice that, for the qth recovery section (q = 1, . . . , b), it will not be invoked if

the number of faulty primary sections x is less than q (i.e., 0 ≤ x < q) and the
first (q− 1) recovery sections successfully recover all the x faulty primary sections.
From previous discussion, when there are x (0 ≤ x < q) faulty primary sections,
the probability of these faulty primary sections being successfully recovered by the
first (q − 1) recovery sections can be given by Pr(q − 1, x, ρb,recovery). Therefore,
considering the probability of each recovery section being executed, the expected
energy consumption for executing task Tk will be

Eb,ckpt
k = nopt · Eprimary +

b∑
q=1

(Prq · Erecovery) (18)

where the first part is always consumed and is the energy for executing the primary
sections (including the checkpoints), and the second part is the expected energy
consumption for executing the recovery sections. Prq is the probability of the qth
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recovery section being invoked, which is given as

Prq = 1−
q−1∑
x=0

[(nb,opt
x

)
(1− ρb,primary)nb,opt−x · ρx

b,primary · Pr(q − 1, x, ρb,recovery)
]

(19)

Due to the overhead of checkpoints, in order to obtain energy savings (i.e.,
Eckpt

k < E0
k), there is a minimum amount of dynamic slack Senergy

min needed for
energy management. Again, due to the complexity of Equation 18, it is hard to
get the close formula for Senergy

min and we illustrate the relation between Senergy
min and

checkpoint overhead γ in the following analysis.
Corresponding to the reliability analysis with one recovery section in Section 4.1,

Figure 6abc show the normalized expected energy consumption, E1,ckpt
k

E0
k

, for different
checkpoint overheads with the amount of slack being limited by ck. For different
fault rate changes (i.e., different values of d), due to the low probability of recovery
section being executed (lower than 10−5 even when d = 5), the expected energy
consumption is almost the same for a given checkpoint overhead and amount of
available dynamic slack. Therefore, we only show the normalized expected energy
consumption for the worst case of d = 5.

From the figures, we can see that, although it is feasible to employ checkpoints
when the amount of dynamic slack is larger than Stime

min , due to the energy overhead
of checkpoints, no energy savings could be obtained until the amount of slack is
more than Senergy

min . The smaller the checkpoint overhead, the lower the value of
Senergy

min and the more energy savings could be obtained for a given amount of
dynamic slack. When the checkpoint overhead is large (e.g., γ = 0.1, Figure 6c),
almost no energy savings could be obtained for the case considered.

Figure 6def further show the normalized energy consumption for multiple recov-
ery sections considering the extended range of available slack. For comparison, the
normalized energy consumption for the RA-Greedy scheme is also shown in the fig-
ure. Notice that, the ranges of the amount of slack could be exploited are different
for different numbers of recovery sections being employed. From the figure, we can
see that, when more than one recovery sections are employed, checkpointing with
recoveries consume more energy than the RA-Greedy scheme, except for the case
where overhead is small (e.g., γ = 0.01 in Figure 6d). When checkpoint overhead
is relatively large (e.g., γ ≥ 0.05), checkpointing scheme should not be exploited
when the RA-Greedy scheme is applicable (i.e., when S > ck).

Considering both reliability (Section 4.2.1) and energy savings (Section 4.2.2),
checkpointing should not be employed when the checkpoint overhead is relatively
large (e.g., γ ≥ 0.05). No more than one recovery section may be employed even
when checkpoint overhead is relatively small (e.g., γ = 0.01). Moreover, although
more energy savings could be obtained by checkpointing compared with the RA-
Greedy scheme, limitation may exist on the amount of employed slack due to reli-
ability consideration, especially for the case where the fault rate increases dramat-
ically with reduced frequencies and supply voltages (e.g., d = 5).

We have analyzed the performance of the reliability-aware energy management
schemes for a single task. In what follows, to illustrate the merits of our proposed
schemes and see how they perform for overall system reliability and energy savings,
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Fig. 6. The normalized expected energy consumption under different amount of
available dynamic slack.

we present simulation results for dependable real-time applications that consist of a
set of aperiodic tasks. We compare the energy savings as well as system reliability
of the new proposed schemes with ordinary energy management schemes.

5. SIMULATION RESULTS AND DISCUSSION

In the simulations, we consider four different schemes: a) no power management
(NPM), which is used as the baseline for comparison; b) ordinary greedy power
management (Greedy), which allocates all available dynamic slack for next ready
task to save energy without considering system reliability; c) reliability-aware greedy
ACM Transactions on Embedded Computing Systems, Vol. VV, No. NN, MMM 20YY.



Reliability-Aware Dynamic Energy Management in Dependable Embedded Systems · 19

power management (RA-Greedy), which dynamically allocates a recovery for the
next ready task before applying greedy power management. When the amount of
available dynamic slack is less than the size of next ready task, the slack is not used
and saved for future tasks; d) reliability-aware power management with checkpoints
(Ckpt), which is the same as RA-Greedy except that checkpoints are employed when
the amount of available dynamic slack is less than the size of next ready task. As
discussed in last Section, only one recovery section is considered in the simulations.

For the system parameters, as discussed in Section 2, we use normalized frequency
with fmax = 1 and assume frequency can be changed continuously. Moreover,
corresponding to the analysis in Section 3 and 4, we assume α = 0, β = 0.1 and
m = 3. That is, we assume the working system is always on and focus on system
active power. For the effects of different values of α and β on energy management,
see [Zhu et al. 2004; Zhu et al. 2005] for more discussions. The same as in Section 3,
we assume that faults follow a Poisson distribution with an average fault rate as
λ0 = 10−6 at fmax (and corresponding Vmax). We vary the values of d (as 0, 2 and
5 respectively) for different changes in fault rates due to the effects of frequency and
voltage scaling [Ernst et al. 2004]. An application fails if any task in the application
fails and there is no recovery or both the task and its recovery fail.

The number of tasks in an application is randomly generated between 5 and 20,
where the WCETs of tasks are uniformly distributed in the range of 1 and 10.
When every task in an application uses its WCET, we assume that the application
finishes just in time and the system reliability is satisfactory. To emulate the run-
time behaviors of tasks, a parameter σ is used as an application-wide average over
worst execution time, which also indicates the amount of dynamic slack available on
average during execution. Smaller values of σ imply more dynamic slack. The value
of σi for task Ti in the application is generated from a uniform distribution with
an average value of σ. The actual execution time of Ti follows a similar uniform
distribution with an average value of σi · ci, where ci is the WCET of task Ti. For
each result point in the graphs, 100 task sets are generated and each task set is
executed 100, 000 times, and the result is the average of all the runs.

5.1 Performance of RA-Greedy

First, we compare the performance of Greedy and RA-Greedy on reliability and
energy consumption. For different fault rate increases, Figure 7abc show the prob-
ability of failure when executing the applications with different average system loads
(i.e., different amounts of dynamic slack).

Notice that, NPM executes every task at the maximum frequency fmax and the
fault rate is always λ0 = 10−6. From the figures, we can see that for a given average
system load, the probability of failure under NPM is roughly the same, which is not
affected by the different fault rate changes (i.e., different values of d). When the
average system load increases, the applications run longer and the probability of
failure under NPM increases linearly. Note the log scale of Y-axis in Figure 7abc.

From the figure, it can be seen that the Greedy scheme results in higher proba-
bility of failure than NPM even when d = 0 (i.e., constant fault rate), which comes
from the extended execution of tasks due to energy management. When fault rate
increases with reduced frequencies and supply voltages (i.e., d > 0), the probability
of failure under Greedy scheme increases exponentially as d increases. For example,
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Fig. 7. The probability of failure and normalized expected energy consumption
under different average system loads.

when d = 5, Greedy scheme almost always leads to system failure (with probability
of failure close to 1), especially for the case of low average system loads where more
dynamic slack exists. When the average system load increases, the probability of
failure under Greedy scheme increases first and then decreases, the reason is be-
cause of the limitation of fee = 0.37. When the average system load is extremely
low (e.g., σ < 20%), tasks in an application always run at fee and the probability
of failure mainly depends on the execution time, which increases as average system
load increases. However, as average system load continues to increase, less slack
is available and tasks need to run at higher frequencies than fee, which has lower
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fault rates and thus leads to lower probability of failure. Moreover, from the figures,
we can also see that RA-Greedy scheme always has a lower probability of failure
(i.e., higher system reliability) than NPM regardless the fault rate changes, which
coincides with the analysis in Section 3.2.1.

Figure 7def further show the corresponding normalized energy consumption for
Greedy and RA-Greedy schemes with the one consumed by NPM as a baseline. As
Greedy scheme does not consider system reliability when reclaiming dynamic slack
for energy savings, the normalized energy consumption for Greedy scheme only de-
pends on the average system load and is roughly the same for different fault rate
changes. For RA-Greedy scheme, by providing an additional recovery for main-
taining system reliability, it consumes from 10% to 20% more energy than Greedy
scheme when the fault rate only increases moderately with reduced frequencies and
supply voltages (i.e., d ≤ 2). However, when the fault rate increases dramatically
(e.g., d = 5), the probability of failure for the primary scaled-down execution is
close to 1 when the average system load is low (see Figure 7c) and the recovery
task is almost always executed, which leads to higher energy consumption than
NPM (Figure 7f). Therefore, when the fault rate increases dramatically with re-
duced frequencies and supply voltages, it will be more energy efficient to use less
dynamic slack for energy management to keep the fault rate at a reasonable level.

5.2 Effects of Checkpoints

Considering the checkpoint overhead could be very small [Quaglia and Santoro
2003], we use r = 0.01, 0.05, 0.1, which corresponds to Ckpt-0.01, Ckpt-0.05 and
Ckpt-0.10 in the following figures, respectively. Recall that the size of tasks is in
the range of [1, 10] inclusively, which leads to the average γ = 0.002, 0.01 and 0.02,
smaller than the ones we used in the analysis in Section 4.

Figure 8abc show the probability of failure for the schemes of RA-Greedy and
Ckpt with different checkpoint overheads. From the figure, when the fault rate
increase is moderate (i.e., d ≤ 2), Ckpt achieves slightly better system reliability
(lower probability of failure) by providing an additional recovery when the amount
of available dynamic slack is less than the size of the next ready task. When
the checkpoint overhead is smaller, Ckpt has more chances to use the dynamic
slack and generally gets better system reliability. However, when the fault rate
increase is high (e.g., d = 5), the additional recovery is almost always executed and
overall probability of failure increases due to the execution overhead of checkpoints.
Smaller checkpoint overhead leads to higher probability of using checkpoints and
thus results in higher probability of failure.

Figure 8def further show the corresponding normalized energy consumption for
RA-Greedy and Ckpt with different checkpoint overheads. With additional chances
for energy management, Ckpt with smaller checkpoint overhead consumes less en-
ergy, and all of them is less than the one consumed by RA-Greedy. The same reason
as before, due to the limitation of fee and higher failure rates, the normalized en-
ergy consumption decreases first and then increases as the average system load
increases. All schemes consumes more energy than NPM when d = 5 and σ ≤ 10%.
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Fig. 8. The probability of failure and normalized expected energy consumption
with checkpoints.

6. CLOSELY RELATED WORK

Using the primary/backup recovery model, Unsal et al. proposed to postpone the
execution of backup tasks to minimize the overlap of primary and backup execution
and thus the energy consumption [Unsal et al. 2002]. The optimal number of
checkpoints, evenly or unevenly distributed, to achieve minimal energy consumption
while tolerating one transient fault was explored by Melhem et al. in [Melhem et al.
2004]. Elnozahy et al. proposed an Optimistic TMR (OTMR) scheme that reduces
the energy consumption for traditional TMR systems by allowing one processing
unit to slow down provided that it can catch up and finish the computation before
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the application deadline [Elnozahy et al. 2002]. The optimal frequency settings for
OTMR was further explored in [Zhu et al. 2004]. Assuming a Poisson fault model,
Zhang et al. proposed an adaptive checkpointing scheme that dynamically adjusts
checkpoint intervals for energy savings while tolerating a fixed number of faults for
a single task [Zhang and Chakrabarty 2003]. The work is further extended to a set
of periodic tasks [Zhang et al. 2003], and moreover, faults within checkpoints are
also considered [Zhang and Chakrabarty 2004].

Most of the previous research either focused on tolerating fixed number of faults
[Elnozahy et al. 2002; Melhem et al. 2004] or assumed constant fault rate [Zhang
and Chakrabarty 2003; 2004; Zhu et al. 2004] when applying frequency and voltage
scaling for energy savings. The relation between fault rate and voltage scaling was
explored and hardware error detection and correction schemes have been proposed
[Ernst et al. 2004]. An exponential fault rate model with voltage scaling is proposed
in [Zhu et al. 2004] and the combination of information (in hardware) and temporal
redundancy is explored for preserving reliability and energy savings [Ejlali et al.
2005]. The work reported in this paper is different from all previous work in that
we address the system reliability problem when exploring dynamic slack for energy
savings, while explicitly taking the effects of energy management on fault rates into
consideration.

7. CONCLUSIONS

As fault rates generally increase with reduced supply voltages, energy management
exploring slack time through voltage scaling will reduce system reliability, which is
undesirable, especially for mission critical applications (e.g., satellite and surveil-
lance systems), where system reliability is as important as (or even more important
than) energy consumption. Considering the effects of voltage scaling on fault rates,
we propose reliability-aware dynamic energy management schemes that preserve
system reliability while exploring dynamic slack for energy savings.

By scheduling an additional recovery task before reclaiming dynamic slack for
energy management, the proposed reliability-aware energy management scheme
ensures that the system reliability achieved is higher than the case when there
is no power management. Checkpointing techniques are further explored to more
efficiently use the dynamic slack especially for the case where the slack is not enough
to schedule a recovery for a whole task. The performance of the proposed schemes is
analyzed and evaluated through simulations for both system reliability and energy
savings. The results show that, the proposed schemes can achieve comparable
energy savings as ordinary energy management schemes while preserving system
reliability. For checkpointing techniques, no more than one recovery section may be
exploited for energy efficiency, especially when the checkpoint overhead is large. The
ordinary energy management schemes that ignore the effects of energy management
on fault rates are too optimistic and could lead to drastically decreased system
reliability.
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