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Abstract

The high power consumption of modern processors becomes a major concern because it leads to

decreased mission duration (for battery-operated systems), increased heat dissipation and decreased reli-

ability. While many techniques have been proposed to reduce power consumption for uniprocessor sys-

tems, there has been considerably less work on multi-processor systems. In this paper, based on the con-

cept ofslack sharingamong processors, we propose two novel power-aware scheduling algorithms for

task sets with and without precedence constraints executing on multi-processor systems. These schedul-

ing techniques reclaim the time unused by a task to reduce the execution speed of future tasks, and thus

reduce the total energy consumption of the system. We also study the effect of discrete voltage/speed

levels on the energy savings for multi-processor systems and propose a new scheme ofslack reservation

to incorporate voltage/speed adjustment overhead in the scheduling algorithms. Simulation and trace

based results indicate that our algorithms achieve substantial energy savings on systems with variable

voltage processors. Moreover, processors with a few discrete voltage/speed levels obtain nearly the same

energy savings as processors with continuous voltage/speed, and the effect of voltage/speed adjustment

overhead on the energy savings is relatively small.

Index Terms: Real-Time Systems; Multi-Processor; Scheduling; Slack Sharing.

1 Introduction

In recent years, processor performance has increased at the expense of drastically increased power consump-

tion [15]. On the one hand, such increased power consumption decreases the lifetime of battery operated

systems, such as hand-held mobile systems or remote solar explorers. On the other hand, increased power

consumption generates more heat, which causes heat dissipation to be a problem since it requires more ex-

pensive packaging and cooling technology and decreases reliability, especially for systems that have many
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processors.

To reduce processor power consumption, many hardware techniques have been proposed, such as shutting

down unused parts or reducing the power level of non-fully utilized functional units [4, 7]. Processors

that have multiple supply voltages (i.e., multiple power levels) have become available in recent years [16],

making power management at the processor level possible. Using this feature, several software techniques

have been proposed to adjust the supply voltage, especially for mobile or uniprocessor systems [1, 2, 6,

14, 17, 18, 20, 26]. However, much less work has been done for real-time multiprocessing applications

[13, 24, 25], such as parallel signal processing, automated target recognition (ATR) and real-time MPEG

encoding. For satellite-based parallel signal processing, the satellite may have multiple processing units and

need to process the signals on-board in real-time [24]. ATR uses multiple processors to detect targets by

comparing regions of interest (ROI) to templates in parallel. For mobile military systems (e.g., missiles),

ATR is widely used and usually requires real-time processing [23]. Since such systems are battery operated,

their power consumption needs to be managed to achieve maximum duration for minimal energy. For

the applications of cable television and video conferencing,real-timeperformance of MPEG encoding is

necessary and many processing units may be used to achieve real-time performance [12]. For such systems,

power management can reduce energy consumption and associated costs.

In multi-processor real-time systems, power management that adjusts processor voltage/speed changes

task execution time, which affects the scheduling of tasks on processors. This change may cause a violation

of the timing requirements. This paper describes novel techniques that dynamically adjust processor volt-

age/speed while still meeting timing requirements. We propose scheduling algorithms that useshared slack

reclamationon variable voltage/speed processors for task sets without precedence constraints (independent

tasks) and task sets with precedence constraints (dependent tasks). All the algorithms are proven to meet

timing constraints. We also discuss how to incorporate discrete voltage/speed levels into the algorithms, and

propose a scheme to incorporate voltage/speed adjustment overheads into the scheduling algorithms with

slack reservation. Simulation and trace (from real applications) based results show that our techniques save

substantial energy compared to static power management.

1.1 Related Work

For uniprocessor systems, Yao et al. describe an optimal preemptive scheduling algorithm for independent

tasks running with variable speed [26]. When deciding processor speed and supply voltage, Ishihara and

Yasuura consider the requirement of completing a set of tasks within a fixed interval and the different switch

activities for each task [17]. By assigning lower voltage to the tasks with more switch activities and higher
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voltage to the tasks with less switch activities, their scheme can reduce energy consumption by 70%. Lee et

al. proposed a power-aware scheduling technique using slack reclamation, but only in the context of systems

with two voltage levels [18]. Hsu et al. described a performance model to determine a processor slow down

factor under compiler control [14]. Based on the super-scalar architecture with similar power dissipation

as the Transmeta Crusoe TM5400, their simulation results show the potential of their technique. Mossé et

al. proposed and analyzed several techniques to dynamically adjust processor speed with slack reclamation

[20]. The best scheme is the adaptive one that takes an aggressive approach while providing safeguards

that avoid violating application deadlines [2]. For periodic tasks executing on uniprocessor systems, a few

voltage/speed levels are sufficient to achieve the same energy saving as infinite voltage/speed levels [6].

AbouGhazaleh et al. have studied the effect of dynamic voltage/speed adjustment overhead on choosing the

granularity of inserting power management points in a program [1].

For multiprocessor systems with fixed applications and predictable execution time, static power manage-

ment (SPM) can be accomplished by deciding beforehand the best supply voltage/speed for each processor.

Based on the idea of SPM, Gruian proposed two system-level designs for architectures with variable voltage

processors. The simulation results show that both approaches can save 50% of the energy when the deadline

is relaxed by 50% [13]. For system-on-chip designs with two processors running at two different fixed volt-

age levels, Yang et al. proposed a two-phase scheduling scheme that minimizes energy consumption under

the time constraints by choosing different scheduling options determined at compile time [25]. Using the

power aware multiprocessor architecture (PAMA), Shriver et al. proposed a power management scheme for

satellite-based parallel signal processing based on different rate of the signals [24]. The work reported in

this paper focused ondynamicpower management for shared memory multi-processor systems, which is

different from static power management [13], the selection of pre-determined scheduling options [25] and

the master-slave architecture used in [24].

This paper is organized as follows. The task model, energy model and power management schemes are

described in Section 2. Power-aware scheduling with dynamic processor voltage/speed adjustment using

shared slack reclamation for independent tasks is addressed in Section 3. In Section 4, the algorithm for

dependent tasks is proposed and proven to meet the timing requirements. Section 5 discusses how to incor-

porate voltage/speed adjustment overhead and discrete voltage/speed levels into the scheduling algorithms.

Simulation and trace-based results are given and analyzed in Section 6 and Section 7 concludes the paper.
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2 Models and Power Management

2.1 Energy Model

For processors based on CMOS technology, the power consumption is dominated by dynamic power dis-

sipationPd, which is given by:Pd = Cef · V 2
dd · S, whereVdd is the supply voltage,Cef is the effective

switched capacitance andS is the processor clock frequency, that is the processor speed. Processor speed

is almost linearly related to the supply voltage:S = k · (Vdd−Vt)2

Vdd
, wherek is constant andVt is the thresh-

old voltage [4, 7]. Thus,Pd is almost cubically related toS: Pd ≈ Cef · S3

k2 . Since the time needed for

a specific task is:time = C
S , whereC is the number of cycles to execute the task, the energy consump-

tion of the task,E, is E = Pd · time ≈ C · Cef · S2

k2 . When decreasing processor speed, we can also

reduce the supply voltage. This reduces processor power cubically and energy quadratically at the expense

of linearly increasing the task’s latency. For example, consider a task that, with maximum speedSmax,

needs20 time units to finish execution. If we have40 time units allocated to this task, we can reduce the

processor speed and supply voltage by half while still finishing the task on time. The new power when

executing the task would be:P ′
d = Cef · (Vdd

2 )2 · Smax
2 = 1

8 ·Pd and the new energy consumption would be:

E′ = P ′
d · 40 = Cef · (Vdd

2 )2 · Smax
2 · 40 = 1

4 ·Cef · V 2
dd · Smax · 20 = 1

4 ·E, wherePd is the power andE is

the energy consumption with maximum processor speed.

2.2 Task Model

We assume a frame based real-time system in which a frame of lengthD is executed repeatedly [19]. A set

of tasksΓ = {T1, . . . , Tn} is to execute within each frame and is to complete before the end of the frame.

The precedence constraints among the tasks inΓ are represented by a graphG. Because of the schedule’s

periodicity, we consider only the problem of schedulingΓ in a single frame with deadlineD.

We assume a multi-processor system withN homogeneous processors sharing a common memory. Our

goal is to develop a scheduling algorithm that minimizes energy consumption for all tasks while still meeting

the deadline. In specifying the execution of a taskTi, we use the tuple(c′i, a
′
i), wherec′i is the estimated

worst case execution time (WCET) anda′i is the actual execution time (AET). Both are based on maximal

processor speed. We assume that for a taskTi, the value ofc′i is known before execution, whilea′i is

determined at run time. The precedence constraints are represented byG = {Γ, E}, whereE is a set of

edges. There is an edge,Ti → Tj ∈ E, if and only if Ti is a direct predecessor ofTj , which means thatTj

will be readyto execute only afterTi finishes execution.
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2.3 Power Management Schemes

First, we consider the worst case scenario in which all tasks use their worst case execution time (referred

to ascanonical execution). In this case, if the tasks finish well beforeD at the maximal processor speed,

Smax, we can reduce the processor’s supply voltage and speed to finish the tasksjust-in-time, and thus reduce

energy consumption. The basic idea of static power management is to calculate beforehand the minimum

processor speed that will ensure that the canonical execution of tasks finishes just-in-time. The tasks are then

run with reduced supply voltage and speed to save energy [2, 13, 20]. In this paper, the minimal processor

speed to ensure that all tasks finish just-in-time is referred to asSjit.

In addition to static power management, we may reduce energy further by using dynamic voltage and

speed adjustment. To simplify the discussion, we assume that the processor supply voltage and speed are

always adjusted together, by setting the maximum speed under certain supply voltage. Since tasks exhibit

a large variation in actual execution time, and in many cases, only consume a small fraction of their worst

case execution time [11], any unused time can be considered asslackand can be reused by the remaining

tasks to run slower while still finishing beforeD [2, 20]. In this case, power and energy consumption is

reduced.

To get maximal energy savings, we combine static power management and dynamic voltage/speed adjust-

ment. In the following algorithms, we assume that canonical execution is first checked to see whether a task

set can finish beforeD or not. If not, the task set is rejected; otherwise,Sjit is calculated and used so that

the canonical execution will finish at timeD. Our algorithms then apply dynamic voltage/speed adjustment.

In the rest of the paper, we normalize the worst case execution time and the actual case execution time of

taskTi such that,ci = c′i · Smax
Sjit

andai = a′i · Smax
Sjit

. TaskTi will be characterized by(ci, ai).

Initially, to simplify the problem and our discussion, we assume that the processor supply voltage and

frequency can be changed continuously, and ignore the overhead of voltage/speed adjustment. In Section 5,

we discuss the effect of discrete speeds and overhead.

3 Power-Aware Scheduling for Independent Tasks

Without precedence constraints, all tasks are available at time0 and are ready to execute. There are two

major strategies to scheduling independent tasks in multi-processor systems:globalandpartition scheduling

[10]. In global scheduling, all tasks are in a global queue and each processor selects from the queue the task

with the highest priority for execution. In partition scheduling, each task is assigned to a specific processor

and each processor fetches tasks for execution from its own queue. In this paper, we consider only the
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non-preemptive scheduling scheme; that is, a task willrun-to-completionwhenever it begins to execute.

In global scheduling, the task priority assignment affectswhich task goeswhere, the workload of each

processor, and the total time needed to finish the execution of all tasks. In general, the optimal solution of

assigning task priority to get minimal execution time is NP-hard [10]. Furthermore, we show in Section 3.3

that the priority assignment that minimizes execution time may not lead to minimal energy consumption.

Expecting that longer tasks generate more dynamic slack during execution, in this paper, we use the longest

task first heuristic (LTF, based on the task’s WCET) when determining task’s priority. The difference be-

tween the total execution time using optimal priority assignment and that using longest task first priority

assignment is small. Given a specific priority assignment, tasks are inserted into the global queue in the

order of their priority, with the highest priority task at the front. For the examples, we number the tasks by

their order in the global queue when using longest task first priority assignment. That is, thekth task in the

global queue is identified asTk.

To emphasize the importance of task priority on scheduling, we consider one simple example of a task

set executing on a dual-processor system as shown in Figure 1. Here,Γ = {T1(10, 7), T2(8, 4), T3(6, 6),

T4(6, 6), T5(6, 6)} andD = 20. In the figures, the X-axis represents time, the Y-axis represents processor

speed (in cycles per time unit), and the area of the task box defines the number of CPU cycles needed to

execute the task. Considering the canonical execution, from Figure 1(a) we see that the longest task first

priority assignment meets the deadlineD. But the optimal priority assignment in (b) results in less time. It

is easy to see that some order, such asT3 → T4 → T5 → T2 → T1, will miss the deadline.

Queue T 4T3
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T T T

T

2 3

4

5

20

1P

Time

1T 2T 5T

2P

T T T T T1 3 4 52

20 Time

T T

T T T

1 2

3 4 5

a. LTF priority assignment b. Optimal priority assignment

0 0

Figure 1: Global Scheduling for 2-Processor Systems

In what follows, we first extend thegreedy slack reclamationscheme [20] to global scheduling, and we

show that this scheme may fail to meet the deadline. Then we propose a novel slack reclamation scheme for

global scheduling:shared slack reclamation.
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3.1 Global Scheduling with Greedy Slack Reclamation

This scheme is an extension of the dynamic power management scheme for uniprocessor systems from

Mosśe et al. [20]. In the scheme of greedy slack reclamation, any slack on one processor is used to reduce

the speed of the next task running on this processor.
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b. Actual execution with NPMa. Canonical Execution

Figure 2: Global Scheduling with No Power Management
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Figure 3: Global Scheduling with Greedy Slack Reclamation

Consider a task set:Γ = {T1(5, 2), T2(4, 4), T3(3, 3), T4(2, 2), T5(2, 2), T6(2, 2)} andD = 9. Figure

2 (a) shows that the canonical execution can meet the deadlineD. Figure 2 (b) shows that, with no power

management and slack reclamation, actual execution can finish beforeD. Figure 3 (a) shows that in actual

execution,T1 finishes at time2 with a slack of3 time units. With greedy slack reclamation, this slack is

given to the next taskT3 that runs onP1. Thus,T3 will execute in6 units of time and the processor speed is

reduced to36 ·Sjit accordingly. WhenT3 uses up its time,T6 misses the deadlineD as shown in Figure 3 (b).

Hence, even when canonical execution finishes beforeD, global scheduling with greedy slack reclamation

cannot guarantee that all tasks finish beforeD.

3.2 Global Scheduling with Shared Slack Reclamation (GSSR)

For the example in Section 3.1, greedy slack reclamation gives all of the slack toT3. This means thatT3

can start execution at time2 at a speed of36 · Sjit with 6 time units and finish execution at time8. There

is only 1 time unit left forT6 which misses the deadline at time unit9. In this case, it would be better to
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Figure 4: Global Scheduling with Shared Slack Reclamation

sharethe3 units of slack by splitting it into two parts; i.e., give2 units toT3, and1 unit to T4. With slack

sharing, T3 starts at time2, executes for5 time units at the speed of35 · Sjit and ends at time7. T4 starts at

time 4, executes for3 time units at the speed of23 · Sjit and ends at time7. Thus, bothT5 andT6 meet the

deadline. Figures 4 (a) and (b) demonstrate the operations of this scheme. WhenP1 finishesT1 at time2, it

finds that it has3 units of slack. But only2 of these time units are beforeP2’s expected finish time based on

T2’s WCET. After fetchingT3, P1 gives2 units (the amount of slack beforeP2’s expected finish time) toT3

and shares the remaining slack withP2.

From a different point of view, sharing the slack may be looked at asT1 being allocated 4 time units on

P1 instead of 5, withT2 being allocated 5 time units onP2 instead of 4. HereT1 has 2 units of slack and

T2 has 1 unit of slack. So, in some sense, the situation is similar toT1 being assigned toP2 andT2 being

assigned toP1, and all the tasks that are assigned toP1 in canonical execution will now be assigned toP2

and visa versa.

3.2.1 GSSR forN (≥ 2) Processor Systems (GSSR-N)

Following the idea described above, we propose the GSSR algorithm for N-processor systems. Before

formally presenting the algorithm, we define theestimated end time (EET)for a task executing on a processor

as the time at which the task is expected to finish execution if it consumes all of the time allocated for it.

Thestart time of the next task (STNT)for a processor is the time at which the next task is estimated to begin

execution on that processor. If no more tasks will execute on that processor within the current frame, the

STNT is defined as the finish time of the last task that executed on that processor.

The GSSR-N algorithm is presented in Algorithm 1. Each processor invokes the algorithm at the begin-

ning of execution or when a processor finishes executing a task. A shared memory holds control informa-

tion, which must be updated within a critical section (not shown in the algorithm). The shared memory has

a common queue,Ready-Q, which contains allreadytasks and an array to recordSTNTp for processorPp

(p = 1, . . . , N). Initially, all tasks are put intoReady-Qin the order of their priorities, and theSTNTs of
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Algorithm 1 The GSSR-N algorithm invoked byPid

1: while (1) do
2: if (Ready-Q6= ∅) then
3: Tk = Dequeue(Ready-Q);
4: FindPr such that:

STNTr = min{STNT1, . . . , STNTn};
5: if (STNTid > STNTr) then
6: STNTid ↔ STNTr;
7: end if
8: EETk = STNTid + ck;
9: STNTid = EETk;

10: Sid = Sjit · ck

EETk−t ;
11: ExecuteTk at speedSid;
12: else
13: wait();
14: end if
15: end while

processors are set to0. In the algorithm,Pid represents the current processor,t is the current time, andSid

is the speed ofPid.

At the beginning of execution or whenPid finishes a task at timet, if there are no more tasks inReady-Q,

Pid will stall and sleep until it is waken up by the next frame. Here, we use the functionwait() to put one

processor to sleep (line13). Otherwise,Pid will fetch the next taskTk from Ready-Q(line 3). BecauseTk

starts at the smallestSTNT in the canonical execution, we exchangeSTNTid with the minimumSTNT

if STNTid > min{STNT1, . . . , STNTn} (line 4, 5 and6). Here, we try to emulate the timing of the

canonical execution.Pid then calculates its speedSid to executeTk based on the timing information and

begins execution. By exchangingSTNTid with STNTr, Pid shares part of its slack (specifically,STNTid−
STNTr) with Pr.

Reconsider the example from Figure 1 and suppose every task uses its actual execution time. Assuming

that power consumption is equal toCef · S3

k2 , if no slack is reclaimed dynamically, the energy consumption is

computed to be29·Cef

k2 . Under global scheduling with shared slack reclamation and longest task first priority

assignment, the energy consumption is computed to be21.83 · Cef

k2 . Note that if we use the optimal priority

assignment as in Figure 1 (b) which optimizes the execution time, the energy consumption is computed to

be21.97 · Cef

k2 . Hence, the optimal priority assignment in terms of execution time is not optimal for energy

consumption when considering the dynamic behavior of tasks.

From the algorithm, we notice that at any time (except whenReady-Qis empty) the values ofSTNTp

(p = 1, . . . , N) of the processors are always equal to theN biggest values ofEET of the tasks running on

the processors. One of these tasks is the most recently started task (from line5 to 9). The task that starts

next will follow the smallestSTNT . These properties are used to prove the correctness of GSSR-N (in the

9



sense that, shared slack reclamation does not extend the finish time of the task set and execution with shared

slack reclamation will use no more time than the canonical execution) as shown in next section.

3.2.2 Analysis of the GSSR-N Algorithm

For the canonical execution, we define thecanonical estimated end time, EET c
k , for each taskTk. From the

definition, we know thatEETk is the latest time at whichTk will finish its execution. IfEETk = EET c
k

for every task and the canonical execution can finish before timeD, then any execution will finish beforeD.

To prove thatEETk = EET c
k for everyTk, we definemaxN{X1, . . . , Xn} to be the set containing theN

largest elements in the set{X1, . . . , Xn}1. We also define the history setH(t) as the set of tasks that have

started (and possibly finished) execution before or at timet.

Lemma 1 For GSSR-N, at any timet, if Tk is the most recently started task, thenEETk ∈ maxN{EETi|Ti ∈
H(t)}; moreover,{STNT1, . . . , STNTN} = maxN{EETi|Ti ∈ H(t)}.

Proof If n ≤ N , the result is trivial. Next, we consider the case wheren > N . The proof is by induction

onTk, k = 1, . . . , n.

Base case:Initially, after the firstN tasks start execution and before any of them finish, at any timet, we

haveH(t) = {Ti, i = 1, . . . , N} and

EETN ∈ maxN{EETi|Ti ∈ H(t)};

{STNT1, . . . , STNTN} = maxN{EETi|Ti ∈ H(t)}.

Induction step: Assuming that, at any timet, Tk−1 (k − 1 ≥ N) is the most recently started task, we

haveH(t) = {T1, . . . , Tk−1} and

EETk−1 ∈ maxN{EETi|Ti ∈ H(t)};

{STNT1, . . . , STNTN} = maxN{EETi|Ti ∈ H(t)};

Without loss of generality, assumeEETj = min{STNT1, . . . , STNTN} = min{maxN{EETi|Ti ∈
H(t)}} (1 ≤ j ≤ k − 1). After Tk started and beforeTk+1 starts, at any timet, Tk is the most recently

1If n < N , the remaining values are taken to be zero.
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started task. HenceH(t) = {T1, . . . , Tk} and from line5 to 9 of the algorithm:

EETk = min{STNT1, . . . , STNTN}+ ck

= min{maxN{EETi|Ti ∈ H(t)}}+ ck

= EETj + ck

Then,EETk ∈ maxN{EETi|Ti ∈ H(t)}. The new values ofSTNTs are thus given by:

{STNT1, . . . , STNTN} = {({STNT1, . . . , STNTN} − {EETj}) ∪ {EETk}}

= maxN{EETi|Ti ∈ H(t)}; ♦

Theorem 1 For a fixed independent task setΓ with a common deadline executing on N-processor systems,

if canonical execution with a priority assignment under global scheduling completes at a timeD, any exe-

cution with the same priority assignment under GSSR-N will complete by timeD.

Proof

For a specific priority assignment, the canonical execution under global scheduling is the same as under

GSSR-N and tasks can be identified by their orders in the ready queue during canonical execution. We prove

this theorem by showing that, for any execution under GSSR-N:EETi = EET c
i (i = 1, . . . , n). If n ≤ N ,

it is trivial. Next, we consider the case wheren > N . The proof is by induction onTk, k = 1, . . . , n.

Base case:Initially, GSSR-N setsEETi at the beginning of execution without any consideration to the

actual execution time ofTi (i = 1, . . . , N). Hence,EETi = EET c
i , i = 1, . . . , N .

Induction step: Assume thatEETi = EET c
i for i = 1, . . . , k − 1. At any timet beforeTk starts,Tk−1

is the most recently started task. Without loss of generality, assume that:

maxN{EETi|Ti ∈ H(t)} = {EETk−a1 , . . . , EETk−aN−1
, EETk−1}

EETj = min{maxN{EETi|Ti ∈ H(t)}}

Here, we havea1 > . . . > aN−1 > 1 and1 ≤ j ≤ k − 1. From Lemma 1:

{STNT1, . . . , STNTN} = {EETk−a1 , . . . , EETk−aN−1
, EETk−1}
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WhenTk begins to run, from line4 to 8 of Algorithm 1, we will have (for non-canonical and canonical

execution, respectively):

EETk = min(STNT1, . . . , STNTN ) + ck

= min(EETk−a1 , . . . , EETk−aN−1
, EETk−1) + ck

= EETj + ck

EET c
k = min(STNT1, . . . , STNTN ) + ck

= min(EET c
k−a1

, . . . , EET c
k−aN−1

, EET c
k−1) + ck

= EET c
j + ck

Notice thatEETi = EET c
i (i = 1, . . . , k − 1). Thus, we haveEETk = EET c

k . Finally, EETi =

EET c
i , i = 1, . . . , n. ♦

In the next section, we discuss scheduling with shared slack reclamation for dependent tasks. The idea

of slack sharing is the same as that used for independent tasks. A new concern, however, is to maintain the

execution order implied in the canonical execution of dependent tasks.

4 Power-Aware Scheduling for Dependent Tasks

List scheduling is a standard technique used to schedule tasks with precedence constraints [8, 10]. A task

becomesready for execution when all of its predecessors finish execution. The root tasks that have no

predecessors are ready at time0. List scheduling puts tasks into a ready queue as soon as they become ready

and dispatches tasks from the front of the ready queue to processors. When more than one task is ready at

the same time, finding the optimal task order that minimizes execution time is NP-hard [10]. In this section,

we use the same heuristic as in global scheduling. We put into the ready queue first the longest task (based

on WCET) among the tasks that become ready simultaneously. The tasks are numbered by the order at

which they are added to the ready queue during canonical execution. That is, thekth task entering the ready

queue in canonical execution is identified asTk.

Consider a dependent task set withΓ = {T1, T2, T3, T4, T5, T6} andD = 12. The precedence graph is

shown in Figure 5a and the canonical execution is shown in Figure 5b. Task nodes are labeled with the tuple

(ci, ai). For the canonical execution, we see thatT1 andT2 are root tasks and ready at time0. T3 andT4 are

ready at time2 when their predecessorT1 finishes execution.T5 is ready at time3 andT6 is ready at time6.

Due to dependencies among tasks, a task’s readiness during non-canonical execution depends on the ac-
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tual execution of its predecessors. From the discussion of independent tasks, we know thatgreedy slack

reclamationcannot guarantee completion beforeD (i.e., the completion time of canonical execution). We

next show that the straightforward application ofshared slack reclamationto list scheduling cannot guaran-

tee that timing constraints are met.

4.1 List Scheduling with Shared Slack Reclamation

Consider the example from Figure 5a and assume that every task uses its actual execution time. In Figure

6a, whenever one task is ready it is put into the queue. From the figure, it is clear that list scheduling with

shared slack reclamation does not finish execution by time12 (the completion time of canonical execution).
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0 Time12
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22P
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21 Ready Time
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T5 Slack reclaimed
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1

a. Shared Slack Reclamation b. FLSSR-2

Figure 6: List Scheduling with Slack Reclamation;D = 12.

The reason list scheduling with shared slack reclamation takes longer than the canonical execution is that

the tasks’ ready time change. Thus, the order at which the tasks are added to the queue is different from the

canonical execution order. In the example,T5 is readybeforeT3 andT4, which leads toT3 being assigned

to P2 rather thanP1. This in turn leads to the late completion of all tasks and the deadline being missed.
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4.2 Fixed-order List Scheduling with Shared Slack Reclamation (FLSSR)

For the schedule in Figure 6a, we need to preventT5 from executing beforeT3 andT4 to guarantee that

execution does not take longer than canonical execution; that is, we need to maintain the task execu-

tion order the same as in canonical execution. As discussed in Section 2, in the first step (which is not

shown in the following algorithm), the canonical execution is emulated andSjit is calculated. During

the emulation, tasks’ canonical execution order is collected and the ready time of taskTi is calculated as:

RT c
i = max{EET c

k |Tk → Ti ∈ E} when all tasks run atSjit.

To determine thereadinessof tasks, we define the number ofunfinished immediate predecessors (UIP)

for each task.UIPi will decrease by 1 when any predecessor of taskTi finishes execution. TaskTi is ready

whenUIPi = 0. Whenever a processor is free, it will check the task at the head ofGlobal-Qto see whether

it is ready or not. If the task is ready, the processor will fetch and execute it; otherwise the processor goes to

sleep. The details of the algorithm are described below.

4.2.1 FLSSR forN (≥ 2) Processor Systems (FLSSR-N)

As for independent tasks, we assume that the shared memory holds the control information. Algorithm 2

shows the FLSSR-N algorithm. Each processor (Pid) invokes the algorithm at the beginning of execution,

when a task finishes execution onPid, or whenPid is sleeping and signaled by another processor. We use

the functionwait() to put an idle processor to sleep and another functionsignal(P ) to wake up processor

P . Initially, all tasks are put inGlobal-Q in the canonical execution order (line1; it is important for the

algorithm to keep the canonical execution order to maintain temporal correctness).UIPi (i = 1, . . . , n)

are set to the number of predecessors of taskTi andSTNTp (p = 1, . . . , N) are set to0 (not shown in the

algorithm).

If the algorithm is invoked by a signal from another processor, it will begin at the’waiting for signal’

point (line20). If the algorithm is invoked at the beginning or whenPid finishes a task, it begins at line3. If

the head ofGlobal-Q is ready,Pid picks taskTk from the head ofGlobal-Q(line 4). To claim the slack,Pid

calculatesEETk as if Tk starts at the same time as in the canonical execution, which isRT c
k or STNTid

(whichever is bigger), and claims the difference betweent andTk’s start time in the canonical execution as

slack (line9; notice that eithert ≤ RT c
k or t ≤ STNTid). ThenPid calculates the speedSid to executeTk

and signalsPw if Pw is sleeping and the new head ofGlobal-Q is ready (line12 and13). Finally, Pid runs

Tk at the speed ofSid (line 15).

Reconsider the example shown in Figure 5, the execution on dual-processors for FLSSR-2 is shown in

14



Algorithm 2 The FLSSR-N algorithm invoked byPid

1: Put the tasks inGlobal-Q in the order of their canonical execution.
2: while (1) do
3: if ( Head(Global-Q)is ready) then
4: Tk = Dequeue(Global-Q);
5: FindPr such that:

STNTr = min{STNT1, . . . , STNTn};
6: if (STNTid > STNTr) then
7: STNTid ↔ STNTr;
8: end if
9: EETk = max{RT c

k , STNTid, t}+ ck;
10: STNTid = EETk;
11: Sid = Sjit · ck

EETk−t ;
12: if ( (Head(Global-Q)is ready) AND (Pw is sleep) )then
13: Signal(Pw);
14: end if
15: ExecuteTk at speedSid;
16: for ( EachTi such thatTk → Ti ∈ E) do
17: UIPi = UIPi − 1;
18: end for
19: else
20: wait();
21: end if
22: end while

Figure 6b. In order to wait for the readiness ofT3 andT4, P1 wastes part of its slack. By maintaining the

same execution order as canonical schedule, all tasks finish on time.

4.2.2 Analysis of FLSSR-N Algorithm

Similar to GSSR-N, at any time (except whenGlobal-Q is empty), the values ofSTNTp (p = 1, . . . , N)

are always equal to theN biggest values ofEET of the tasks running on the processors. One of these tasks

is the most recently started task. The task that starts next will follow the minimumSTNT .

Lemma 2 For FLSSR-N, at any timet, if Tk is the most recently started task, there will be

EETk ∈ maxN{EETi|Ti ∈ H(t)}; moreover,{STNT1, . . . , STNTN} = maxN{EETi|Ti ∈ H(t)}.

Proof The proof is by induction onTk, k = 1, . . . , n and is similar to the proof of Lemma 1.

Base case:Initially, after Ti (i = 1, . . . ,m)2 start execution and before any of them finish, at any timet,

we haveH(t) = {T1, . . . , Tm} and

EETm ∈ maxN{EETi|Ti ∈ H(t)}

2If m < N , it means that there are onlym tasks ready at time0; otherwise,m = N , the number of ready tasks is greater than
or equal to,N , the number of processors.
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{STNT1, . . . , STNTN} = maxN{EETi|Ti ∈ H(t)}

Induction step: Assume that beforeTk started execution,Tk−1 is the most recently started task. At any

time t, we haveH(t) = {T1, . . . , Tk−1} and

EETk−1 ∈ maxN{EETi|Ti ∈ H(t)}

{STNT1, . . . , STNTN} = maxN{EETi|Ti ∈ H(t)}

Without loss of generality, assumeEETj = min{STNT1, . . . , STNTN} = min{maxN{EETi|Ti ∈
H(t)}} (1 ≤ j ≤ k − 1). After Tk starts and before any more tasks finish,Tk is the most recently started

task, and at any timet, H(t) = {T1, . . . , Tk}. From line6 to 10 of Algorithm 2:

EETk = max{min{STNT1, . . . , STNTN}, RT c
k , t}+ ck

= max{EETj , RT c
k , t}+ ck

Notice that, whenTk starts, eithert ≤ RT c
k or t ≤ EETj . Then,

EETk ∈ maxN{EETi|Ti ∈ H(t)};

The new values ofSTNTp (p = 1, . . . , N) are thus given by:

{STNT1, . . . , STNTN} = {({STNT1, . . . , STNTN} − {STNTq}) ∪ {EETk}}

= maxN{EETi|Ti ∈ H(t)}; ♦

Theorem 2 For a fixed dependent task setΓ with a common deadline executing on N-processor systems,

if canonical execution with a priority assignment under list scheduling completes at timeD, any execution

will the same priority assignment under FLSSR-N will complete by timeD

Proof If all tasks use their WCET, canonical execution under list scheduling is the same as under FLSSR-

N. For a specific priority assignment, the tasks are numbered by the order in which they enteredGlobal-

Q during canonical execution. We prove this theorem by showing that, for any execution of FLSSR-N:

EETi = EET c
i (i = 1, . . . , n). The proof is by induction onTk, k = 1, . . . , n.

Base case:Initially, FLSSR-N setsEETi, i = 1, . . . , m(m ≤ N) at the beginning of execution without

any consideration to the actual execution time ofTi. Hence,EETi = EET c
i , i = 1, . . . , m(m ≤ N).
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Induction step: Assume thatEETi = EET c
i for i = 1, . . . , k− 1. At any time beforeTk starts,Tk−1 is

the most recently started task. Without loss of generality, assume that:

EETj = min{maxN{EETi|Ti ∈ H(t)}}

maxN{EETi|Ti ∈ H(t)} = {EETk−a1 , . . . , EETk−aN−1
, EETk−1}

Here,a1 > . . . > aN−1 > 1, 1 ≤ j ≤ k − 1. From Lemma 2:

{STNT1, . . . , STNTN} = {EETk−a1 , . . . , EETk−aN−1
, EETk−1}

WhenTk starts at timet (non-canonical execution) ort′ (canonical execution), from line5 to 9 of Algorithm

2, we will have:

EETk = max{min{STNT1, . . . , STNTN}, RT c
k , t}+ ck

= max{min{EETk−a1 , . . . , EETk−aN−1
, EETk−1}, RT c

k , t}+ ck

EET c
i = max{min{STNT1, . . . , STNTN}, RT c

k , t′}+ ck

= max{min{EET c
k−a1

, . . . , EET c
k−aN−1

, EET c
k−1}, RT c

k , t′}+ ck

WhenTk starts, eithert < RT c
k andt′ < RT c

k , or

t < min{STNT1, . . . , STNTN} andt′ < min{STNT1, . . . , STNTN}.
Notice that,EETi = EET c

i (i = 1, . . . , k − 1), we will have:

max{min{EETk−a1 , . . . , EETk−aN−1
, EETk−1}, RT c

k , t}

= max{min{EET c
k−a1

, . . . , EET c
k−aN−1

, EET c
k−1}, RT c

k , t′}

ThusEETk = EET c
k . Finally,EETi = EET c

i , i = 1, . . . , n. ♦
In the above discussion, we assumed continuous voltage/speed and ignored the speed adjustment over-

head. However current variable voltage processors have only discrete voltage/speed levels [16]. Moreover,

there is time and energy overhead associated with voltage/speed adjustment. In the following section, we

discuss how to incorporate these issues into the scheduling algorithms.
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5 Accounting for Overhead and Discrete Voltage/Speed Levels

5.1 Voltage/Speed Adjustment Overhead

There are two kinds of overhead that have to be considered when changing processor voltage/speed:timeand

energy. The time overhead affects the feasibility of our algorithms; that is, whether the timing constraints

can be met or not. We focus on time overhead first and discuss energy overhead later. When time overhead is

considered, we need a model to calculate that overhead and a scheme to incorporate it into the algorithms. In

the following, we propose a new scheme ofslack reservationto incorporate time overhead into the dynamic

speed adjustment algorithms.

5.1.1 Time Overhead

We model the time overhead as consisting of two parts: a constant part that is a set-up time and a variable

part that is proportional to the degree of voltage/speed adjustment. Hence:

Timeoverhead = C + K · |S1 − S2|

whereC andK are constants, andS1 is the processor speed before adjustment andS2 is the processor speed

after the adjustment. Here, the choice ofK = 0 results in a constant time overhead. In the simulations of

Section 6, we setC andK to different values to see how they affect energy savings.

One conservative way to incorporate the time overhead is by adding the maximum time overhead of

voltage/speed adjustment,C +K · (Smax−Smin), to the worst-case execution time for all the tasks. In this

case, there will be enough time to change speed for each task.

We propose the idea of slack reservation to incorporate the time overhead. Specifically, whenever we

try to use slack to slow down processor speed, we reserve enough slack for the processor to change the

voltage/speed back to the appropriate level in the future. In this way, we ensure that future tasks can be

executed at the appropriate speed to meet the deadline. The idea is illustrated in Figure 7.

From the figure, whenTi finishes early with slackLi, we use a portion ofLi to change the voltage/speed

for Ti+1. We also reserve enough slack for changing the processor voltage/speed back toSjit whenTi+1

uses up its allocated time. The rest of the slack is used to slow down the speed ofTi+1.

Suppose that the current speed forTi is Si and assume that the speed forTi+1 is Si+1 (to be computed).

The overhead,Oi, to change speed fromSi to Si+1, and the overhead,Ri, to change speed fromSi+1 back
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Figure 7: Slack Reservation for Overhead

to Sjit are:

Oi = C + K · |Si+1 − Si|

Ri = C + K · (Sjit − Si+1)

Hence,Si+1 can be calculated by giving additional time,(Li −Oi −Ri), to taskTi+1, that is:

Si+1 = Sjit · ci+1

ci+1 + Li −Oi −Ri

Assuming thatSi+1 < Si, then the above equation is a quadratic equation inSi+1:

2 ·K · S2
i+1 + [ci+1 + Li − 2 · C −K · (Sjit + Si)] · Si+1 − Sjit · ci+1 = 0

If no solution is obtained withSi+1 < Si from the above equation, the assumption is wrong; that is,

Si+1 ≥ Si. It is possible to setSi+1 = Si if the slackLi − Ri is enough forTi+1 to reduce the speed from

Sjit to Si, that is, ifSjit · ci+1

ci+1+Li−Ri
≤ Si, we can setSi+1 = Si. If it is not possible to setSi+1 ≤ Si, we

haveSi+1 > Si andSi+1 can be solved as:

Si+1 = Sjit · ci+1

ci+1 + Li − 2 · C −K · (Sjit − Si)

Finally, if Si+1 computed from the above equation is larger thanSjit, we setSi+1 = Sjit.

In most cases, the reserved slack,Ri, will not be used and becomes part of the reclaimed slackLi+1.

However, in some cases afterTi+1 finishes, the useful slack,Li+1 − Ri, is not enough to use forTi+2. In

these cases,Ri will be used to change the speed back toSjit andTi+2 will run at Sjit (see Figure 8).

When considering time overhead, slack sharing between processors needs to be modified. Referring to

Figure 9, suppose processorPi runs atSi and finishes early. As described in Section 3, it would share its
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slack with processorPj running atSjit if STNTi > STNTj . But, if after slack sharing there is not enough

time for Pi to change its speed back toSjit, we should not share the slack. ProcessorPi needs to change

speed toSjit first and share the slack later (if possible).

5.1.2 Energy Overhead

Besides the time overhead of voltage/speed adjustment, there is also energy overhead associated with the

speed change. Suppose the energy overhead for changing speed fromSi to Sj is E(Si, Sj). Assuming that

the energy consumption ofTi+1 is Ei+1 with Sjit andE′
i+1 with Si+1, then, it is not efficient to change

the speed fromSi to Si+1 for Ti+1 if E(Si, Si+1) + E′
i+1 + E(Si+1, Sjit) > Ei+1 + E(Si, Sjit). In other

words, even if the timing constraints can be met with the time overhead, we may decide not to runTi+1 at a

lower speed (if the energy overhead is larger than the energy saved by the speed change).

5.1.3 Setting the Processor to the Idle Speed

When no voltage/speed adjustment overhead is considered, we can always let the processor run at the slowest

speed when it isidle (not executing a task). This speed achieves the least energy consumption for the idle

state. With the overhead considered, for independent tasks, the idle state only appears at the very end of

the execution and we can set the processor to idle if there is enough time to adjust the voltage/speed. For

dependent tasks, however, the idle state may appear in the middle of execution. To ensure that future tasks

finish on time, during idle state the processor needs to run at speedSjit since the processor cannot predict
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exactly when the next task will be available. We use this scheme to deal with the idle states appearing in the

middle of execution.

We may put the processor to sleep when it is idle and wake it up before the next task is ready by predicting

the ready time of the next task using the task’s canonical ready time. This scheme will require a ’watchdog

timer’ to specify when the task is ready. However, it is possible that a task arrives before the timer expires,

in this case, the processor needs to be activated and the timer deactivated. While this scheme can possibly

achieve some additional energy savings, it makes the implementation more complex and for the purpose of

this paper, will not be considered further.

Another way to deal with the idle state for dependent tasks is to be conservative and add the maximum

overhead to each task’s worst case execution time. In this case, we can always put the processor to sleep

when it is idle and guarantee that there will be enough time to speed up the processor when the next task is

ready to execute.

5.2 Discrete Voltage/Speed Levels

Currently available variable voltage processors have only several working voltage/speed settings [16]. Our

algorithms can be easily adapted to discrete voltage/speed levels. Specifically, after calculating a given

processor speedS, if S falls between two speed levels (Sl < S ≤ Sl+1), settingS to Sl+1 will always

guarantee that the tasks finish on time and that the deadline is met.

With the higher discrete speed, some slack will not be used for the next task and thus will be available

for future tasks. Our experimental results show that, when sharing slack with future tasks, scheduling

with discrete voltage/speed levels sometimes have better performance, in terms of energy savings, than

continuous voltage/speeds.

6 Performance Analysis

In this section, we empirically demonstrate how slack reclamation reduces energy consumption. Along with

synthetic data, we also use several sets of trace data (from actual real-time multiprocessor applications) in

the simulation. We compare the energy consumed when using the combination of static power management

and dynamic supply voltage/speed adjustments with the energy consumed when using only static power

management. Following the idea of the minimal energy scheduling technique for uniprocessor systems [17],

we consider the clairvoyant (CLV) algorithm that uses the tasks’ actual run time information to generate the

schedule and to compute a single voltage/speed for all the tasks (the idle state may be still in the schedule).
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We also consider an absolute lower bound (ALB) scheme which assumes the application is fully parallel

and is obtained by averaging the total actual workload on all processors with the speed being uniformly

reduced (there is no idleness in this case, and pre-emption is needed to generate the schedule; e.g. P-fairness

scheduling [3]). CLV and ALB are achievable only via post-mortem analysis and are impractical since they

require knowledge of the future.

6.1 Experiments

First, we describe the simulation experiments. For the synthetic data, to get the actual execution time for

each task, we defineαi as average/worst case ratio forTi’s execution time, and the actual execution time of

Ti will be generated as a normal distribution aroundαi · ci. For the task sets, we specify the lower (cmin)

and upper (cmax) bounds on the task’s WCET and the averageα for the tasks, which reflects the amount

of dynamic slack in the system. The higher the value ofα, the less the dynamic slack. A task’s WCET

is generated randomly between (cmin, cmax) andαi is generated as a uniform distribution aroundα. For

simplicity, power consumption is assumed to be proportional toS3. In the following experiments, energy is

normalized to the energy consumed when using only static power management. We also assume continuous

voltage/speed scaling and no penalty for changing voltage/speed if not specified otherwise. The effects of

discrete voltage/speed scaling and voltage/speed adjustment overhead are reported in Sections 6.5 and 6.6.

When no overhead is considered, the processor speed in the idle state is set to0.1 · Sjit; when overhead is

considered, for the idle state appearing at the end of schedule, the processor speed is set to0.1 · Sjit, while

for the idle state in the middle of execution, the processor speed is set toSjit as discussed earlier.

6.2 GSSR and Partition Scheduling with Greedy Slack Reclamation vs. SPM

The results in this section were obtained by running a synthetic independent task set with100 tasks and the

results are the average of1000 runs. The WCET of tasks are generated by settingcmin = 1 andcmax = 50.

In Figure 10a, the number of processors is2, andα is varied from 0.1 to 1.0. We compare the global

scheduling with shared slack reclamation (GSSR) with partition scheduling and greedy slack reclamation

(PGSR). For PGSR, we use the longest task first partitioning to divide tasks among processors, and then

apply greedy slack reclamation on each processor [20]. From the figure, we see that global scheduling with

shared slack reclamation consumes less energy than partition scheduling with greedy slack reclamation.

The reason is that the slack sharing scheme gives more slack to longer tasks and less to shorter tasks. This

balances the speed of each task and reduces energy consumption. When the average/worst case ratio (α) is

about0.5 (that is, on the average we have 50% of time as dynamic slack), global scheduling with shared
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Figure 10: Energy Savings for Independent Tasks

slack reclamation results in energy saving of more than 60% versus static power management. Whenα

increases, there is less dynamic slack and, compared to SPM, the energy saving of GSSR decreases. Note

that, for independent tasks, only a little idle state appears at the very end of the schedule and CLV gets almost

the same energy savings as ALB. Compared with these lower bounds, the performance of our algorithm is

within 15% difference (whenα = 0.5).

To see the shared slack reclamation scheme’s performance on systems with different number of proces-

sors, we run the synthetic independent task set by changing the number of processors and settingα = 0.5.

The results are shown in Figure 10b. Compared to SPM, the energy savings of GSSR is almost the same

when the number of processors is less than or equal to 8. When the number of processors is more than 8,

the energy savings of GSSR decreases sharply. The reason is that the first task on each processor is always

executed atSjit and the slack at the very end on each processor is wasted. Since there are only 100 tasks in

the task set, with more processors, such as 16 or 32, the number of tasks running atSjit and the total amount

of slack wasted increases quickly. While compared with PGSR, our algorithm is always better. When the

number of processors is less or equal to 8, our algorithm is within 13% of CLV and ALB. With more proces-

sors, such as 16 or 32, ALB performs better than CLV. The reason is that ALB assumes the actual workload

is evenly balanced among all processors.

6.3 FLSSR vs. SPM

In this section, we consider the dependent task sets and compare the energy consumption used by FLSSR

vs. SPM. First, we consider an example with20 synthetic tasks. The tasks’ WCET are generated randomly
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Figure 11: Energy Savings for Dependent Tasks

from 1 to 50 and we assume a 2-processor system. In Figure 11a, we varyα from 0.1 to 1.0. The energy

saving of fixed-order list scheduling with shared slack reclamation (FLSSR) compared to that of static power

management (SPM) varies from 0% whenα is 1.0 to 72% whenα is 0.1. Whenα increases, there is less

dynamic slack and compared to SPM the energy savings of FLSSR decreases. On average, whenα is 0.5,

the energy savings is approximately 40%. Since there is more idle time for dependent tasks, compared with

ALB, the performance of our algorithm is within 35% difference (whenα = 0.5).

We next consider two matrix operations, matrix-multiplication and Gaussian-elimination (assuming a

5 × 5 matrix of 100 × 100 submatrices) [9], and measure the effectiveness of our techniques for these

benchmarks. The worst case execution time of each task is determined by the operations involved. We

conduct the same experiments as above, achieving similar energy savings for fixed-order list scheduling

with shared slack reclamation. The results are shown in Figures 11a.

For Gaussian-elimination, we also considered a20× 20 matrix of100× 100 submatrices to allow more

parallelism. Withα = 0.5, we vary the number of processors as shown in Figure 11b. For this application,

when the number of processors is larger than8, the energy consumption of FLSSR increases sharply com-

pared to SPM. One reason is similar to what happen for GSSR: the number of tasks running atSjit and the

amount of slack wasted increases. Another reason is the idleness of the processors due to the dependence

among tasks. Compared with CLV, our algorithm is within 15% difference. Note that ALB assumes a fully

parallel application, which is not possible for Gaussian-elimination with a large number of processors.
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6.4 FLSSR with Trace Data

In this section, we use several sets of trace data for different parallel applications to show the effectiveness

of our algorithms. The trace data is gathered by instrumenting the applications to record their execution time

for each parallel section. The applications are then run on a Pentium-III500MHz with 128MB memory.

The first application we considered is automated target recognition (ATR). ATR searches regions of inter-

est (ROI) in one frame and tries to match specific templates with each ROI. The dependence graph for ATR

is shown in Figure 12a. Figure 12b shows the run time information about the tasks in ATR for processing

180 consecutive frames on our platform. Here, we assume that ATR can process up to four ROIs in one

frame and that each ROI is compared with three different templates. If the number of ROIs is less than4,

the actual run time of the tasks corresponding to undetected ROIs (the first few ROIs) is set to0.

D4D1

T1 T2 T3 T1 T2 T3
Compare
Templates

Detections
Normalize

Prescreen

min(µs) max(µs)

Prescreen 1146 1299
Norm. Detection 429 748

Template 1 466 574
Template 2 466 520
Template 3 467 504

a. Dependence Graph of ATR b. Execution Time for Tasks in ATR

Figure 12: The Dependence Graph of ATR to Process One Frame and The Execution Time for The Tasks of
ATR. Assuming up to 4 detections in one frames and 3 templates.

Second, we consider the Berkeley real-time MPEG-1 encoder [12]. By setting the group of pictures

(GOP) as15 with the pattern ofIBBPBBPBBPBBPBB and forcing it to encode the last frame, the depen-

dence graph to process the frames in one GOP using decoded frame as reference is shown in Figure 13a.

There are three different frames in the dependence graph. TheI frame is the intra-frame that is encoded as

a single image with no reference to any past or future frames. TheP frame is the forward predicted frame

that is encoded relative to the past reference frame. AB frame is a bi-directional predicted frames that is

encoded relative to the past, the future or both reference frames. The reference frame is either anI or aB

frame. For theFlower-GardenandTennismovies with each having150 frames, Figure 13b shows the run

time information of processing different frames (the time is only for encoding and does not include I/O).

Using the trace data, we vary the number of processors and run these two applications (note that the

maximum parallelism for Berkeley MPEG-1 encoder is 3 for one GOP) on our simulator. The results of
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a. Dependence Graph of MPEG-1 Encoder b. Execution Time for Different Frames

Figure 13: The Dependence Graph and Execution Time to Process Different Frames of MPEG-1 Encoder;
assuming the encoding sequence is IBBPBBPBBPBBPBB, force to encode the last frame and use decoded
frame as reference.

energy savings are shown in Table 1. There is more energy savings forTennisthanFlower-Gardenfrom

MPEG-1 encoder because the encoding time forTennisvaries more thanFlower-Garden(see Figure 13b).

CLV gets 7% -32% more energy savings than FLSSR and ALB gets 27%-44% more. Again, ALB assumes

fully parallel application with preemption and an evenly balanced actual workload. It is impractical and is

not a tight lower bound. The results are consistent with the earlier results from the synthetic data.

Table 1: Energy Savings vs. SPM using Trace Data

ATR MPEG-1 Encoder
Flower Tennis

2-Proc 3-Proc 4-Proc 2-Proc 3-Proc 2-Proc 3-Proc

FLSSR 26.35% 38.65% 41.66% 17.42% 16.53% 25.16% 23.77%
CLV 58.83% 54.71% 52.14% 24.11% 26.43% 35.07% 36.92%
ALB 70.58% 78.19% 80.43% 44.33% 53.75% 52.65% 60.67%

6.5 Considering the Overhead

To observe how the time overhead affects the algorithms’ performance in terms of energy savings, we set in

the experiments the constant part of the overhead (C) to different values relative to the smallest task’s worst

case execution time. We also experiment with setting the co-efficient (K) to different values from 0 to 1.

The maximum variable part of time overhead (changing speed betweenSmax andSmin) equalsK times the

smallest task’s worst case execution time. Recall that the range of task’s worst case execution time is from

1 to 50 and the smallest task has worst case execution time of 1. Figure 14a shows an independent task set

with 100 tasks, and Figure 14b shows the synthetic dependent task set with20 tasks. The results reported

here do not include the energy overhead optimization discussed in Section 5. We expect better results when
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Figure 14: Energy Savings with Varied Time Overhead of Voltage/Speed Adjustment

this optimization is considered.

From the figures, the constant part of the overhead affects the algorithms’ performance the most. With

the maximum overhead considered, for independent tasks there is a 6% difference in energy consumption

from the case with no overhead. For dependent tasks, the difference is 12%. There is a big jump between

the case with no overhead and with minimal overhead. The reason is that without overhead the idle state

runs at0.1 · Sjit, and with overhead, the idle state runs atSjit = Smax (load=100%) to ensure that future

tasks finish on time (see Section 5).

Note thatC andK are dependent on specific processor hardware and the tasks running on the processor.

Suppose that the minimum task has the worst case execution time of 10 ms, and we are using a Transmeta

processor that takes 5 ms to change voltage/speed [16]. Hence,C = 50% andK = 0. Similarly, the AMD

K6-2+ was measured to have an overhead of 0.4 ms to change voltage and 40µs to change frequency [22].

Thus for AMD, C = 4% andK = 0. For the lpARM processor that needs 70µs to change voltage [5],

C = 0.7% andK = 0.

6.6 The Effect of Discrete Voltage/Speed Levels

To see how discrete voltage/speed levels affect the algorithms’ performance in terms of energy savings,

we set different levels between200MHz and700MHz (the speed is from Transmeta TM5400 [16]) and

their corresponding supply voltage. The levels are uniformly distributed at the same increment between two

discrete speed levels. The idle state runs at the minimum speed and consumes the corresponding energy.

For GSSR, we run the task set with 100 tasks, and for FLSSR we run the synthetic task set with20 tasks.
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Here we set the number of processors as2 and fixα = 0.5. The energy consumption of GSSR and FLSSR

vs. SPM with different number of voltage/speed levels is shown in Figure 15, where ’∞’ means continuous

voltage/speed adjustment.
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Figure 15: Energy Consumption of GSSR and FLSSR vs. SPM with different number of voltage/speed
levels

Since the workload is100%, there is no static slack andSjit = Smax. For static power management,

because the processors runs at either200MHz or 700MHz for all speed configurations, the energy con-

sumption is the same.

From Figure 15, we see that energy consumption of the algorithms with continuous adjustment is not

always less than that with discrete voltage/speed levels, and more levels do not guarantee less energy con-

sumption. The reason is that, with discrete voltage/speed levels, the processors set their speed to the next

higher discrete level, which saves some slack for future tasks. When sharing the slack with future tasks,

the energy consumption of the algorithms with discrete voltage/speed levels may be less than that with

continuous adjustment, and a few levels may be better than many levels. In any case, 4-6 levels are suffi-

cient to achieve the effect of continuous adjustment, which is the same observation as reported in [6] for

uniprocessor with periodic tasks.

7 Summary

In this paper, we introduce the concept ofslack sharingon multi-processor systems to reduce energy con-

sumption. Based on this concept, we propose two novel power-aware scheduling algorithms for independent

and dependent tasks. In both cases, we prove that scheduling with slack reclamation will not cause the exe-

cution of tasks to finish later than the completion time in canonical execution, where each task uses its worst
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case execution time. Specifically, if canonical execution of a task set can finish before timeD, then the two

proposed algorithms, global scheduling with shared slack reclamation (GSSR) and fixed-order list schedul-

ing with shared slack reclamation (FLSSR), will finish the execution of the tasks beforeD. Compared to

static power management (SPM), Our simulation results show that GSSR and FLSSR achieve consider-

able energy saving when the task’s execution time is smaller than their worst case execution time (which is

true for most real applications). Using trace data from several real applications, such as automated target

recognition [23] and Berkeley MPEG-1 encoder [12], the results show that our schemes can save up to44%

energy compared to SPM.

The effect of discrete voltage/speed on the performance of the algorithms is also studied. Our simulation

results show that a few discrete voltage/speed levels are sufficient to achieve almost the same or better energy

savings than continuous voltage/speed.

Finally, we propose a scheme to incorporate the voltage/speed adjustment overhead into our scheduling

algorithms usingslack reservation. Based on the assumption that it takes a few milliseconds to adjust

processor supply voltage and speed [21], our simulation results show that the effect of the overhead on

energy saving ranges from6% to 12%.
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[19] F. Liberato, S. Lauzac, R. Melhem, and D. Mossé. Fault-tolerant real-time global scheduling on multiprocessors.
In Proc. of The10th IEEE Euromicro Workshop in Real-Time Systems, York, UK, Jun. 1999.
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