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Abstract

The high power consumption of modern processors becomes a major concern because it leads to
decreased mission duration (for battery-operated systems), increased heat dissipation and decreased reli-
ability. While many techniques have been proposed to reduce power consumption for uniprocessor sys-
tems, there has been considerably less work on multi-processor systems. In this paper, based on the con-
cept ofslack sharingamong processors, we propose two novel power-aware scheduling algorithms for
task sets with and without precedence constraints executing on multi-processor systems. These schedul-
ing techniques reclaim the time unused by a task to reduce the execution speed of future tasks, and thus
reduce the total energy consumption of the system. We also study the effect of discrete voltage/speed
levels on the energy savings for multi-processor systems and propose a hew sckkrde reservation
to incorporate voltage/speed adjustment overhead in the scheduling algorithms. Simulation and trace
based results indicate that our algorithms achieve substantial energy savings on systems with variable
voltage processors. Moreover, processors with a few discrete voltage/speed levels obtain nearly the same
energy savings as processors with continuous voltage/speed, and the effect of voltage/speed adjustment

overhead on the energy savings is relatively small.

Index Terms: Real-Time Systems; Multi-Processor; Scheduling; Slack Sharing.

1 Introduction

In recent years, processor performance has increased at the expense of drastically increased power consump-
tion [15]. On the one hand, such increased power consumption decreases the lifetime of battery operated

systems, such as hand-held mobile systems or remote solar explorers. On the other hand, increased power
consumption generates more heat, which causes heat dissipation to be a problem since it requires more ex-

pensive packaging and cooling technology and decreases reliability, especially for systems that have many



processors.

To reduce processor power consumption, many hardware techniques have been proposed, such as shutting
down unused parts or reducing the power level of non-fully utilized functional units [4, 7]. Processors
that have multiple supply voltages (i.e., multiple power levels) have become available in recent years [16],
making power management at the processor level possible. Using this feature, several software techniques
have been proposed to adjust the supply voltage, especially for mobile or uniprocessor systems [1, 2, 6,
14, 17, 18, 20, 26]. However, much less work has been done for real-time multiprocessing applications
[13, 24, 25], such as parallel signal processing, automated target recognition (ATR) and real-time MPEG
encoding. For satellite-based parallel signal processing, the satellite may have multiple processing units and
need to process the signals on-board in real-time [24]. ATR uses multiple processors to detect targets by
comparing regions of interest (ROI) to templates in parallel. For mobile military systems (e.g., missiles),
ATR is widely used and usually requires real-time processing [23]. Since such systems are battery operated,
their power consumption needs to be managed to achieve maximum duration for minimal energy. For
the applications of cable television and video conferendiegl-time performance of MPEG encoding is
necessary and many processing units may be used to achieve real-time performance [12]. For such systems,
power management can reduce energy consumption and associated costs.

In multi-processor real-time systems, power management that adjusts processor voltage/speed changes
task execution time, which affects the scheduling of tasks on processors. This change may cause a violation
of the timing requirements. This paper describes novel techniques that dynamically adjust processor volt-
age/speed while still meeting timing requirements. We propose scheduling algorithms thladreseslack
reclamationon variable voltage/speed processors for task sets without precedence constraints (independent
tasks) and task sets with precedence constraints (dependent tasks). All the algorithms are proven to meet
timing constraints. We also discuss how to incorporate discrete voltage/speed levels into the algorithms, and
propose a scheme to incorporate voltage/speed adjustment overheads into the scheduling algorithms with
slack reservationSimulation and trace (from real applications) based results show that our technigques save

substantial energy compared to static power management.

1.1 Related Work

For uniprocessor systems, Yao et al. describe an optimal preemptive scheduling algorithm for independent
tasks running with variable speed [26]. When deciding processor speed and supply voltage, Ishihara and
Yasuura consider the requirement of completing a set of tasks within a fixed interval and the different switch

activities for each task [17]. By assigning lower voltage to the tasks with more switch activities and higher



voltage to the tasks with less switch activities, their scheme can reduce energy consumption by 70%. Lee et
al. proposed a power-aware scheduling technigue using slack reclamation, but only in the context of systems
with two voltage levels [18]. Hsu et al. described a performance model to determine a processor slow down
factor under compiler control [14]. Based on the super-scalar architecture with similar power dissipation
as the Transmeta Crusoe TM5400, their simulation results show the potential of their technique.eMoss

al. proposed and analyzed several techniques to dynamically adjust processor speed with slack reclamation
[20]. The best scheme is the adaptive one that takes an aggressive approach while providing safeguards
that avoid violating application deadlines [2]. For periodic tasks executing on uniprocessor systems, a few
voltage/speed levels are sufficient to achieve the same energy saving as infinite voltage/speed levels [6].
AbouGhazaleh et al. have studied the effect of dynamic voltage/speed adjustment overhead on choosing the
granularity of inserting power management points in a program [1].

For multiprocessor systems with fixed applications and predictable execution time, static power manage-
ment (SPM) can be accomplished by deciding beforehand the best supply voltage/speed for each processor.
Based on the idea of SPM, Gruian proposed two system-level designs for architectures with variable voltage
processors. The simulation results show that both approaches can save 50% of the energy when the deadline
is relaxed by 50% [13]. For system-on-chip designs with two processors running at two different fixed volt-
age levels, Yang et al. proposed a two-phase scheduling scheme that minimizes energy consumption under
the time constraints by choosing different scheduling options determined at compile time [25]. Using the
power aware multiprocessor architecture (PAMA), Shriver et al. proposed a power management scheme for
satellite-based parallel signal processing based on different rate of the signals [24]. The work reported in
this paper focused odynamicpower management for shared memory multi-processor systems, which is
different from static power management [13], the selection of pre-determined scheduling options [25] and

the master-slave architecture used in [24].

This paper is organized as follows. The task model, energy model and power management schemes are
described in Section 2. Power-aware scheduling with dynamic processor voltage/speed adjustment using
shared slack reclamation for independent tasks is addressed in Section 3. In Section 4, the algorithm for
dependent tasks is proposed and proven to meet the timing requirements. Section 5 discusses how to incor-
porate voltage/speed adjustment overhead and discrete voltage/speed levels into the scheduling algorithms.

Simulation and trace-based results are given and analyzed in Section 6 and Section 7 concludes the paper.



2 Models and Power Management

2.1 Energy Model

For processors based on CMOS technology, the power consumption is dominated by dynamic power dis-
sipation Py, which is given by:P; = Ccy - ded - S, whereVy, is the supply voltage(. ;s is the effective
switched capacitance arfflis the processor clock frequency, that is the processor speed. Processor speed
is almost linearly related to the supply voltage= & - W wherek is constant and; is the thresh-

old voltage [4, 7]. ThusFy is almost cubically related t§8: P; ~ C,; - ;3—3 Since the time needed for

a specific task istime = % whereC' is the number of cycles to execute the task, the energy consump-
tion of the task,E, is E = P; - time ~ C - Cey - g—j When decreasing processor speed, we can also
reduce the supply voltage. This reduces processor power cubically and energy quadratically at the expense
of linearly increasing the task’s latency. For example, consider a task that, with maximum$%pged
needs20 time units to finish execution. If we havi® time units allocated to this task, we can reduce the
processor speed and supply voltage by half while still finishing the task on time. The new power when
executing the task would bé?; = C. ¢ - (%)2 : % = % - P; and the new energy consumption would be:

E' =P} 40 = Cop - (Y44)? . Smaz 40 = 1. C.p - V2, Spge - 20 = L. E, whereP; is the power and? is

the energy consumption with maximum processor speed.

2.2 Task Model

We assume a frame based real-time system in which a frame of |énigtlexecuted repeatedly [19]. A set

of tasksI' = {T1,...,T,} is to execute within each frame and is to complete before the end of the frame.
The precedence constraints among the tasksare represented by a graph Because of the schedule’s
periodicity, we consider only the problem of schedulln@ a single frame with deadlin®.

We assume a multi-processor system witthomogeneous processors sharing a common memory. Our
goal is to develop a scheduling algorithm that minimizes energy consumption for all tasks while still meeting
the deadline. In specifying the execution of a td$kwe use the tupléc;, a;), wherec; is the estimated
worst case execution time (WCET) anfis the actual execution time (AET). Both are based on maximal
processor speed. We assume that for a Bskhe value ofc; is known before execution, while; is
determined at run time. The precedence constraints are representéd=byI", £}, whereFE is a set of
edges. There is an eddg, — T € E, if and only if T} is a direct predecessor &}, which means thar’;

will be readyto execute only after; finishes execution.



2.3 Power Management Schemes

First, we consider the worst case scenario in which all tasks use their worst case execution time (referred

to ascanonical execution In this case, if the tasks finish well befofe at the maximal processor speed,

Smaz, We can reduce the processor’s supply voltage and speed to finish thpisiskstime and thus reduce

energy consumption. The basic idea of static power management is to calculate beforehand the minimum

processor speed that will ensure that the canonical execution of tasks finishes just-in-time. The tasks are then
run with reduced supply voltage and speed to save energy [2, 13, 20]. In this paper, the minimal processor

speed to ensure that all tasks finish just-in-time is referred f,as

In addition to static power management, we may reduce energy further by using dynamic voltage and
speed adjustment. To simplify the discussion, we assume that the processor supply voltage and speed are
always adjusted together, by setting the maximum speed under certain supply voltage. Since tasks exhibit
a large variation in actual execution time, and in many cases, only consume a small fraction of their worst
case execution time [11], any unused time can be considergid@sand can be reused by the remaining
tasks to run slower while still finishing befoi@ [2, 20]. In this case, power and energy consumption is
reduced.

To get maximal energy savings, we combine static power management and dynamic voltage/speed adjust-
ment. In the following algorithms, we assume that canonical execution is first checked to see whether a task
set can finish befor® or not. If not, the task set is rejected; otherwiSeg; is calculated and used so that
the canonical execution will finish at timfe. Our algorithms then apply dynamic voltage/speed adjustment.

In the rest of the paper, we normalize the worst case execution time and the actual case execution time of
task7; such thatg; = ¢/ - SS';—G: anda; = a, - ng—af TaskT; will be characterized byc;, a;).

Initially, to simplify the problem and our discussion, we assume that the processor supply voltage and

frequency can be changed continuously, and ignore the overhead of voltage/speed adjustment. In Section 5,

we discuss the effect of discrete speeds and overhead.

3 Power-Aware Scheduling for Independent Tasks

Without precedence constraints, all tasks are available atGiared are ready to execute. There are two
major strategies to scheduling independent tasks in multi-processor sygtebradandpartition scheduling

[10]. In global scheduling, all tasks are in a global queue and each processor selects from the queue the task
with the highest priority for execution. In partition scheduling, each task is assigned to a specific processor

and each processor fetches tasks for execution from its own queue. In this paper, we consider only the



non-preemptive scheduling scheme; that is, a taskrunlito-completiorwhenever it begins to execute.

In global scheduling, the task priority assignment affedtsch task goesvhere the workload of each
processor, and the total time needed to finish the execution of all tasks. In general, the optimal solution of
assigning task priority to get minimal execution time is NP-hard [10]. Furthermore, we show in Section 3.3
that the priority assignment that minimizes execution time may not lead to minimal energy consumption.
Expecting that longer tasks generate more dynamic slack during execution, in this paper, we use the longest
task first heuristic (LTF, based on the task’s WCET) when determining task’s priority. The difference be-
tween the total execution time using optimal priority assignment and that using longest task first priority
assignment is small. Given a specific priority assignment, tasks are inserted into the global queue in the
order of their priority, with the highest priority task at the front. For the examples, we number the tasks by
their order in the global queue when using longest task first priority assignment. That#§? task in the
global queue is identified &&..

To emphasize the importance of task priority on scheduling, we consider one simple example of a task
set executing on a dual-processor system as shown in Figure 1. Here77(10,7), T>(8,4), T5(6,6),

T4(6,6), T5(6,6)} andD = 20. In the figures, the X-axis represents time, the Y-axis represents processor
speed (in cycles per time unit), and the area of the task box defines the number of CPU cycles needed to
execute the task. Considering the canonical execution, from Figure 1(a) we see that the longest task first
priority assignment meets the deadliPe But the optimal priority assignment in (b) results in less time. It

is easy to see that some order, sucias> Ty — 15 — 1y — T, will miss the deadline.
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Figure 1: Global Scheduling for 2-Processor Systems

In what follows, we first extend thgreedy slack reclamatioscheme [20] to global scheduling, and we
show that this scheme may fail to meet the deadline. Then we propose a novel slack reclamation scheme for

global schedulingshared slack reclamation



3.1 Global Scheduling with Greedy Slack Reclamation

This scheme is an extension of the dynamic power management scheme for uniprocessor systems from
Mos< et al. [20]. In the scheme of greedy slack reclamation, any slack on one processor is used to reduce

the speed of the next task running on this processor.
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Figure 2: Global Scheduling with No Power Management
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Figure 3: Global Scheduling with Greedy Slack Reclamation

Consider a task sel’ = {T1(5,2), T2(4,4), T3(3,3), T4(2,2), T5(2,2), Ts(2,2)} andD = 9. Figure
2 (a) shows that the canonical execution can meet the deadlifggure 2 (b) shows that, with no power
management and slack reclamation, actual execution can finish defdfigure 3 (a) shows that in actual
execution,7; finishes at time2 with a slack of3 time units. With greedy slack reclamation, this slack is
given to the next task; that runs onP;. Thus, T3 will execute in6 units of time and the processor speed is
reduced tc% -Sji accordingly. WherTs uses up its timeli misses the deadling as shown in Figure 3 (b).
Hence, even when canonical execution finishes befgrglobal scheduling with greedy slack reclamation

cannot guarantee that all tasks finish befbre

3.2 Global Scheduling with Shared Slack Reclamation (GSSR)

For the example in Section 3.1, greedy slack reclamation gives all of the sldgk fthis means thal
can start execution at timgat a speed og - Sji with 6 time units and finish execution at tinge There

is only 1 time unit left for T which misses the deadline at time ufit In this case, it would be better to



ueue
el n e | wwwEw|ln [ %] 66w

| |
- |
WEN)
i .
0

Time Time

Figure 4: Global Scheduling with Shared Slack Reclamation

sharethe 3 units of slack by splitting it into two parts; i.e., gieunits to73, and1 unit to 7. With slack
sharing T3 starts at time2, executes fob time units at the speed @f- S;ix and ends at tim&. T, starts at
time 4, executes foB time units at the speed (%f- S;iw and ends at tim&. Thus, bothls and7s meet the
deadline. Figures 4 (a) and (b) demonstrate the operations of this scheme PMiraahesT; at time2, it
finds that it hag units of slack. But only2 of these time units are beforé’s expected finish time based on
T»'s WCET. After fetchindls, P; gives2 units (the amount of slack before’s expected finish time) t@;
and shares the remaining slack with.

From a different point of view, sharing the slack may be looked &t dseing allocated 4 time units on
P, instead of 5, withl, being allocated 5 time units oR, instead of 4. Herd? has 2 units of slack and
T has 1 unit of slack. So, in some sense, the situation is simil&y teeing assigned té@% and 75 being
assigned taP;, and all the tasks that are assigned® in canonical execution will now be assignedig

and visa versa.

3.2.1 GSSRforN (> 2) Processor Systems (GSSR-N)

Following the idea described above, we propose the GSSR algorithm for N-processor systems. Before
formally presenting the algorithm, we define #stimated end time (EET9r a task executing on a processor

as the time at which the task is expected to finish execution if it consumes all of the time allocated for it.
Thestart time of the next task (STNfDy a processor is the time at which the next task is estimated to begin
execution on that processor. If no more tasks will execute on that processor within the current frame, the
STNT is defined as the finish time of the last task that executed on that processor.

The GSSR-N algorithm is presented in Algorithm 1. Each processor invokes the algorithm at the begin-
ning of execution or when a processor finishes executing a task. A shared memory holds control informa-
tion, which must be updated within a critical section (nhot shown in the algorithm). The shared memory has
a common queudkeady-Qwhich contains alfeadytasks and an array to recod" N7}, for processoi,

(p=1,...,N). Initially, all tasks are put intékeady-Qn the order of their priorities, and th&T' NT's of



Algorithm 1 The GSSR-N algorithm invoked b,
1: while (1) do
if (Ready-Q# () then
3: T}, = Dequeue(Ready-Q)
4: Find P, such that:
STNT, = min{STNT,...,STNT,}

N

5: if (STNT;y > STNT,)then
6: STNT;y — STNT,;
7: end if

8: EET, = STNT;q + c;
9: STNT;; = EET};
10: Sia = Sjit - gEF =1
11: ExecuteT), at speeds;q;
12: else
13: wait();
14: endif
15: end while

processors are set @o In the algorithm,P;; represents the current processas the current time, anf;4
is the speed oP,,.

At the beginning of execution or whe, finishes a task at timg if there are no more tasks Ready-Q
P4 will stall and sleep until it is waken up by the next frame. Here, we use the funetiit() to put one
processor to sleep (ling3). Otherwise,P;; will fetch the next taskl, from Ready-Qline 3). Becausd,
starts at the smalleST'N'T' in the canonical execution, we exchangE N T;; with the minimumSTNT
if STNT;q > min{STNTy,...,STNT,} (line 4,5 and6). Here, we try to emulate the timing of the
canonical executionP;; then calculates its speef), to executel, based on the timing information and
begins execution. By exchangisg"NT;, with ST NT,., P,; shares part of its slack (specificalB NT;,—
STNT,) with P,.

Reconsider the example from Figure 1 and suppose every task uses its actual execution time. Assuming
that power consumption is equald@q; - *2—3 if no slack is reclaimed dynamically, the energy consumption is
Yes Under global scheduling with shared slack reclamation and longest task first priority

k2
assignment, the energy consumption is computed @i 33 - Csz. Note that if we use the optimal priority

computed to b&9-

assignment as in Figure 1 (b) which optimizes the execution time, the energy consumption is computed to

be21.97 - 4

consumption when considering the dynamic behavior of tasks.

. Hence, the optimal priority assignment in terms of execution time is not optimal for energy

From the algorithm, we notice that at any time (except wReady-Qis empty) the values o§ T NT),
(p=1,...,N) of the processors are always equal to Mdiggest values o ET of the tasks running on
the processors. One of these tasks is the most recently started task (framdifg The task that starts

next will follow the smallesST NT. These properties are used to prove the correctness of GSSR-N (in the



sense that, shared slack reclamation does not extend the finish time of the task set and execution with shared

slack reclamation will use no more time than the canonical execution) as shown in next section.

3.2.2 Analysis of the GSSR-N Algorithm

For the canonical execution, we define t@monical estimated end timg E7}, for each task},. From the
definition, we know thatv E'T}, is the latest time at whiclhj, will finish its execution. f{EET, = EET]
for every task and the canonical execution can finish before firtéen any execution will finish befor@.

To prove thatt ET), = EETY for everyTy, we definemaxy{X1,..., X, } to be the set containing th&
largest elements in the s, ..., X,,}1. We also define the history séf(¢) as the set of tasks that have

started (and possibly finished) execution before or at time

Lemma 1 For GSSR-N, at any timeif T}, is the most recently started task, thB#' 7, € mazy{EET;|T; €
H(t)}; moreover{STNT},...,STNTN} = maxn{EET;|T; € H(t)}.

Proof If n < N, the result is trivial. Next, we consider the case where N. The proof is by induction
onlp, k=1,...,n.
Base caselnitially, after the first/V tasks start execution and before any of them finish, at anyttine

haveH(t) = {T;,i=1,...,N} and
EETN € maxn{EET;|T; € H(t)};

{STNTy,...,STNTN} = maxy{EET;|T; € H(t)}.

Induction step: Assuming that, at any timg 7, (k — 1 > N) is the most recently started task, we

haveH (t) = {T1,...,T;—1} and
EETy 1 € maxn{EET;|T; € H(t)};

{STNTy,...,STNTN} = maxy{EET,|T; € H(t)};

Without loss of generality, assurdeET; = min{STNT,...,STNTN} = min{mazrn{EET;|T; €
H(t)}} (1 <j < k—1). After T}, started and beforgj_,, starts, at any time, 7}, is the most recently

YIf n < N, the remaining values are taken to be zero.

10



started task. HencH (t) = {71, ..., T} } and from line5 to 9 of the algorithm:

EET, = min{STNTy,...,STNTN}+ ¢k
= min{marn{EET;|T; € H(t)}} + cx

— EET) + ¢

Then,EET), € maxn{EET;|T; € H(t)}. The new values o§ T NT's are thus given by:

{STNT,...,STNTy} {{STNT\,...,STNTy} — {EET;}) U{EET;}}

= mazNn{EET|T; € H(t)}; %

Theorem 1 For a fixed independent task déwith a common deadline executing on N-processor systems,
if canonical execution with a priority assignment under global scheduling completes at dtiamey exe-

cution with the same priority assignment under GSSR-N will complete bytime

Proof

For a specific priority assignment, the canonical execution under global scheduling is the same as under
GSSR-N and tasks can be identified by their orders in the ready queue during canonical execution. We prove
this theorem by showing that, for any execution under GSSR-NT; = EETf (i =1,...,n). If n <N,
it is trivial. Next, we consider the case where> N. The proof is by induction off},, k = 1,...,n.

Base caselinitially, GSSR-N set/ E'T; at the beginning of execution without any consideration to the
actual execution time df; (i = 1,...,N). Hence, EET; = EETf,i=1,...,N.

Induction step: Assume thatv ET; = EET{ fori =1,...,k — 1. Atany timet beforeT}, starts, 7},

is the most recently started task. Without loss of generality, assume that:

mazn{EET,|T; € H(t)} = {EETs—a,, ..., EETy_q,_,, EET,_1}

EET; = min{maxzn{EET;|T; € H(t)}}

Here, we have, > ... >ay_1; > landl < j <k — 1. From Lemma 1:

{STNT,...,STNTx} = {EET}_q,,..., EETy_q, ,, EETy_1}

11



WhenT;, begins to run, from lind to 8 of Algorithm 1, we will have (for non-canonical and canonical

execution, respectively):

EET, = min(STNT,...,STNTyN) + cx
= min(EETh—,,- .., EETy—ay_,, EETs_1) + o1
— EET +c

EETS = min(STNTh,...,STNTy) + cx
— min(EET{_,,,...,EET{_, ,EET{_ )+ ¢

= EET{ +c,

Notice thatEET; = EET{ (i = 1,...,k — 1). Thus, we haveEET;, = EET{. Finally, EET; =
EETSfi=1,...,n. O

In the next section, we discuss scheduling with shared slack reclamation for dependent tasks. The idea
of slack sharing is the same as that used for independent tasks. A new concern, however, is to maintain the

execution order implied in the canonical execution of dependent tasks.

4 Power-Aware Scheduling for Dependent Tasks

List scheduling is a standard technique used to schedule tasks with precedence constraints [8, 10]. A task
becomegeadyfor execution when all of its predecessors finish execution. The root tasks that have no
predecessors are ready at tifné.ist scheduling puts tasks into a ready queue as soon as they become ready
and dispatches tasks from the front of the ready queue to processors. When more than one task is ready at
the same time, finding the optimal task order that minimizes execution time is NP-hard [10]. In this section,
we use the same heuristic as in global scheduling. We put into the ready queue first the longest task (based
on WCET) among the tasks that become ready simultaneously. The tasks are numbered by the order at
which they are added to the ready queue during canonical execution. Thati¥ thek entering the ready
gueue in canonical execution is identifiedias

Consider a dependent task set with= {77, T», T3, T4, T5, Ts} and D = 12. The precedence graph is
shown in Figure 5a and the canonical execution is shown in Figure 5b. Task nodes are labeled with the tuple
(¢, a;). For the canonical execution, we see tliaandT are root tasks and ready at tiheTs; and7y are
ready at time when their predecess®i finishes executiorl; is ready at time andTy is ready at times.

Due to dependencies among tasks, a task’s readiness during non-canonical execution depends on the ac-

12



2,2 3,3 Reedy Time '0 '2 "3 Y 6
@—» Queve | T ‘Tz T ‘ Tl T T
\4,4 6,6
(=) AR
31 /,6 AR AR
C j @ 0 12 TTme

T T 1T T T T 17 -
a. Precedence Graph b. Canonical Execution, finish at D=12

Figure 5: List Scheduling for Dual-Processor Systems

tual execution of its predecessors. From the discussion of independent tasks, we kngreddgtslack
reclamationcannot guarantee completion befdpe(i.e., the completion time of canonical execution). We
next show that the straightforward applicatiorsbfired slack reclamatioto list scheduling cannot guaran-

tee that timing constraints are met.

4.1 List Scheduling with Shared Slack Reclamation

Consider the example from Figure 5a and assume that every task uses its actual execution time. In Figure
6a, whenever one task is ready it is put into the queue. From the figure, it is clear that list scheduling with

shared slack reclamation does not finish execution by tirighe completion time of canonical execution).

Ready Time Ready Ti
y y0 vl 2 y6 'Meyo y2 vl v6
Queve T ‘TZ T T ‘ T Ts ‘ Queee | T, ‘TZ T ‘ T T Ts ‘

A I A I
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T
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0 12 Time 0 12 Time
a. Shared Slack Reclamation b. FLSSR-2

Figure 6: List Scheduling with Slack Reclamatidn;= 12.

The reason list scheduling with shared slack reclamation takes longer than the canonical execution is that
the tasks’ ready time change. Thus, the order at which the tasks are added to the queue is different from the
canonical execution order. In the examplg,is readybeforeTs andTy, which leads tdl; being assigned

to P, rather thanP;. This in turn leads to the late completion of all tasks and the deadline being missed.

13



4.2 Fixed-order List Scheduling with Shared Slack Reclamation (FLSSR)

For the schedule in Figure 6a, we need to predgntrom executing befords and 7, to guarantee that
execution does not take longer than canonical execution; that is, we need to maintain the task execu-
tion order the same as in canonical execution. As discussed in Section 2, in the first step (which is not
shown in the following algorithm), the canonical execution is emulated $pdis calculated. During
the emulation, tasks’ canonical execution order is collected and the ready time @f taskalculated as:
RT{ = maz{EET{|T;, — T; € E} when all tasks run at;.

To determine theeadinessf tasks, we define the number wiifinished immediate predecessors (UIP)
for each taskU I P; will decrease by 1 when any predecessor of tBslinishes execution. Task is ready
whenUIP; = 0. Whenever a processor is free, it will check the task at the he@dbtfal-Qto see whether
it is ready or not. If the task is ready, the processor will fetch and execute it; otherwise the processor goes to

sleep. The details of the algorithm are described below.

4.2.1 FLSSRforN (> 2) Processor Systems (FLSSR-N)

As for independent tasks, we assume that the shared memory holds the control information. Algorithm 2
shows the FLSSR-N algorithm. Each procesg@y) invokes the algorithm at the beginning of execution,
when a task finishes execution ét);, or whenP,; is sleeping and signaled by another processor. We use
the functionwait() to put an idle processor to sleep and another fundignal(P) to wake up processor
P. Initially, all tasks are put irGlobal-Qin the canonical execution order (lifig it is important for the
algorithm to keep the canonical execution order to maintain temporal correct@ess).(i = 1,...,n)
are set to the number of predecessors of lsknd ST NT, (p = 1,..., N) are set td) (not shown in the
algorithm).

If the algorithm is invoked by a signal from another processor, it will begin atvagéing for signal’
point (line20). If the algorithm is invoked at the beginning or whEyy finishes a task, it begins at lirse If
the head ofslobal-Qis ready,P;; picks taskT}, from the head oGlobal-Q(line 4). To claim the slackP;y
calculatesE E'T}, as if Tj, starts at the same time as in the canonical execution, whiefTfsor ST NT;4
(whichever is bigger), and claims the difference betweandT},'s start time in the canonical execution as
slack (line9; notice that eithet < RT} ort < STNT;4). ThenP,; calculates the spee}, to executel),
and signalsP,, if P, is sleeping and the new head®fobal-Qis ready (linel2 and13). Finally, P,; runs
T}, at the speed af;; (line 15).

Reconsider the example shown in Figure 5, the execution on dual-processors for FLSSR-2 is shown in
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Algorithm 2 The FLSSR-N algorithm invoked h#,,

1: Put the tasks itGlobal-Qin the order of their canonical execution.
2: while (1) do
3: if (Head(Global-Q)is ready) then
Ty, = Dequeue(Global-Q),
Find P, such that:
STNT, = min{STNT,...,STNT,};
6 if STNT;; > STNT,)then
7: STNT;q — STNT,;
8: end if
9: EFET, = maz{RTS,STNT;q,t} + ci;
10: STNT;y = EETy;

a

11: Sid = Sjit * FET =1 )

12: if ((Head(Global-Q)is ready) AND (P, is sleep) then
13: Signal(Py);

14: end if

15: ExecuteT}, at speed;q;

16: for (EachT; such thatl, — T; € E) do
17: UIP,=UIP;, —1;

18: end for

19: else

20: wait();

21: endif

22: end while

Figure 6b. In order to wait for the readinessiafandTy, P, wastes part of its slack. By maintaining the

same execution order as canonical schedule, all tasks finish on time.

4.2.2 Analysis of FLSSR-N Algorithm

Similar to GSSR-N, at any time (except whéiobal-Qis empty), the values T NT, (p = 1,...,N)
are always equal to th¥ biggest values off E'T" of the tasks running on the processors. One of these tasks

is the most recently started task. The task that starts next will follow the mini§i0MT .

Lemma 2 For FLSSR-N, at any timg if T}, is the most recently started task, there will be
EET; € maxN{EET|T; € H(t)}; moreover{STNT,...,STNTy} = maxy{EET|T; € H(t)}.

Proof The proof is by induction ofi,, k = 1,...,n and is similar to the proof of Lemma 1.
Base caselnitially, after 7; (i = 1,...,m)? start execution and before any of them finish, at any time

we haveH (t) = {T1,...,T,} and

EET,, € maxny{FEET;|T; € H(t)}

2If m < N, it means that there are only tasks ready at tim@; otherwise;n = N, the number of ready tasks is greater than
or equal to,N, the number of processors.
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{STNTy,...,STNTN} = maxy{EET|T; € H(t)}

Induction step: Assume that befor@), started executiori,_; is the most recently started task. At any

timet, we haveH (t) = {T1,...,Tx_1} and

EET, 4 € mCLJ}N{EEﬂ|ﬂ S H(t)}

{STNTy,...,STNTN} = maxy{EET|T; € H(t)}

Without loss of generality, assumieET; = min{STNTy,...,STNTy} = min{maxn{EET;|T; €
H(t)}} (1 <j < k-—1). After T}, starts and before any more tasks finigj,is the most recently started
task, and at any timg H(t) = {11, ..., Ty }. From line6 to 10 of Algorithm 2:

EET, = maz{min{STNTi,...,STNTN}, RT},t} + cy

= max{EET;, RT},t} + ¢

Notice that, wherY}, starts, eithet < RT} ort < EET). Then,

EFETy;, € maxn{EET;|T; € H(t)};

The new values o§T'NT), (p = 1,...,N) are thus given by:

{STNTl, ceey STNTN} {({STNTl, R ,STNTN} — {STNTQ}> U {EETk}}

= marn{EET|T; € H(t)}; %

Theorem 2 For a fixed dependent task detwith a common deadline executing on N-processor systems,
if canonical execution with a priority assignment under list scheduling completes afXjrary execution

will the same priority assignment under FLSSR-N will complete by fime

Proof If all tasks use their WCET, canonical execution under list scheduling is the same as under FLSSR-
N. For a specific priority assignment, the tasks are numbered by the order in which they &itdyald
Q during canonical execution. We prove this theorem by showing that, for any execution of FLSSR-N:
EET; = EETf (i=1,...,n). The proof is by induction off,, k =1, ..., n.

Base caselnitially, FLSSR-N set£ ET;,i = 1,...,m(m < N) at the beginning of execution without

any consideration to the actual execution tim&@pfHence EET;, = EET¢, i =1,...,m(m < N).

16



Induction step: Assume thatl ET; = EET fori =1,...,k— 1. Atany time beforel}, starts,T},_; is

the most recently started task. Without loss of generality, assume that:
EET; = min{maxny{EET;|T; € H(t)}}

mazN{EET,|T; € H(t)} = {EETs—a,, ..., EETy_q)_,, EET,_1}

Here,a; > ... >any_1>1,1<j<k—1. FromLemma 2:
{STNT,...,STNINn} ={EET};—¢,,...,EET_¢,_,,EET;_1}

WhenT), starts at time (non-canonical execution) @r(canonical execution), from lingto 9 of Algorithm

2, we will have:

EET, = max{min{STNTy,...,STNTN}, RT{,t} + ci
= maz{min{EETy_a,, ..., EETy_ay ., EETy_1}, RISt} + ¢
EET! = max{min{STNTy,...,STNTN}, RT{,t'} + cx

= maz{min{EET{_,,,...,EET{_,  ,EET{ |}, RT{ '} + ¢y

WhenTj, starts, eithet < RT} andt’ < RTY, or
t <min{STNTy,...,STNTy}andt’ < min{STNT,...,STNTN}.
Notice that,EET; = EETf (i =1,...,k — 1), we will have:

max{min{EETy_q,,..., EET,_q\_,, EET;_1}, RT{, t}

= max{min{ EET}_,,,...,EET;_,. ,EET{ ,}, RT{,t'}

ThusEET, = EETY. Finally, EET; = EETS,i = 1,...,n. o

In the above discussion, we assumed continuous voltage/speed and ignored the speed adjustment over-
head. However current variable voltage processors have only discrete voltage/speed levels [16]. Moreover,
there is time and energy overhead associated with voltage/speed adjustment. In the following section, we

discuss how to incorporate these issues into the scheduling algorithms.
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5 Accounting for Overhead and Discrete Voltage/Speed Levels

5.1 \Voltage/Speed Adjustment Overhead

There are two kinds of overhead that have to be considered when changing processor voltagersyaret!:

energy The time overhead affects the feasibility of our algorithms; that is, whether the timing constraints
can be met or not. We focus on time overhead first and discuss energy overhead later. When time overhead is
considered, we need a model to calculate that overhead and a scheme to incorporate it into the algorithms. In
the following, we propose a new schemestzck reservationo incorporate time overhead into the dynamic

speed adjustment algorithms.

5.1.1 Time Overhead

We model the time overhead as consisting of two parts: a constant part that is a set-up time and a variable

part that is proportional to the degree of voltage/speed adjustment. Hence:
Timeoverhead =C+K- ’SI - S2|

whereC andK are constants, ans} is the processor speed before adjustmentsrid the processor speed
after the adjustment. Here, the choicel6f= 0 results in a constant time overhead. In the simulations of
Section 6, we sef’ and K to different values to see how they affect energy savings.

One conservative way to incorporate the time overhead is by adding the maximum time overhead of
voltage/speed adjustmenit,+ K - (Syaz — Smin ), t0 the worst-case execution time for all the tasks. In this
case, there will be enough time to change speed for each task.

We propose the idea of slack reservation to incorporate the time overhead. Specifically, whenever we
try to use slack to slow down processor speed, we reserve enough slack for the processor to change the
voltage/speed back to the appropriate level in the future. In this way, we ensure that future tasks can be
executed at the appropriate speed to meet the deadline. The idea is illustrated in Figure 7.

From the figure, wheff; finishes early with slack;, we use a portion of ; to change the voltage/speed
for T; 1. We also reserve enough slack for changing the processor voltage/speed BagkmoenT;
uses up its allocated time. The rest of the slack is used to slow down the spEeql.of

Suppose that the current speedToiis S; and assume that the speed 7or; is S;;1 (to be computed).

The overhead));, to change speed froi} to S;1 1, and the overheadi;, to change speed fros; back
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Figure 7: Slack Reservation for Overhead

to S, are:

0;=C+K -|[Siq1— Si
Ry =C+ K - (Sjit — Si+1)
Hence,S;11 can be calculated by giving additional tim{é,; — O; — R;), to taskT;,, that is:

Ci+1
Ciy1+Li—O0; — R;

Sit1 = Sjit -
Assuming thatS; 1 < S;, then the above equation is a quadratic equatias in:
Q'K'Si2+1+[ci+1+Li_2'C_K'(sz't“!‘si”'Si—i-l_Sjit'Ci—i-l =0

If no solution is obtained withS;; < S; from the above equation, the assumption is wrong; that is,
Sit1 > S;. Itis possible to seb; 1 = S; if the slackL; — R; is enough forT; 1 to reduce the speed from
Sjit 10 S;, that is, if Sy - cﬂiﬁ < S;, we can seb;; 1 = 5;. Ifitis not possible to sef; 1 < 5;, we
haveS;; > S; andS;;1 can be solved as:

Siy1 = Sjit Cirl
ciy1+Li—2-C—K-(Sji —S;)
Finally, if S;11 computed from the above equation is larger thap, we setS; 1 = Sj;.
In most cases, the reserved slagk, will not be used and becomes part of the reclaimed slagk.
However, in some cases aftér, ; finishes, the useful slacl,;; — R;, is not enough to use fdf; ;2. In
these cased?; will be used to change the speed backtg and7;,, will run at S;;; (see Figure 8).
When considering time overhead, slack sharing between processors needs to be modified. Referring to

Figure 9, suppose processBrruns atS; and finishes early. As described in Section 3, it would share its
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Figure 9: Slack Sharing with Overhead Considered

slack with processaP; running atS;;; if STNT; > ST NTj. But, if after slack sharing there is not enough
time for P; to change its speed back $;;, we should not share the slack. ProcesBoneeds to change

speed taS;; first and share the slack later (if possible).

5.1.2 Energy Overhead

Besides the time overhead of voltage/speed adjustment, there is also energy overhead associated with the
speed change. Suppose the energy overhead for changing speef) tm8j is E(S;, S;). Assuming that

the energy consumption @f;, is E;;1 with Sj;; and £, with S; 4, then, it is not efficient to change

the speed frons; to S; 1 for T; 1 if E(S;, Siv1) + Ejy + E(Siy1,Sjit) > Eiv1 + E(S;, Sjir). In other

words, even if the timing constraints can be met with the time overhead, we may decide nof{o raha

lower speed (if the energy overhead is larger than the energy saved by the speed change).

5.1.3 Setting the Processor to the Idle Speed

When no voltage/speed adjustment overhead is considered, we can always let the processor run at the slowest
speed when it igdle (not executing a task). This speed achieves the least energy consumption for the idle
state. With the overhead considered, for independent tasks, the idle state only appears at the very end of
the execution and we can set the processor to idle if there is enough time to adjust the voltage/speed. For
dependent tasks, however, the idle state may appear in the middle of execution. To ensure that future tasks

finish on time, during idle state the processor needs to run at spgesince the processor cannot predict
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exactly when the next task will be available. We use this scheme to deal with the idle states appearing in the
middle of execution.

We may put the processor to sleep when it is idle and wake it up before the next task is ready by predicting
the ready time of the next task using the task’s canonical ready time. This scheme will require a 'watchdog
timer’ to specify when the task is ready. However, it is possible that a task arrives before the timer expires,
in this case, the processor needs to be activated and the timer deactivated. While this scheme can possibly
achieve some additional energy savings, it makes the implementation more complex and for the purpose of
this paper, will not be considered further.

Another way to deal with the idle state for dependent tasks is to be conservative and add the maximum
overhead to each task’s worst case execution time. In this case, we can always put the processor to sleep
when it is idle and guarantee that there will be enough time to speed up the processor when the next task is

ready to execute.

5.2 Discrete Voltage/Speed Levels

Currently available variable voltage processors have only several working voltage/speed settings [16]. Our
algorithms can be easily adapted to discrete voltage/speed levels. Specifically, after calculating a given
processor speefl, if S falls between two speed level§;(< S < S;14), settingS to S;,1 will always
guarantee that the tasks finish on time and that the deadline is met.

With the higher discrete speed, some slack will not be used for the next task and thus will be available
for future tasks. Our experimental results show that, when sharing slack with future tasks, scheduling
with discrete voltage/speed levels sometimes have better performance, in terms of energy savings, than

continuous voltage/speeds.

6 Performance Analysis

In this section, we empirically demonstrate how slack reclamation reduces energy consumption. Along with
synthetic data, we also use several sets of trace data (from actual real-time multiprocessor applications) in
the simulation. We compare the energy consumed when using the combination of static power management
and dynamic supply voltage/speed adjustments with the energy consumed when using only static power
management. Following the idea of the minimal energy scheduling technique for uniprocessor systems [17],
we consider the clairvoyant (CLV) algorithm that uses the tasks’ actual run time information to generate the

schedule and to compute a single voltage/speed for all the tasks (the idle state may be still in the schedule).
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We also consider an absolute lower bound (ALB) scheme which assumes the application is fully parallel
and is obtained by averaging the total actual workload on all processors with the speed being uniformly
reduced (there is no idleness in this case, and pre-emption is needed to generate the schedule; e.g. P-fairness
scheduling [3]). CLV and ALB are achievable only via post-mortem analysis and are impractical since they

require knowledge of the future.

6.1 Experiments

First, we describe the simulation experiments. For the synthetic data, to get the actual execution time for
each task, we defing; as average/worst case ratio fifs execution time, and the actual execution time of

T; will be generated as a normal distribution around ¢;. For the task sets, we specify the lower,f,)

and upper &) bounds on the task’s WCET and the averagfor the tasks, which reflects the amount

of dynamic slack in the system. The higher the valuexpthe less the dynamic slack. A task's WCET

is generated randomly betweet),(,, cmae) @anda; is generated as a uniform distribution arowad For
simplicity, power consumption is assumed to be proportionaftdn the following experiments, energy is
normalized to the energy consumed when using only static power management. We also assume continuous
voltage/speed scaling and no penalty for changing voltage/speed if not specified otherwise. The effects of
discrete voltage/speed scaling and voltage/speed adjustment overhead are reported in Sections 6.5 and 6.6.
When no overhead is considered, the processor speed in the idle state i8.set%g,; when overhead is
considered, for the idle state appearing at the end of schedule, the processor speedis sét {0 while

for the idle state in the middle of execution, the processor speed is Sgt &5 discussed earlier.

6.2 GSSR and Partition Scheduling with Greedy Slack Reclamation vs. SPM

The results in this section were obtained by running a synthetic independent task setowékks and the

results are the average t¥00 runs. The WCET of tasks are generated by settjpg = 1 andc;,q, = 50.

In Figure 10a, the number of processor2jsand « is varied from 0.1 to 1.0. We compare the global
scheduling with shared slack reclamation (GSSR) with partition scheduling and greedy slack reclamation
(PGSR). For PGSR, we use the longest task first partitioning to divide tasks among processors, and then
apply greedy slack reclamation on each processor [20]. From the figure, we see that global scheduling with
shared slack reclamation consumes less energy than partition scheduling with greedy slack reclamation.
The reason is that the slack sharing scheme gives more slack to longer tasks and less to shorter tasks. This
balances the speed of each task and reduces energy consumption. When the average/worst egse ratio (

about0.5 (that is, on the average we have 50% of time as dynamic slack), global scheduling with shared
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Figure 10: Energy Savings for Independent Tasks

slack reclamation results in energy saving of more than 60% versus static power management: When
increases, there is less dynamic slack and, compared to SPM, the energy saving of GSSR decreases. Note
that, for independent tasks, only a little idle state appears at the very end of the schedule and CLV gets almost
the same energy savings as ALB. Compared with these lower bounds, the performance of our algorithm is
within 15% difference (whea = 0.5).

To see the shared slack reclamation scheme’s performance on systems with different number of proces-
sors, we run the synthetic independent task set by changing the number of processors and settifg
The results are shown in Figure 10b. Compared to SPM, the energy savings of GSSR is almost the same
when the number of processors is less than or equal to 8. When the number of processors is more than 8,
the energy savings of GSSR decreases sharply. The reason is that the first task on each processor is always
executed ab;;; and the slack at the very end on each processor is wasted. Since there are only 100 tasks in
the task set, with more processors, such as 16 or 32, the number of tasks rurfjipgrd the total amount
of slack wasted increases quickly. While compared with PGSR, our algorithm is always better. When the
number of processors is less or equal to 8, our algorithm is within 13% of CLV and ALB. With more proces-
sors, such as 16 or 32, ALB performs better than CLV. The reason is that ALB assumes the actual workload

is evenly balanced among all processors.

6.3 FLSSRvs. SPM

In this section, we consider the dependent task sets and compare the energy consumption used by FLSSR

vs. SPM. First, we consider an example withsynthetic tasks. The tasks’ WCET are generated randomly
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Figure 11: Energy Savings for Dependent Tasks

from 1 to 50 and we assume a 2-processor system. In Figure 11a, we Y@ 0.1 to 1.0. The energy

saving of fixed-order list scheduling with shared slack reclamation (FLSSR) compared to that of static power
management (SPM) varies from 0% wheris 1.0 to 72% whemn is 0.1. Whena increases, there is less
dynamic slack and compared to SPM the energy savings of FLSSR decreases. On averageswlien

the energy savings is approximately 40%. Since there is more idle time for dependent tasks, compared with
ALB, the performance of our algorithm is within 35% difference (wles: 0.5).

We next consider two matrix operations, matrix-multiplication and Gaussian-elimination (assuming a
5 x 5 matrix of 100 x 100 submatrices) [9], and measure the effectiveness of our techniques for these
benchmarks. The worst case execution time of each task is determined by the operations involved. We
conduct the same experiments as above, achieving similar energy savings for fixed-order list scheduling
with shared slack reclamation. The results are shown in Figures 11a.

For Gaussian-elimination, we also considerex a« 20 matrix of 100 x 100 submatrices to allow more
parallelism. Witha. = 0.5, we vary the number of processors as shown in Figure 11b. For this application,
when the number of processors is larger tRathe energy consumption of FLSSR increases sharply com-
pared to SPM. One reason is similar to what happen for GSSR: the number of tasks rurffjipaad the
amount of slack wasted increases. Another reason is the idleness of the processors due to the dependence
among tasks. Compared with CLV, our algorithm is within 15% difference. Note that ALB assumes a fully

parallel application, which is not possible for Gaussian-elimination with a large number of processors.
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6.4 FLSSR with Trace Data

In this section, we use several sets of trace data for different parallel applications to show the effectiveness
of our algorithms. The trace data is gathered by instrumenting the applications to record their execution time
for each parallel section. The applications are then run on a Pentiui®ell H z with 128\ B memory.

The first application we considered is automated target recognition (ATR). ATR searches regions of inter-
est (ROI) in one frame and tries to match specific templates with each ROI. The dependence graph for ATR
is shown in Figure 12a. Figure 12b shows the run time information about the tasks in ATR for processing
180 consecutive frames on our platform. Here, we assume that ATR can process up to four ROIs in one
frame and that each ROI is compared with three different templates. If the number of ROIs is le$s than

the actual run time of the tasks corresponding to undetected ROIs (the first few ROIs) i8.set to

Prescreen
[ min(us) [ max(us) |
. Prescreen 1146 1299
Normalize .

Detections Norm. Detection 429 748

Template 1 466 574

Template 2 466 520

@@@ @@@ Compare Template 3 467 504
Templates

a. Dependence Graph of ATR b. Execution Time for Tasks in ATR

Figure 12: The Dependence Graph of ATR to Process One Frame and The Execution Time for The Tasks of
ATR. Assuming up to 4 detections in one frames and 3 templates.

Second, we consider the Berkeley real-time MPEG-1 encoder [12]. By setting the group of pictures
(GOP) asl5 with the pattern ofBBPBBPBBPBBPBB and forcing it to encode the last frame, the depen-
dence graph to process the frames in one GOP using decoded frame as reference is shown in Figure 13a.
There are three different frames in the dependence graphl ffame is the intra-frame that is encoded as
a single image with no reference to any past or future frames.PTir@me is the forward predicted frame
that is encoded relative to the past reference fram@& ffame is a bi-directional predicted frames that is
encoded relative to the past, the future or both reference frames. The reference frame is ¢ithrest Bn
frame. For the~lower-Gardenand Tennismovies with each havin@50 frames, Figure 13b shows the run
time information of processing different frames (the time is only for encoding and does not include 1/O).

Using the trace data, we vary the number of processors and run these two applications (note that the

maximum parallelism for Berkeley MPEG-1 encoder is 3 for one GOP) on our simulator. The results of
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Figure 13: The Dependence Graph and Execution Time to Process Different Frames of MPEG-1 Encoder;
assuming the encoding sequence is IBBPBBPBBPBBPBB, force to encode the last frame and use decoded
frame as reference.

energy savings are shown in Table 1. There is more energy savingsriorsthan Flower-Gardenfrom
MPEG-1 encoder because the encoding timeTtorisvaries more thafrlower-Garden(see Figure 13b).

CLV gets 7% -32% more energy savings than FLSSR and ALB gets 27%-44% more. Again, ALB assumes
fully parallel application with preemption and an evenly balanced actual workload. It is impractical and is

not a tight lower bound. The results are consistent with the earlier results from the synthetic data.

Table 1: Energy Savings vs. SPM using Trace Data

ATR MPEG-1 Encoder

Flower Tennis
2-Proc | 3-Proc | 4-Proc 2-Proc | 3-Proc | 2-Proc | 3-Proc
FLSSR || 26.35% | 38.65% | 41.66% 17.42% | 16.53% | 25.16% | 23.77%
CLV 58.83% | 54.71% | 52.14% 24.11% | 26.43% | 35.07% | 36.92%
ALB 70.58% | 78.19% | 80.43% 44.33% | 53.75% | 52.65% | 60.67%

6.5 Considering the Overhead

To observe how the time overhead affects the algorithms’ performance in terms of energy savings, we set in
the experiments the constant part of the overhégdd different values relative to the smallest task’s worst

case execution time. We also experiment with setting the co-efficiéptd different values from 0 to 1.

The maximum variable part of time overhead (changing speed bet$yggnand.S,,;,) equalsk times the

smallest task’s worst case execution time. Recall that the range of task’s worst case execution time is from
1 to 50 and the smallest task has worst case execution time of 1. Figure 14a shows an independent task set
with 100 tasks, and Figure 14b shows the synthetic dependent task s@Owébks. The results reported

here do not include the energy overhead optimization discussed in Section 5. We expect better results when

26



C=100% —+—

g C=80% ---%--- g
=] =]
§ B
S 2
c c
(=] (=]
1S 1S
g g
Q Q
o o
&

5 S
v hv

s ‘ ‘ ‘ 60 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
K K
a. GSSR vs. SPM b. FLSSR vs. SPM

Figure 14: Energy Savings with Varied Time Overhead of Voltage/Speed Adjustment

this optimization is considered.

From the figures, the constant part of the overhead affects the algorithms’ performance the most. With
the maximum overhead considered, for independent tasks there is a 6% difference in energy consumption
from the case with no overhead. For dependent tasks, the difference is 12%. There is a big jump between
the case with no overhead and with minimal overhead. The reason is that without overhead the idle state
runs at0.1 - S;;;, and with overhead, the idle state runsSa§ = S,,.. (l0ad=100%) to ensure that future
tasks finish on time (see Section 5).

Note thatC' and K are dependent on specific processor hardware and the tasks running on the processor.
Suppose that the minimum task has the worst case execution time of 10 ms, and we are using a Transmeta
processor that takes 5 ms to change voltage/speed [16]. HEneeh0% and K = 0. Similarly, the AMD
K6-2+ was measured to have an overhead of 0.4 ms to change voltage aadoi€hange frequency [22].

Thus for AMD, C' = 4% and K = 0. For the IDARM processor that needs jZ§ to change voltage [5],
C =0.7%andK = 0.

6.6 The Effect of Discrete Voltage/Speed Levels

To see how discrete voltage/speed levels affect the algorithms’ performance in terms of energy savings,
we set different levels betwe@®0M Hz and700M H z (the speed is from Transmeta TM5400 [16]) and

their corresponding supply voltage. The levels are uniformly distributed at the same increment between two
discrete speed levels. The idle state runs at the minimum speed and consumes the corresponding energy.

For GSSR, we run the task set with 100 tasks, and for FLSSR we run the synthetic task 2@t tagks.
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Here we set the number of processorg and fixa = 0.5. The energy consumption of GSSR and FLSSR
vs. SPM with different number of voltage/speed levels is shown in Figure 15, wkémméans continuous

voltage/speed adjustment.
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Figure 15: Energy Consumption of GSSR and FLSSR vs. SPM with different number of voltage/speed
levels

Since the workload i300%, there is no static slack arl;; = Sy..,. For static power management,
because the processors runs at eitti®)\/ H = or 700M H z for all speed configurations, the energy con-
sumption is the same.

From Figure 15, we see that energy consumption of the algorithms with continuous adjustment is not
always less than that with discrete voltage/speed levels, and more levels do not guarantee less energy con-
sumption. The reason is that, with discrete voltage/speed levels, the processors set their speed to the next
higher discrete level, which saves some slack for future tasks. When sharing the slack with future tasks,
the energy consumption of the algorithms with discrete voltage/speed levels may be less than that with
continuous adjustment, and a few levels may be better than many levels. In any case, 4-6 levels are suffi-
cient to achieve the effect of continuous adjustment, which is the same observation as reported in [6] for

uniprocessor with periodic tasks.

7 Summary

In this paper, we introduce the conceptstdick sharingon multi-processor systems to reduce energy con-
sumption. Based on this concept, we propose two novel power-aware scheduling algorithms for independent
and dependent tasks. In both cases, we prove that scheduling with slack reclamation will not cause the exe-

cution of tasks to finish later than the completion time in canonical execution, where each task uses its worst
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case execution time. Specifically, if canonical execution of a task set can finish befor@ timen the two
proposed algorithms, global scheduling with shared slack reclamation (GSSR) and fixed-order list schedul-
ing with shared slack reclamation (FLSSR), will finish the execution of the tasks bhBfof@ompared to

static power management (SPM), Our simulation results show that GSSR and FLSSR achieve consider-
able energy saving when the task’s execution time is smaller than their worst case execution time (which is
true for most real applications). Using trace data from several real applications, such as automated target
recognition [23] and Berkeley MPEG-1 encoder [12], the results show that our schemes can sal&4ip to
energy compared to SPM.

The effect of discrete voltage/speed on the performance of the algorithms is also studied. Our simulation
results show that a few discrete voltage/speed levels are sufficient to achieve almost the same or better energy
savings than continuous voltage/speed.

Finally, we propose a scheme to incorporate the voltage/speed adjustment overhead into our scheduling
algorithms usingslack reservation Based on the assumption that it takes a few milliseconds to adjust
processor supply voltage and speed [21], our simulation results show that the effect of the overhead on

energy saving ranges frofi¥% to 12%.
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