1

Reliability-Aware Energy Management for Periodic Real-Time Tasks

Dakai Zhu Hakan Aydin
Department of Computer Science Department of Computer Science
University of Texas at San Antonio George Mason University
San Antonio, TX, 78249 Fairfax, VA 22030
dzhu@cs.utsa.edu aydin@cs.gmu.edu
Abstract

The prominent energy management technique in real-time embedded systems, Dynamic Voltage and Frequency
Scaling (DVFS), was recently shown to have direct and adverse effects on system reliability. In this work, we propose
static and dynamiceliability-aware energy managemesithemes for a set gleriodic real-time tasks to minimize the
system-widenergy consumption while preserving system reliability. Focusing on EDF scheduling, we first show that
the problem is NP-hard and propose ttesk-level static, utilization-based heuristics. Then, we develgpbalevel
dynamic (on-line) scheme by building on the ideansfpper-tasksto monitor and manage dynamic slack efficiently
in reliability-aware settings. Our schemes incorporate recovery tasks/jobs to the schedule as needed for reliability
preservation, while still using the remaining slack for energy savings. Simulation results show that all the proposed
schemes can achieve significant energy savings while preserving the system reliability. The energy savings obtained
by the static heuristics are shown to be close to those of the static optimal solution by a ma%§in dfurther,
by effectively using the run-time slack, the dynamic schemes are able to yield energy savings similar to those of
ordinary (butreliability-ignorant) energy management algorithms, but without suffering from drastically decreased
system reliability figures.

Introduction

The phenomenal improvements in the performance of computing systems have resulted in drastic increases in power

densities. For battery-operated devices with limited energy budget, energy has been recognized as a first-class system

resource [29]. Many hardware and software techniques have been proposed to manage power consumption in modern

computing systems and power aware computing has recently become an important research area. One common strategy

to save energy is to run the system components at low-performance operation points, whenever possible. For example,

DVFS scales down the CPU frequency and supply voltage simultaneously to save energy [28].

For real-time systems where tasks have stringent timing constraints, scaling down the clock frequency (processing

speed) may cause deadline misses and special provisions are needed. In the recent past, several research studies explored

the problem of minimizing energy consumption while meeting all the deadlines for various real-time task models. These

include also a number of power management schemes which exploit the available static and/or diackitiche
system [1, 22, 24].

Reliability and fault tolerance have always been major factors in computer system design. Due to the effects of

hardware defects, electromagnetic interferences and/or cosmic ray radiations, faults may occur at run-time, especially in

systems deployed in dynamic/vulnerable environments. With the continued scaling of CMOS technologies and reduced

design margins for higher performance, it is expected that, in addition to the systems that operate in electronics-hostile
environments (such as those in outer space), practically all digital computing systems will be much more vulnerable to
transient faultg8]. Thebackward error recoveryechniques, which restore the system state to a previous safe state and
repeat the computation, can be used to tolerate transient faults [23]. In real-time systems, backward recovery techniques
often rely ontemporal redundangymanifested in the form of slack time.

It is worth noting that both DVFS and backward recovery techniques are based on (and compete for) the active
use of the system slack. Thus, there is an interesting trade-off between energy efficiency and the system reliability.
Moreover, DVFS has been shown to have a direct effect on the rate increases of transient faults, especially for those
induced by cosmic ray radiations [34], which further complicates the problem. Hence, for safety-critical real-time
embedded systems (such as satellite and surveillance systems) where reliability is as important as energy efficiency,
reliability-cognizantenergy management becomes a necessity.

Although fault tolerance and energy management have been well studied in the context of real-time systems indepen-
dently, only a few studies investigated the implications of having both fault tolerance and energy efficiency requirements
very recently [7, 21, 27, 30]. As an initial study, we previously proposegliability-aware power management (RA-

PM) scheme that dynamically schedules a recovery job at task dispatch time, hence preserving the system reliability [32].
The scheme is further extended to multiple aperiodic tasks that share a common deadline [33]. However, preemptive
scheduling, which is common fareriodictask systems, has not been considered.

In this work, we study both static and dynamic RA-PM schemes for a set of periodic real-time tasks scheduled by
preemptive Earliest-Deadline-First (EDF) policy. Specifically, we consider the problem of exploiting the spare CPU
capacity for energy savings while preserving the system reliability. We show that the optimal static RA-PM problem is
NP-hardand propose two efficient heuristics for selecting a subset of tasks to use the spare capacity for the objectives
of energy and reliability management. Moreover, we develggbdeveldynamic RA-PM algorithm, that tracks and
manages the dynamic slack which may be generated at run-time, again for these dual objectives. The latter algorithm is
built on thewrapper tasknechanism: the key idea istonservaéhe dynamic slack allocated to scaled tasks for recovery,
which is essential for preserving reliability. To the best of our knowledge, this is the first research effort that provides a
comprehensive energy management frameworlpéoiodicreal-time tasksvhile preserving the system reliability

The remainder of this paper is organized as follows. The system model and problem formulation are presented in
Section 2. In Section 3, we present the task-level, utilization-based static RA-PM schemegapher-taskconcept
is introduced and the job-level dynamic RA-PM scheme is presented in Section 4. Simulation results are presented and

discussed in Section 5. Section 6 reviews the closely related work and Section 7 concludes the paper.

2 System Model and Problem Description

2.1 Application Model

We consider a set of independent periodic real-time t&sks {T},...,T,,}. The taskT; is characterized by a pair
(pi, c;), wherep; represents its period angldenotes its worst case execution time (WCET). FHgob of T}, which is
referred to ag/;;, arrives at timgj — 1) - p; and has a deadline gf- p;.

In DVFS settings, it is assumed that the WCETof taskT; is given under the maximum processing spéggd...

For simplicity, we assume that the execution time of a task stialesrly with processing speédThat is, at speed,
the execution time of task; is assumed to be - f’"%

The system utilization is defined &= """ | u;, whereu; = ;— is the utilization of taskl’;. The tasks are to be
executed on a uni-processor system according to the preemptive EDF policy. Using the well-known feasibility condition
for EDF [20], we assume that < 1.

2.2 Power Model

The relation between the supply voltage and operating frequency is known to be almost linear [4]. DVFS reduces supply
voltages for lower frequencies [28] and we will use the téreguency changé stand for both supply voltage and
frequency adjustments. Considering the ever-increasing static leakage power due to scaled feature size and increased
levels of integration [17] as well as the power-saving states provided in modern power-efficient components (e.g., CPU
[6] and memory [18]), in this work, we adopt the simglgstem-level power modetoposed in [34], where the power

consumptionP of a computing system is given by:

Here, P; is thestatic power which can be removed only by powering off the whole system. It includes the power to
maintain basic circuits and keep the clock runnifity,, is thefrequency-independent active poywhich is a constant
and corresponds to the power that is independent of CPU processing speed. It can be efficiently removed by putting
systems into sleep state(s) [6, 18}, is thefrequency-dependent active poweshich includes processor’'s dynamic
power and any power that depends on system processing speeds [4, 18].

When there is a computation in progress, the systemetiseand’s = 1. Otherwise, when the system is in power-
saving sleep mode or turned off = 0. The effective switching capacitan€g; and the dynamic power exponent(in
general2 < m < 3 [4]) are system-dependent constants grisl the processing frequency. For simplicity, normalized
frequencies are used (i.gyq. = 1.0).

Despite its simplicity, the above power model captures the essential components for system-wide energy manage-
ment. Note thatenergyis the time integral of power. For a given job, the energy consumption to execute it will be
E = P -t, whereP is the power level and is the job’s execution time. Intuitively, lower frequencies result in less
frequency-dependent active energy consumption. But with reduced speeds, the job runs longer and thus consumes more
static and frequency-independent active energy. Therefore, a miemagjy-efficient frequend.., below which DVFS
starts to consume more total energy, does exist [13, 17, 24]. From the above equation, one canflindstgaten as
[34]:

Pina

fee =T m 2

Consequently, we assume that the CPU frequency is never reduced below the thfgsfmidnergy efficiency. We

1A number of studies have indicated that the execution time of tasks does not scale linearly with reduced processing speed due to accesses to
memory [26] and/or I/O devices [3]. However, exploring the full implications of this observation is beyond the scope of this paper and it left as future
work.

2Considering the prohibitive overhead of turning on/off a system (e.g., tens of seconds), we assume that the system will not be turned off during
the interval considered anig; is always consumed.

develop our framework by assuming that the frequency can vary continuouslyffroto f,,.... However, we also
discuss the implications of having discrete speed levels in Section 5.3.

2.3 Fault Model

During a job’s execution, a fault may occur due to various reasons, such as hardware failures, software errors, electro-
magnetic interferences as well as the effects of cosmic ray radiationgrafsgentfaults occur much more frequently
thanpermanenfaults [15], especially with the continued scaling of CMOS technologies and reduced design margins [8].
Consequently, in this paper, we focus on transient faults and explore backward recovery techniques to recovery them. It
is assumed that the faults are detected usargty(or consistencychecks at the completion of a job’s execution, and if
needed, the recovery task is dispatched, by taking the form of re-execution [23].

In our previous work [34], we have studied the negative effects of DVFS on transient faults induced by cosmic ray
radiations. Assuming that transient faults follow Poisson distribution [30], the average transient fault rate for systems

running at frequency (and corresponding supply voltage) can be expressed as [34]:

A(f) = 2o - 9(f) 3

where) is the average fault rate corresponding to the maximum frequgngy. That is,g(fima.) = 1. With reduced
processing speeds and supply voltages ctiteeal charge which is the smallest charge needed to cause a soft error,
generally decreases and leads to increased fault rates [25]. Therefore, wg flaxel for f < fiaz-

Moreover, considering the relationship between transient fault rates, critical charge, supply voltages and the number
of particles in the cosmic rays [11, 25, 36], we have derive@gponentiaffault rate model:\(f) = Ao - g(f) =
)\010%, where the exponent (> 0) is a constant which indicates the sensitivity of fault rates to DVFS [34].

The maximum fault rate is assumed to bg,, = \o10%, which corresponds to the minimum frequengty (and
corresponding supply voltage).

2.4 Problem Description

Our primary objective in this paper is to develop power management schemes for periodic real-time tasks executing on
a uni-processor system and to preserve system reliability at the same time. Defalmbikty of a real-time job as the
probability of being correctly executed before its deadli@ae of the key findings reported in [34] is that the reliability
of any job whose execution is scaled through DVFS decreases drastically due to the increased fault extesdad
execution time.

Without loss of generality, we assume that the system reliabiliaisfactorywhen no power management scheme
is applied, even under the worst-case scenario (i.e., all tasks take their WCETS). Note that the reliability of a real-time
system depends on tl@rrect execution ofall jobs within their deadlines. In order to preserve system reliability, for
simplicity, we focus on maintaining the reliability ofdividual jobs in this work. For the cases where recovery jobs are
used to achieve the specified reliability, such recovery jobs can be considered as normal jobs and their reliabilities are
also preserved. Specificallpr a periodic real-time task set with utilization U, we consider the problem of how to
use the spare CPU utilizationl — U, as well as the dynamic slack generated at run-time, for maximizing energy
savings while keeping the reliability of any job of taskT; no less thanR? (i = 1,...,n), whereR? = e~*o¢ (from

Poisson fault arrival pattern and the average fault xatg82]) is the original reliability for jobs of task’;, when there
is no power management and the jobs uses their WCETSs.

2.5 Reliability-Aware Power Management (RA-PM)

Conventionally, DVFS-basedrdinary power management schemes exploit all the available (dynamic or static) slack
for energy management and are, consequemtigbility-ignorant (in the sense that no attention is paid to the potential
effects of DVFS on task reliabilities). Instead of usglythe available slack for DVFS to save energy, one can reserve
a portion of the slack to schedule orezovery jobR.J for any job.J whose execution is scaled down, to recuperate the
reliability loss due to the energy management [32]. The recoverRjdlwill be dispatched (at the maximum frequency
fmaz) ONly if a transient fault is detected whehcompletes. The recovery is in the form of re-execution Bdchas the
same WCET as that of [23].

With the help ofR.J, the overallreliability R of job J will be the summation of the probability of being executed
correctly andhe probability of having transient fault(s) durings execution while the recovery joB.J being executed
correctly. Thereforeif the amount of available slack ismorethan the WCET of a job, by scheduling a recovery
job (e.g., re-execution), one can guarantee to preserve the reliability of a real-time job while still obtaining energy
savings using the remaining slack, regardless of different fault rate increases and scaled processing spgadk

In increasing level of sophistication and implementation complexity, we first introdudagkédevel staticschemes
and therjob-level dynamischemes in the next two sections.

3 Task-Level Static Schemes

I 9

|

0 7 14

a. the optimal ordinary SPM

3 3, Rl t

0 7 14

b. task-level RA-PM with managing tagk
RJ

RJ, Yl 1 Ry t

0 7 | | 14

c. task-level RA-PM with managing tasts and7»

Figure 1: Static schemes for three tag$ (1, 7), 7>(2,14), T5(2,7)}.

To start with, we can consider static RA-PM schemes that make their decisionsdagkHevel In this approach, for
simplicity, all the jobs of a task have the same treatment. Thatis, if a given task is selected for energy management, all its
jobs will run at the same scaled frequency; otherwise, they will rufy,at.. From the above discussion, to recuperate
reliability loss due to scaled execution, easttaled joB will need a corresponding recovery job within its deadline,

should a fault occur.

3We use the expressi@taled jobto refer to any job whose execution is slowed down through DVFS, for energy management purposes.

To provide the required recovery jobs, we can constrecbvery tasks (RThy exploiting the spare CPU capacity
(or, static slack. The recovery task will have the same timing parameters (i.e., WCET and period) as those of the task
to be scaled. By incorporating the recovery tasks, EDF could schedule a recovery job for any scaled job within its
deadline and preserve its reliability. Here, the recovery job will be assigned a lower priority level than the corresponding
(primary) job with the same deadline, and it will be activated only when the primary job incurs a fault.

As a concrete example, suppose that we have a periodic task set of threE task®; (1, 7), Tz(2, 14), T5(2,7)}
with system utilization a&/ = %. Without considering system reliability, ttoptimalordinary static power management
(SPM) under EDF will scale down all tasks at the spged U - f,,., = = as shown in Figure 1a[1, 22]. In the figure,
the X-axis represents time and the height of task boxes represents processing speed. Due to the periodicity, only the
schedule within the least common multiple (LCM) of tasks’ periods is shown. However, by uniformly scaling down the
execution in this way, the reliability figures of all the tasks (and that of the system) would be significantly reduced [34].

When applying static RA-PM, we first compute the spare capacity-as/ = % After constructing the recovery
taskRT1(1,7), which has the same WCET and period as the faskith the utilization as-u; = 1, the overall system
utilization will be U’ = U + ru; = 2. If we allocate the remaining spare capacity (ile-; U’ = 2) to taskT?, all jobs
of T, can be scaled down to the speec%ofWith the recovery tasik7; and the scaled execution ©f, the effective
system utilization isexactlyl and the modified task set is schedulable under EDF as shown in Figure 1b. From the
figure, we can see that every scaled job of taslas a corresponding recovery job within its deadline. Therefore, all
the jobs of task; could preserve their reliability levet{. Notice that, the jobs of task& andTs3 still run at f,,,,. and,
hence, their reliability figures are preserved at the leveRp&nd RS, respectively.

Therefore, by incorporating a recovery task for each task to be managed, the task-level utilization-based static RA-
PM scheme could preserve system reliability while obtaining energy savings. In [33], we reported that it is not optimal
(in terms of energy savings) for the RA-PM scheme to utilize all the slack for a single task in caserfdictasks.
Similarly, we may use the spare capacity foultiple periodic tasks for better energy savings. For instance, Figure 1c
shows the case where bdth andT; are scaled to spee§i after constructing the recovery tasky; and RT5. For
illustration purposes, we assume that the system power is given by a cubic function. Simple algebra shows that, manag-
ing only taskT’ could achieve the energy savingsgof, whereFE is the energy consumed by all jobs of téskwithin
LCM under no power management. In comparison, the energy savings woégdﬂoié both 77 and7» are managed,
which is a significant improvement.

Intuitively, when more tasks are to be managed, more computation can be scaled down for more energy savings.
However, more spare capacity will be reserved for recovery tasks, which, in turn, reduces the remaining spare capacity
for DVFS to save energy. A natural question to ask is, for a periodic task set with multiple real-time tasks, whether
there exists a fast (i.e. polynomial-time) optimal solution (in term of energy savings) for the problem of task-level
utilization-based static RA-PM. Unfortunately, the answer is negative, as we argue below.

3.1 Intractability of Task-Level Utilization-Based RA-PM

The inherent complexity of the optimal static RA-PM problem warrants an analysis. Suppose that the system utilization

of the task set i$/ and the spare capacityss = 1 — U. If a subset® of tasks are selected for management with total
utilization X = > ;. .4 ui < sc, after accomodating all recovery tasks, the remaining spare capacitys¢i-e. X)

could be used to scale down the selected tasks for energy management. Considering the convex relation between power
and processing speed (see Equation 1), the solution that minimizes the energy consumption is to uniformly scale down

all jobs of the selected tasks, where the scaled processing speed Willzbe)ﬁ = é Therefore, without
considering the execution of recovery jobs, the amount of fatdt-freeenergy consumption withih C M would be:

Ereny = LCOM - Ps+ LCM(U — X)(Pznd + Ceys - f:rrzlax)

+LCM - sc (Pmd + Cef - (g)) 4

where the first part is the energy consumption due to static power, the second part is for jobs of unselected tasks and the

third part is for scaled jobs of the selected tasks. Simple algebra shows thatXyhea sc - (Pi;,figff‘:f)ﬁ, Erom
will be minimized.

If X,pe > U, all tasks should be scaled down appropriately to minimize energy consumption. Otherwise, the problem
becomes essentially a task selection problem, where the summation of the selected tasks’ utilization shadtiybe

equal toX,,,, if possible. In other words, such a choice would definitely be the optimal solution.
Theorem 1 For a set of periodic tasks, the problem of the task-level utilization-based static RA-PM is NP-hard.

Proof We consider a special case of the problem wiith= 2, C,.; = 1 andP;,,4 = 0; that is, X,,; = 5. We show
that even this special instance is intractable, by transforming the PARTITION problem, which is known to be NP-hard
[10], to that special case.

In PARTITION, the objective is to find whether it is possible to partition a set @fitegersay,...,a, (Where
>, a; = S) into two disjoint subsets, such that the sum of numbers in each subset is e§<actly

Given an instance of the PARTITION problem, we construct the corresponding static RA-PM instance as follows:
we haven periodic tasks, where; = a; andp; = 2 - S. Note that, in this casd/ = 3 & = 1,se=1-U=1
Observe that, the energy savings will be maximized if it is possible to find a subset of tasks whose total utilization is
exactly X,y = % = i. Sincep; = 25 Vi, this is possible if and only if one can find a subset of taBksuch that

D icn Ci = % But this can happen only if the original PARTITION problem admits a YES answer. Therefore, if
RA-PM problem had a polynomial-time solution, one could also solve the PARTITION problem in polynomial-time,
by constructing the corresponding RA-PM problem, and checking if the maximum energy savings that can be obtained

correspond to the amount we could gain through managing exaigtly= %° = 25% of the periodic workload.

3.2 Heuiristics for Task-Level Utilization-Based RA-PM

Considering the intractability of the problem, we propose two simple heuristics for selecting tasks for energy manage-
ment: Largest-utilization-first (LUFandSmallest-utilization-first (SUFBuppose that the tasks in a given periodic task
set are indexed in the non-decreasing order of their utilizations«j.e<, u; for 1 < i < j < n). SUF will select the
first k tasks, wheré: is the largest integer that satisfigsi?:1 u; < Xope. Similarly, LUF will select the lask tasks,
wherek is the smallest integer that satisfies_, u; < Xop:.

Here, SUF tries to manage as many tasks as possible, since any managed jobs could achieve better reliability [32].
However, at some point, when the remaining spare capacity is not enough to accomodate a recovery task for the task
with the next smallest utilization, SUF may waste significant portion of the spare capacity. LUF tries to select larger

utilization tasks first, where the amount of wasted spare capacity is at most the smallest utilization among all tasks.

The potential drawback of LUF is that, sometimes, relatively few tasks might be managed for energy savings. These
heuristics are evaluated in Section 5.

4 Job-Level Dynamic RA-PM

In our backward recovery framework, the recovery jobs are executed only if their corresponding scaled jobs fail. Other-
wise, the CPU time reserved for recovery jobs are removed (freed) and become dynamic slack at run-time. Moreover,
it is well-known that real-time tasks typically take a small fraction of their WCETSs [9]. Therefore, significant amount
of dynamic slack can be expected at run time, which should be exploited to further save energy and/or enhance system
reliability by managing individuglbobs

Unlike the greedy RA-PM scheme which allocates all available dynamic slack for the next ready task when the tasks
share a common deadline [32], in periodic execution settings, the run-time dynamic slack will be generated at different
priorities and may not be always reclaimable by the next ready job [1]. Moreover, possible preemptions that a job
experiencesfterit has reclaimed some slack further complicates the problem. This is because, once a job’s execution is
scaled through DVFS, additional slastustbe reserved for potential recovery operations to preserve system reliability.
Hence, maintaining the reclaimed slack until the job completes successfully is essential in reliability-aware. settings

The slack management problem has been studied extensively (e.g., Slack Stealing [19], CASH-queue {fiearel
[1] approaches) for different purposes. By borrowing and also extending some fundamental ideas from these studies, we
provide a new framework which guarantees tbaservatiorof the reclaimed slack, thereby maintaining the reliability
figures.

Specifically, in this work, we propose theapper-tasknechanism to track/manage dynamic slack. For any dynamic
slack generated at run-time, a new wrapper-task will be created with the following two timing paramesieethat
equals the amount of dynamic slack generated addaallinethat is the deadline of the job whose early completion
gave rise to this slack.

A wrapper-task is destroyed when all the slack it represemneclaimedor wasted Otherwise, it will compete for
CPU along with normal real-time jobs. When a wrapper-task has the highest priority (i.e., the earliest deadline) and is
scheduled, it will “fetch” the highest priority job in the ready queue (if any) amdp the job’s execution during the
interval when the wrapper-task occupies the CPU. If no such job is is ready, the CPU will become idle, the wrapper-task

is said to “execute no-ops” and the corresponding dynamic slack is consumed/wasted during this time interval.

4.1 An Example for Wrapper-Task Mechanism

Before formally presenting the algorithm, we first illustrate the idea of wrapper-tasks through a detailed example. We
consider a task-set with four periodic real-time ta¥ks= {7} (1,6), T»(6, 10), T5(2,15), T4(3,30)}. For the jobs
within LC M (= 30), suppose thafsy, Joo, Joz andJy; take2, 3, 4 andQ% time units, respectively, and all other jobs
take their WCETSs.

Recall that EDF scheduling is used. For jobs with the same deadline, the one of the smaller index task is assumed
to have higher priorityWhen.J;; completes early at timg, 4 units of dynamic slack will be generated and the system
state is shown in Figure 2a. Here, a wrapper-task (shovdotied rectanglgis created to represent the slack, which is

labeled by two numbers: size(e.g.,4) and adeadline(e.g.,10). Similar to ready jobs that are kept in the ready queue

[| | |
Lo | [E——

J J

e St

0 5 10 1577 30 |o 5 10 1577 30
a. J21 completes early at tima d. Attime 10, the slack is pushed forward

J T roT T !

Ready— WT-Queue Ready—(' WT—Queuel 320 | 230,

[Lo____1

-
15 30

0 5 10
b. J31 reclaims the slack e. Attime14, more slack is generated frosh.

[| J
Ready—- WT-Queue 2,15 | Ready-Q 41 Rl WT-Queue
I —
T L gt
5 10 15 30 0 5 10 15 30

c. ScaledJs; finishes correctlyR.Js; freed as slack f. Partial job.J4; is scaled and needs a full recovery jB4;

i
[
o
=
o
[
ul
N\
w
o
-

,,,,,,,,,,,,,

|
5 10 15 ‘ 20 25 30

|
Ready-Q 15 Jog RJj WT-Queué 2,30
0 |

3¢ |

0 5 10 15 20 25 30
h. ScaledJs, is preempted (but its reclaimed slack is conserved) and more slack is generateli frantime24

J
Jl] Jl 15 R‘]. RJSZ t
-

5 10 15 20 25 30
i. J15 reclaimed the new slack and was scaled down; when it fRilg; is executed;/s> and RJ32 meet their deadlines as well

o

Figure 2: Using wrapper-tasks to manage dynamic slack

(Ready-Q (where the deadlines are indicated by the numbers at the bottom of the job boxes), wrapper-tasks are kept in
aWT-Queuen increasing order of their deadlines.

It is known that, the slack that a jah. can reclaim (i.e. theeclaimableslack) should have a deadline no later than
the deadline off,. [1]. From our previous discussion, to recuperate reliability loss due to energy management, a recovery
job needs to be scheduled withify’s deadline. Hence, a non-scaled job will reclaim the slack only if the amount of
reclaimable slack is larger than the job size.

Thus, attime3, J3; reclaims the available slack and scales down its execution as shown in Figure 2b. Here, a recovery
job RJ3; is created. The scaled executionfgf uses the time slots of the reclaimed slack and is scaled at %peeg
while R.J3; will take J31’s original time slots. Both/3; and R.J3; could finish their execution withids;'s deadline in
the worst case.

Suppose that the scaled; finishes its execution correctly at tinge after being preempted hy;, at time6. The
recovery jobR.J3; will be removed fromReady-Qand all its time slots will become slack as shown in Figure 2c. But
this slack is not sufficient for reclamation by; . However, since the corresponding wrapper-task has higher priority, it
is scheduled and wraps the execution/of. When the wrapper-task finishes at tirs a newwrapper-task with the
same size is created, but with the deadling.gf It can also be viewed ag,; borrowing the slack for its execution and
returning it with the extended deadline (i.e., the slaghished forwarJl The schedule and queues at tiie after Joo
arrives, are shown in Figure 2d.

When Jy, completes early at timé4 (after being preempted by s at time12), 3 units of slack is generated with
deadline 020, as shown in Figure 2e. Now, we have two pieces of slack (represented by two wrapper-tasks, respectively)
with different deadlines.

Note that, as faults are assumed to be detected at the end of a job’s executiirreaovery job is needed to
recuperate the reliability loss due to eveartially scaledexecutiod. Thus, when theartially-executed/,; reclaims
all the available slack (since both wrapper-tasks have deadlines no latef ifedeadline), a full recovery joR.Jy4; is
created and inserted inReady-Q J4; uses the remaining slack to scale down its execution appropriately as shown in
Figure 2f.

When the scaledy; finishes early at timé5, both its unused CPU time arftl/,; are freed as slack. After the arrival
of J35 at time15, the schedule and queues are shown in Figure 2g. Herayill reclaim the slack and be scaled with
speed% after reserving the slack for the recovery jB803,. After the scaled/s, is preempted by/14 and.Jo3, at time
18 and 20, respectively, and/>3 completes early at tim24, Figure 2h shows the newly generated slack and state of
Ready-Qwhich contains/y5 (with arrival time24). Note that, the recovery joB.J3, (i.e., the slack time) is conserved
even after/s, is preempted by higher priority jobs.

J15 reclaims the new slack. Suppose that both of the scaled.joband Js, fail, then, RJ;5 and R.J3, will be
executed as illustrated in Figure 2i. It can be seen that all jobs (including recovery jobs) finish their executions on time
and no deadline is missed.

4.2 Job-Level Dynamic RA-PM Algorithm (RA-DPM)

As the example illustrated, in addition Ready-Qthat is used to hold the ready jobs, a wrapper-task queueW'E.,
Queug is used to track/manage available dynamic slack. The rules for managing dynamic slack with wrapper-tasks are

as follows:

e Rule 1 (slack generation):When new slack is generated dueetrly completion of jobsr removal of recovery
jobs a new wrapper-task is created. However, it may be merged with an existing elemMérQueudf they have
the same deadline. That s, all wrapper-task&/iftQueugepresent slack with different deadlines. Wrapper-tasks
in WT-Queuare kept in the increasing order of their deadlines.

4Although checkpointing could be used for partial recovery [30, 31], we have shown that checkpoints with single recovery section cannot guarantee
to preserve task reliability [32].

10

e Rule 2 (slack reclamation): The slack is reclaimed when: (a) a non-scaled job has the highest prioRigady-

Q andits reclaimable slack is larger than the job size; or (b) the highest priority j6teady-Ghas been scaled
(i.e., its recovery job has been reserved) but its speed is higherfthamd there is reclaimable slack. After the

slack is reclaimed, the corresponding wrapper-tasks are removedNiQueuand destroyed.

e Rule 3 (slack forwarding/wasting): the wrapper-tasks of non-reclaimed slack compete for CPU along with

ready jobs. When a wrapper-task has higher priority (i.e., earlier deadline) and wraps the execution of a job, the
corresponding slack isushed forwardotherwise, if a wrapper-task executes no-ops, the corresponding slack is
wasted. Note that, when wrapped execution is interrupted by higher priority jobs, only part of slack (which is

consumed by the wrapped execution) will be pushed forward, while the remaining part has the original deadline.

Algorithm 1 EDF-based RA-DPM Algorithm

1

N

13:

. Step 1:
: Suppose that,.s: is the elapsed time since last scheduling pofrdndW T are current job and wrapper-task (could/§&/ L L
if no such job or wrapper-task).rem andWT.rem are remaining time requirements; afid andWT.d are the deadlines;
if (JI=NULL and J.rem — tpast > 0) {
Jrem — = tpast;
if (J completes)
CreateWT(.rem, J.d);/Islack of early completion
elseEnqueuef, Ready-Q)}
if (WT!=NULL and WT.rem — tpast > 0) {
WT.rem — = tpast; EnqueuelV T, WT-Queue)
if (WT'=NULL and J!=NULL)
CreateWT{,qs¢, J.d);//push forward slack;
if (J is scaled and succeeds)
RemoveRecoveryJoB(Ready-Q;
CreateWT(.c, J.d);/Islack from recovery joh;
. Step 2:
for (all newly arrived jobN J){ N J.rem = N J.c;
NJ.f = fmas; EnqueuelV J, Ready-Q)}
. Step 3//in the following, J andW T will represent the next job and wrapper-task to be processed, respectively;
J=Dequeue(Ready-Q)
if (J!1=NULL) ReclaimSlack({, WT-Queug
WT=Header(WT-Queug)
if (J!=NULL){
if (WT!=NULL andWT.d < J.d)
IIW'T wrapsJ's execution (a timer is needed)
WT = Dequeue(WT-Queuge)
elseWT = NU LL;/Inormal execution off
Execute();}
else if(WT!=NULL)
WT = Dequeue(WT-QueudJV'T" executes no-ops

Considering that the execution of real-time jobs may be wrapped by a higher priority wrapper-task, the outline of

EDF-based RA-DPM algorithm is shown in Algorithm 1. Note that, RA-DPM may be invoked by three types of events:

job arrival, job completiorandwrapper-task completiota timer can be used to signal the completion of a wrapper-task

to

qu

the operating system). As common routines, wekisgueue(J, Qjo add a job/wrapper-task to the corresponding

eues andpequeue(QJo fetch the highest priority (i.e., the header) job/wrapper-task and remove it from the queue.

Moreover,Header(Q)is used to retrieve the header job/wrapper-task without removing it from the queue.

Ccu

At each scheduling point, as the first step (from Il line 14), the remaining execution time information of the
rrently running job and wrapper-task (if any) are updated. If they did not finish, put them b&satty-Qand

11

WT-Queudlines 7 and9), respectively. When a wrapper-tadk’ (") is used and wraps the execution.bfline 11), as
discussed before, the corresponding amount of slack#j.g;) is pushed forward by creating a new wrapper-task with
the deadline of the currently wrapped job. Otherwise, the slack is consumed (wasted).

If the current job completes early (lir® or its recovery job is removed due to the primary job’s successful scaled
execution (lined 3 and14), new slack is generated and corresponding wrapper-tasks are created. Note that, only if the
deadline of newly created wrapper-task is different from the on@glirQueugecan it be added t&/T-Queugotherwise,
it will be merged with the one that has the same deadline.

Secondly, if new jobs arrive at the current scheduling point, they are adéehtty-Caccording to their EDF priority
(line 17). The remaining timing requirements will be set as their WCETSs at the sfiggd The last step is to choose
the next highest priority ready job (if any) for execution (lineg9 to 29). J first tries to reclaim the available slack (line
20; details are shown in Algorithm 2). Then, depending on the priority of the remaining wrapper-tasks, the execution
of J may be wrapped by a wrapper-task (I2i® or executed normally (lin6). When a wrapper-task has the highest
priority but no job is ready, the wrapper-task executes no-ops Ztine

Algorithm 2 ReclaimSlack{, WT-Queug

1: if(J is a recovery job) return; //recovery job is not scaled
2: Step 1://collect reclaimable slack

3: slack = 0;

4: for(WT eWT-Queug

5: if (WT.d < J.d) slack+ = WT.rem;

6: Step 2://scale downJ if the slack is enough

7. if (' J.scaled && slack <= J.c) return;

8: if (IJ.scaled) slack— = J.c; lIreserve for recovery

9: tmp = min(fee, m%fmaz);
10: slack = %L;]f — Jrem; llslack needed for PM
11: J.f = tmp; l/new speed
12: if (1J.scaled){CreateRecoveryJob};slack+ = J.c;}
13: J.scaled = true; //label as scaled
14: /Iremove reclaimed slack froMVT-Queug
15: while (slack > 0){

16: WT =Header(WT-Queue)

17: if (slack > WT.rem){

18: WT =Dequeue(WT-Queugjack— = WT.rem;}
19: els§WT.rem— = slack; slack = 0;}
20: }

Algorithm 2 shows the further details of slack reclamation. As mentioned previously, recovery jobs are executed at
fmaz @and are not scaled (ling). For a jobJ, by traversingVT-Queuewe can find out the amount reclaimable slack
(lines3 andb5). If J is not a scaled job (i.e., its recovery job is not reserved yet) and the amount of reclaimable slack is no
larger than the size of (i.e., J.c), the available slack is not enough for reclamation (lineOtherwise, after properly
reserving the slack for recovery (li}), J's new speed is calculated, which is boundedfby (line 9; as discussed
in Section 2). The actual amount of slack used.Joincludes those for energy management (li¢ as well as the
slack for recovery job (where the recovery job is created and addedady-Qin line 12). For the reclaimed slack, the
corresponding wrapper-task(s) will be removed frdfi-Queuend destroyed (liness to 20), which ensures that this
slack isconservedor the scaled job, even if higher-priority jobs preempt the scaled job’s execution later.

12

4.3 Analysis of RA-DPM

Note that, when all jobs in a task set present their WCETS at run time, there will be no dynamic slack and no wrapper-
task will be created. In this case, RA-DPM will perform the same as EDF and generate the same worst case schedule,
which is feasible by assumption. However, as some jobs complete early, RA-DPM will undertake slack reclamation
and/or wrapped execution, and one needs to show that the feasibility is preserved even after these changes in CPU time
allocation of jobs.

In RA-DPM, the slack is reclaimed falual purposes of scheduling a recovery block and slowing down the execution
to save energy with DVFS. Similarly, the slack may be added toAfieQueueas a result of early completion of a
job/recovery block, or release of the recovery block (in case of a successful, non-faulty completion of a job). However,
the feasibility of the resulting schedule is orthogonal to these details; hence, we will not further concern about whether
the slack is obtained from a main job or a recovery block, and for what purpose (i.e. recovery or DVFS) it is used.

Recall that, the elements WT-Queuaepresent the slack of tasks that complete early. These slack elements, while
being reclaimed, may be entirely or partially re-transformed to actual workload. Our strategy will consist of proving
that, at any timet during execution, the remaining workload could be feasibly scheduled by EDF, even if all the slack
elements in WT-Queue were to be re-introduced to the sysiiintheir corresponding deadlines and remaining worst-
case execution times (sizes). This, in turn, will allow us to show the feasibility of the actual schedule, since the above-
mentioned property implies the feasibility even with an over-estimation of the actual workload, for any time

Before presenting the proof for the correctness of RA-DPM, we first introduce the congeptessor demanand
the fundamental result in the feasibility analysis of task systems scheduled by preemptive EDF [2, 16].

Definition 1 Theprocessor demanaf a real-time job sef in an interval[t, t2], denoted ass(t1, t2), is the sum of
computation times of all jobs i with arrival times greater than or equal tq anddeadlines less than or equal tg.

Theorem 2 ([2, 16])A set of independent real-time joftscan be scheduled (by EDF) if and onlyiif (¢, t2) < to —t1
for all intervals|tq, to].

Let us denote by/(r, e, d) a job J that is released at= r, and that must complete its execution by the deadline
with worst-case execution time We next prove the following lemma that will be instrumental in the rest of the proof.

Lemma 1 Consider a sefp, of real-time jobs which can be scheduled by preemptive EDF in a feasible manner. Then,
the set®,, obtained by replacing/, (74, €4, ds) in ®1 by two jobsJ,(rq, ep, dp) and J.(rq, ec, d.), is still feasible if
ey +e. < eq, andda < db < dc-

Proof

Since the EDF schedule éf; is feasible, from Theorem 2, we hake, (t1,t2) < t2 — 1V t1,t2. We need to show
thathe, (t1,t2) < ta — t1V t1, ta.

It is well-known that, when evaluating the processor demand for a set of real-time jobs, one can safely focus on
intervals that start at ppb release timend end at gob deadling[2, 16]. Noting that the only difference betweén
and®, consists in substituting two jobg, and.J, for J,, we first observe thdis, (1, dy) = he, (T2, dy) < dy — 74,
whenever-; is a job release time strictly greater thay) or d,, is a job deadline strictly smaller thaly. Hence, we need

13

to consider only the intervals,, d,| wherer, < r, andd, > d,. By taking into account the fact thd}, < d, < d.,
the following properties can be easily derived for all possible positioning§ wfith respect to these three deadlines:

o ha,(rz,dy) = ha, (1g,dy) — (eq — ey —e.) if de < dy,
o ha,(rz,dy) = ha, (14,dy) — (eq —) if dy < dpy < d,, < do,
® ha,(rz,dy) = ha, (rz,dy) —eq if dg < dy < dp < d..

Sincee, > e, + e, by assumption, in all three casés;, (r5,dy) < he, (rz,dy) < dy — 15, and the job seb, is

also feasible.

Now, we introduce some additional notations and definitions for the execution state of RA-DPM, &t time

e Jg(t) denotes the set of ready jobs at timeEach jobJ; € Jr(t) has a corresponding remaining worst-case
execution timee; at timet and deadlinel;. Note thatJ; can be seen as released at titnand with worst-case

execution time:; and deadlinel;.

e Jr(t) denotes the set of jobs that will arriedter ¢, with their corresponding worst-case remaining execution

times and deadlines.

e Jy (t) denotes the set of jobs obtained throughWie-Queue Specifically, for every slack elementWT-Queue
with sizes; and deadlinel;, Jy (¢) will include a jobJ; (¢, s;,d;).

Definition 2 TheAugmented Remaining Workloaaf RA-DPM at time, denoted byARW(t), is defined as
Jr®)UJr (@)U Jw (1)

Informally, ARW(t)denotes the workload obtained by re-introducatighe slack elements WT-Queudo the ready-
gueue, with their corresponding deadlines. This is clearlg\ar-estimatiorof the actual workload at timg since the
amount of workload re-introduced by slack reclamation can never exgeét.

Theorem 3 ARW(t) can be scheduled by EDF in a feasible manner during the execution of RA-DPM, fortevery

Proof The statement is certainly trueéat 0, when theWT-Queuas empty, and the workload can be scheduled in
a feasible manner even under the worst-case conditions. So, assume that the stateméntolds

Note that fort = ¢1,t; + 1,..., ARW(t)remains feasible as long as there is no slack reclamation or 'wrapped
execution’. This is because, under these conditions, the task with highest priority in the ready queue is executed at
every time slot according to EDF — and being an optimal preemptive scheduling policy, it preserves the feasibility of
the remaining workload. Also note that, if the ready queue is empty for a given time slot, then the slack at the head of
WT-Queues consumed, which corresponds to the fact thiaw(t)is updated dynamically according to EDF execution
rules.

Let ¢5 be the first time instant aftes, if any, where RA-DPM performs a slack reclamationstarts the “wrapped
execution”. We denote the head\WT-Queuédy H att = t5, with deadlinedy and sizecy;. We will show thatARW()
remains feasible after such a point in both scenarios, completing the proof.

14

e Case 1:Att = 1o, slack reclamation is performed through tM-Queue Assumek units of slack is transferred
from H to the jobJ 4 which is about to be dispatched, with deadlihe> dg and remaining worst-case execution
time e4. Note that this slack transfer can be seen as replagifp@s, ex,dy) in ARW(;) by two new jobs
Ju, (ta, k,da) and Jy, (t2,eg — k,dy); and by virtue of Lemma 1ARW(t)remains feasible after the slack
transfer. If, the slack is transferred from multiple element¥Wf-Queuesuccessively, then we can repeat the
argument for the second, third,... elements in the same order.

e Case 2:Att = t9, a’'wrapped execution’ starts, to endtat ¢t > to. We will show thatARW/(t)remains feasible

for t; <t < t3, completing the proof.

The wrapped execution (i.e., slack forwarding) in the inteftalts] is functionally equivalent to the following:
in everytime slot[t;, ;1] in the intervallt,, t3], one unit of slack from¥ (the head oW T-Queugis replaced
by another item iWT-Queuewith size 1, and deadlin€4,, which is the deadline of jold4, that executes on the
CPU in the intervalt;, ¢;+1]. On the other hand, when seen from the perspective of changgRW(t) this is
equivalent to the reclaiming by,, one unit of slack fron¥# in slot [¢;, ;1] —even though, in actual execution,
this slack unit will not be used because of wrapped execution. As a conclégtli(t)remains feasible at every

time slot in the intervalts, t3] as slack reclamation ohRW(t)was shown to be safe in Case 1 above.

SinceARW(t)is an over-estimation of the actual workload, we obtain the following conclusion.

Corollary 1 RA-DPM preserves the feasibility of any periodic real-time task set under preemptive EDF.

4.4 Complexity of RA-DPM

Note that, the deadlines of wrapper-tasks correspond to the deadlines of jobs in the task set considered. At,any time
there are at most different deadlines corresponding to jobs with release times on or beforedeadlines on or after

t. That is, the number of wrapper-tasksWiT-Queueds at mostn. Therefore, slack reclamation can be performed (by
traversingWT-Queugin time O(n). Hence, the complexity of RA-DPM i@(n) at each scheduling point.

5 Simulation Results and Discussion

To evaluate the performance of our proposed schemes, we developed a discrete event simulator using C++. In the
simulations, we consider six different schemes. First, the scheme pbéwer management (NPMyhich executes all
tasks/jobs af,,.. and puts system to sleep states when idle, is used as the baseline for comparisudiriEng static

power management (SPMgtales all tasks uniformly at speg¢d= U - f,... (WhereU is the system utilization). For

the task-level static RA-PM, after obtaining the optimal utilizatiof,;) that should be managed, two heuristics are
consideredsmaller utilization task first (RA-SPM-SUBhdlarger utilization task first (RA-SPM-LUE}or dynamic
schemes, we implemented dob-level dynamic RA-PM (RA-DPMInd thecycle conserving EDF (CC-EDHR2], a
well-known but reliability-ignorant energy management algorithm.

15

0.1 1 g 100 T
g RA-SPM-SUF ---+--
E 1 .] 2 90 [RA-SPM-LUF - e
o 0.01 2 0.1 g OPT-BOUND
= = =) = ol ~
s o0o001f E s o001 E g & SPM
5 5 8 70+ ¥ B
2 le-04 2 0.001 §
3 = g 6eof ' ,
g le0s T 1e04 3 H
° ° 5 S0 1
2 1606 o] 2 1e.05 L] S T —
e- " RA-SPM-SUF ---%--- €-05 RA-SPM-SUF -+ %-- S 404 -
I RA-SPM-LUF - RA-SPM-LTF i £
1e_07 Il Il Il Il Il Il Il 19'06 Il Il Il Il Il Il Il 5 30 Il Il Il Il Il Il Il
0.1 02 03 04 05 06 0.7 08 0.9 0.1 02 03 04 05 06 0.7 0.8 0.9 < 0.1 02 03 04 05 06 07 08 09
U: system utilization U: system utilization U: system utilization
a. reliability forp € [10, 20] b. reliability forp € [20, 200] c. energy folp € [10, 20]

Figure 3: Reliability and energy for static schemes.

We focus on active power and assufig, = 0.1, C.y = 1 andm = 3. Considering normalized frequency with
fmaz = 1, the minimum energy efficient frequencyfis. = 0.37 (see Section 2). Transient faults are assumed to arrive
according to a Poisson distribution with an average fault ratg as 10~ at f,,,... (and corresponding supply voltage),
which corresponds to 100,000 FITs (failure in time, in terms of errors per billion hours of use) per megabit and is a
reasonable fault rate as reported [11, 36]. To take the effects of DVFS on fault rates into consideration, we adopt the
exponential fault model developed in [34] and assume that the expdredt That is, the average fault rate is assumed
to be 100 times higher at the lowest spe¢d (and corresponding supply voltage). The effects of different valués of
have been evaluated in our previous work [32, 33, 34].

We consider synthetic real-time task sets where each task set co2igiesiodic tasks. The periods of tasks (
are uniformly distributed within the range @if0, 20] (for short period tasks) deo, 200] (for long period tasks). The
WCETs of tasks are uniformly distributed in the rangd @ind their periods. Finally, the WCETSs of tasks are scaled by
a constant such that the system utilization of tasks reaches a desired value [22]. The variability in the actual workload is
controlled by the‘;% ratio (that is, the worst-case to best-case execution time ratio), where the actual execution time
of tasks follows a normal probability distribution function with mean and standard deviation B@?m;%m and
WCET=BCET respectively [1].

We simulate the task set’s execution fid and 108 time units, for short- and long-period task sets, respectively.
That is, approximately 20 million jobs are executed at each run. Moreover, for each result point in the Gyéybduesk

sets are generated and the presented results correspond to the average.

5.1 Performance of Task-Level Static Schemes

For different system utilization (i.e., spare capacity), we first evaluate the performance of the task-level static schemes.
Itis assumed that all jobs take their WCETS. Figure 3a first shows the probability of failuré {ireliability) for NPM
and static schemes for task sets with short periods fi.€.[10, 20]). Here, the probability of failure shown is the ratio
of the number of failed jobs over the total number of jobs executed.

From the figure, we can see that, as system utilization increases, for NPM, the probability of failure increases slightly.
The reason for this is that, with increased total utilization, the computation requirement for each task increases and tasks
run longer, which increases the probability of being subject to transient fault(s). The probability of failure for SPM

increases dramatically due to increased fault rates as well as extended execution time. Note that, the minimum energy

16

0.1

100 ——
. CC-EDF

2 I RA-DPM -+
} RA-DPM-DISC -3

001 | 3 ;
80 1% 1

90 L ;v;‘.._;.‘*‘.‘:':‘:i’::»‘- e SRR .
80 | B

0.001 | RA-DPM ---%--- o

70+ g 70+ RA-DPM - -

60 - 60 1

le-04

50 B 50 B

probability of failure

1e-05
40 b

30 I I I I I I I I

40 E

30 ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10

WCET/BCET WCET/BCET WCET/BCET
a. reliability forp € [10, 20] b. energy fop € [10, 20] energy fop € [20, 200]

normalized energy consumption(%)

normalized energy consumption(%)

le-06

o

Figure 4: Reliability and energy for dynamic schemes.

efficient frequency ig.. = 0.37. For very low system utilization (i.el] < 0.37), SPM executes all tasks witfa.. The
probability of failure increases slightly with increased utilization due to the same reason as for NPM. However, when
system utilization is higher thah37, the processing speed of SPM increases with increased utilization, which has lower
failure rates and results in decreased probability of failure.

For reliability-aware SPM schemes (i.e., RA-SPM-SUF and RA-SPM-LUF), by incorporating a recovery task for
each task to be scaled, the probability of failure is lower than that of NPM and system reliability is preserved, which
confirms the theoretical result obtained in Section 3. Note that,2itAsks in a task set, the utilization for each task is
a small number and is close to each other. Therefore, RA-SPM-SUF and RA-SPM-LUF perform roughly the same.

The probability of failure for long-period task sets is shown in Figure 3b, where all schemes have similar behavior to
that of short-period task sets. However, for the same system utilization, long-period task sets will have longer execution
time (almostl0 times longer), which leads to roughly) times larger probability of failure.

Figure 3c further shows the normalized energy consumption for short-period tasks with NPM as a baseline. Here,
reliability-aware SPM schemes consume roudtil{ more energy than that of ordinary SPM due to less spare capacity
available for energy management. Moreover, the figure also shows the energy consumpB&T#B0OUND which
is calculated as the fault-free energy consumption with the assumption that the managed tasks have the accumulated
utilization exactlyas X,,:. Clearly, OPT-BOUNDprovides a performance bound for thptimal static solution. Thus,
from the figure, we can see that the normalized energy consumption for two heuristics will bei#itbirthat for the

optimal solution. For long-period tasks, the normalized results are similar, and are not included due to space limitations.

5.2 Performance of Job-Level Dynamic Schemes

With system utilization fixed al/ = 1.0, we vary ‘g’ggf, ratio and evaluate the performance of the dynamic schemes.
Figure 4a first shows the probability of failure for short period tasks. Here, we can see t%%s ratio increases,

more dynamic slack is available and the probability of failure for CC-EDF decreases radically due to scaled execution.
Again, by reserving slack for recovery jobs, RA-DPM preserves system reliability by having a lower probability of
failure than that of NPM. The result for long period tasks is similar.

Figure 4b shows the normalized energy consumption for short period tasks. Initially, as the %g%ﬁfincreases,

more dynamic slack is available and normalized energy consumption decreases. Due to limitationioén Vgggf >

5, the normalized energy consumption for both schemes stays roughly the same and RA-DPM consumiggiabout

17

more energy than CC-EDF. RA-DPM performs much worse than CC-EDF for long period tasks (in terms of energy) as
shown in Figure 4c. One possible explanation could be that, slack is pushed forward too much by the long period tasks,

which prevents other jobs from reclaiming them, and may be wasted.

5.3 Effects of Discrete Speeds

So far, we have assumed that the clock frequency can be scaled in continuous manner. However, on current DVFS-
enabled processors (e.g., Intel XScale [12]), there are only a finite number of speed levels. Nevertheless, our schemes
can be easily adapted to discrete speed settings. After obtaining the scaled speed (e.g., Algorith)ngdinan either

use two adjacent frequency levels to emulate the task’s execution at that speed [14], or use the next higher discrete speed
that will always ensure to maintain the feasibility of the algorithm. Assuming Intel XScale model [12}wjieeds
{0.15,0.4,0.6,0.8,1.0} and using the next higher speed, we re-ran the simulations. The results for normalized energy
consumption are representedR&-DPM-DISCand shown in Figure 4bc. From the figures, we can see that, the cases

for discrete speeds consume at m2f&t more energy than that of continuous speed. The reason is that, with the next

higher discrete speed, the unused slack is not wasted but actually saved for future usage.

6 Closely Related Work

In [27], Unsalet al. proposed to postpone the execution of backup tasks to minimize the overlap of primary and backup
execution and thus the energy consumption. The optimal number of checkpoints, evenly or unevenly distributed, to
achieve minimal energy consumption while tolerating one fault was explored by Mahalrin [21]. EInozahyet al.
proposed a®ptimistic TMRscheme that reduces the energy consumption for traditional TMR systems by allowing one
processing unit to slow down provided that it can catch up and finish the computation before the application deadline
[7]. The optimal frequency settings for OTMR was further explored in [35]. Assuming a Poisson fault model,ethang
al. proposed an adaptive checkpointing scheme that dynamically adjusts checkpoint intervals for energy savings while
tolerating a fixed number of faults for a single task [30]. The work is further extended to a set of periodic tasks [31].
Most of the previous research either focused on tolerating fixed number of faults [7, 21] or assumed constant fault
rate [30, 35] when applying DVFS for energy savings. However, it has shown that there is a direct and negative effect
of voltage scaling on the rate of transient faults [8, 34]. In our recent work, we presented a reliability-aware power
management scheme based on single-task model [32], which is extended to a set of aperiodic tasks sharing a common
deadline [33].

7 Conclusions

Although an efficient energy management technique, dynamic voltage and frequency scaling (DVFS) was recently
shown to have negative impact on settings where transient faults become more prominent with continued scaling of
CMOS technologies and reduced design margins. For mission critical applications, where system reliability may be
more important than energy consumptiagljability-cognizantenergy management becomes a necessity. Based on our
previous research, which concluded that system reliability can be preserved by scheduling suitable recovery tasks before
applying DVFS [32], in this work, we proposed for the first time a reliability-aware energy management (RA-PM)

18

framework forperiodictasks. Focusing on EDF scheduling, we first studask-levelutilization-based static RA-PM

schemes that exploit the spare capacity in the system. We showedrtdwability of the problem and proposed two

efficient heuristics. Moreover, we proposed thepper-taskmechanism for efficiently managing dynamic slack and

presented gob-leveldynamic RA-PM scheme. The scheme is abledaservethe slack reclaimed by a scaled job,

which is an essential requirement for reliability preservation, across preemption points.

The proposed schemes are evaluated through simulations with synthetic real-time workloads. The results show that,

compared to those of ordinary energy management schemes, the new schemes could achieve significant amount of

energy savings while preserving system reliability. However, ordinary energy management schemesetiatbititg-

ignorant, often lead to drastically decreased system reliability.

References

[1]

[2]

(3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

H. Aydin, R. Melhem, D. Mossg, and P. Mejia-Alvarez. Dynamic and aggressive scheduling techniques for power-
aware real-time systems. Rroc. of IEEE Real-Time Systems Symposk001.

S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processBeal-Time Systemg, 1990.

E. Bini, G.C. Buttazzo, and G. Lipari. Speed modulation in energy-aware real-time systeR®clrof thel 7t"
Euromicro Conference on Real-Time Systems (ECRIBE.

T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor designodnof The HICSS Conference
Jan. 1995.

M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun controRrdo of Real-Time Systems
Symposiun2000.

Intel Corp. Mobile pentium iii processor-m datasheet. Order Number: 298340-002, Oct 2001.

E. (Mootaz) Elnozahy, R. Melhem, and D. MéssEnergy-efficient duplex and tmr real-time systemsPioc. of
The23"¢ IEEE Real-Time Systems Symposib@c. 2002.

D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner. Razor: circuit-level
correction of timing errors for low-power operatiolieEE Micro, 24(6):10-20, 2004.

R. Ernst and W. Ye. Embedded program timing analysis based on path clustering and architecture classification.
In Proc. of The Int'l Conference on Computer-Aided Desjgpiges 598604, 1997.

M. R. Garey and D. S. JohnsonComputers and Intractability: A Guide to the Theory of NP-Completeness
Mathematical Sciences Series. Freeman, 1979.

P. Hazucha and C. Svensson. Impact of cmos technology scaling on the atmospheric neutron soft dE&Eate.
Trans. on Nuclear Sciencé7(6):2586—2594, 2000.

http://developer.intel.com/design/intelxscale/.

19

[13] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savingsPrbt. of Thel4!” Symposium on Discrete
Algorithms 2003.

[14] T. Ishihara and H. Yauura. Voltage scheduling problem for dynamically variable voltage processersc.|of

The Int'l Symposium on Low Power Electronics and Desi98.

[15] R.K. lyer, D. J. Rossetti, and M.C. Hsueh. Measurement and modeling of computer reliability as affected by
system activity ACM Trans. on Computer System$§3):214-237, Aug. 1986.

[16] K. Jeffay and D. L. Stone. Accounting for interrupt handling costs in dynamic priority task systerRsodnof
the IEEE Real-Time Systems SymposiDet. 1993.

[17] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time embedded systems.

In Proc. of the415t annual Design automation conferen@904.

[18] A.R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocatidnt’li@onference on Architectural

Support for Programming Languages and Operating Syst2oGo0.

[19] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-aperiodic tasks in fixed-priority
preemptive systems. IRroc. of IEEE Real-Time Systems Sympoislen?2.

[20] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment.
J. ACM 20(1):46-61, 1973.

[21] R. Melhem, D. Mos8, and E. (Mootaz) Elnozahy. The interplay of power management and fault recovery in
real-time systemdEEE Trans. on Computer§3(2):217-231, 2004.

[22] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating syst&ms:. In
of 18" ACM Symposium on Operating Systems PrincipDas. 2001.

[23] D. K. PradhanFault Tolerance Computing: Theory and Techniguegentice Hall, 1986.

[24] S. Saewong and R. Rajkumar. Practical voltage scaling for fixed-priority rt-systenrodnof the9*" IEEE
Real-Time and Embedded Technology and Applications Sympcxiod.

[25] N. Seifert, D. Moyer, N. Leland, and R. Hokinson. Historical trend in alpha-particle induced soft error rates of the
alphad™ microprocessor. liProc. of the39" Annual International Reliability Physics Symposijiz01.

[26] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast: Frequency-aware static timing anaBrsis. of
the 24" IEEE Real-Time System Symposi@®03.

[27] O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware software-based fault tolerance in real-time
systems. IrProc. of The Int'l Symposium on Low Power Electronics DesEfi92.

[28] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu energyoclnof The First
USENIX Symposium on Operating Systems Design and Implemenbbiari994.

20

[29] Heng Zeng, Xiaobo Fan, Carla Ellis, Alvin Lebeck, and Amin Vahdat. Ecosystem: Managing energy as a first
class operating system resource.Intil Conference on Architectural Support for Programming Languages and
Operating System2002.

[30] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in embedded real-time systeros. o
IEEE/ACM Design, Automation and Test in Europe Conference(DAXIDS.

[31] VY. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault tolerance in fixed-priority real-time embedded
systems. IrProc. of Int'l Conference on Computer Aided Desiffov. 2003.

[32] D. Zhu. Reliability-aware dynamic energy management in dependable embedded real-time systeros. dh
the IEEE Real-Time and Embedded Technology and Applications Sympasiaén

[33] D. Zhu and H. Aydin. Energy management for real-time embedded systems with reliability requiremémt. In
of the International Conference on Computer Aidded Design (ICCRADY. 2006.

[34] D. Zhu, R. Melhem, and D. Moés The effects of energy management on reliability in real-time embedded
systems. IrProc. of the Int’'l Conference on Computer Aidded Desgp04.

[35] D. Zhu, R. Melhem, D. Moss and E.(Mootaz) Elnozahy. Analysis of an energy efficient optimistic tmr scheme.
In Proc. of thel0*” Int'| Conference on Parallel and Distributed Systgr2804.

[36] J. F. Ziegler. Trends in electronic reliability: Effects of terrestrial cosmic rays. available at
http://www.srim.org/SER/SERTrends.htm, 2004.

21

