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Abstract

The prominent energy management technique in real-time embedded systems, Dynamic Voltage and Frequency

Scaling (DVFS), was recently shown to have direct and adverse effects on system reliability. In this work, we propose

static and dynamicreliability-aware energy managementschemes for a set ofperiodic real-time tasks to minimize the

system-wideenergy consumption while preserving system reliability. Focusing on EDF scheduling, we first show that

the problem is NP-hard and propose twotask-level, static, utilization-based heuristics. Then, we develop ajob-level

dynamic (on-line) scheme by building on the idea ofwrapper-tasks, to monitor and manage dynamic slack efficiently

in reliability-aware settings. Our schemes incorporate recovery tasks/jobs to the schedule as needed for reliability

preservation, while still using the remaining slack for energy savings. Simulation results show that all the proposed

schemes can achieve significant energy savings while preserving the system reliability. The energy savings obtained

by the static heuristics are shown to be close to those of the static optimal solution by a margin of5%. Further,

by effectively using the run-time slack, the dynamic schemes are able to yield energy savings similar to those of

ordinary (butreliability-ignorant) energy management algorithms, but without suffering from drastically decreased

system reliability figures.

1 Introduction

The phenomenal improvements in the performance of computing systems have resulted in drastic increases in power

densities. For battery-operated devices with limited energy budget, energy has been recognized as a first-class system

resource [29]. Many hardware and software techniques have been proposed to manage power consumption in modern

computing systems and power aware computing has recently become an important research area. One common strategy

to save energy is to run the system components at low-performance operation points, whenever possible. For example,

DVFS scales down the CPU frequency and supply voltage simultaneously to save energy [28].

For real-time systems where tasks have stringent timing constraints, scaling down the clock frequency (processing

speed) may cause deadline misses and special provisions are needed. In the recent past, several research studies explored

the problem of minimizing energy consumption while meeting all the deadlines for various real-time task models. These

include also a number of power management schemes which exploit the available static and/or dynamicslack in the

system [1, 22, 24].

Reliability and fault tolerance have always been major factors in computer system design. Due to the effects of

hardware defects, electromagnetic interferences and/or cosmic ray radiations, faults may occur at run-time, especially in

systems deployed in dynamic/vulnerable environments. With the continued scaling of CMOS technologies and reduced
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design margins for higher performance, it is expected that, in addition to the systems that operate in electronics-hostile

environments (such as those in outer space), practically all digital computing systems will be much more vulnerable to

transient faults[8]. Thebackward error recoverytechniques, which restore the system state to a previous safe state and

repeat the computation, can be used to tolerate transient faults [23]. In real-time systems, backward recovery techniques

often rely ontemporal redundancy, manifested in the form of slack time.

It is worth noting that both DVFS and backward recovery techniques are based on (and compete for) the active

use of the system slack. Thus, there is an interesting trade-off between energy efficiency and the system reliability.

Moreover, DVFS has been shown to have a direct effect on the rate increases of transient faults, especially for those

induced by cosmic ray radiations [34], which further complicates the problem. Hence, for safety-critical real-time

embedded systems (such as satellite and surveillance systems) where reliability is as important as energy efficiency,

reliability-cognizantenergy management becomes a necessity.

Although fault tolerance and energy management have been well studied in the context of real-time systems indepen-

dently, only a few studies investigated the implications of having both fault tolerance and energy efficiency requirements

very recently [7, 21, 27, 30]. As an initial study, we previously proposed areliability-aware power management (RA-

PM) scheme that dynamically schedules a recovery job at task dispatch time, hence preserving the system reliability [32].

The scheme is further extended to multiple aperiodic tasks that share a common deadline [33]. However, preemptive

scheduling, which is common forperiodictask systems, has not been considered.

In this work, we study both static and dynamic RA-PM schemes for a set of periodic real-time tasks scheduled by

preemptive Earliest-Deadline-First (EDF) policy. Specifically, we consider the problem of exploiting the spare CPU

capacity for energy savings while preserving the system reliability. We show that the optimal static RA-PM problem is

NP-hardand propose two efficient heuristics for selecting a subset of tasks to use the spare capacity for the objectives

of energy and reliability management. Moreover, we develop ajob-leveldynamic RA-PM algorithm, that tracks and

manages the dynamic slack which may be generated at run-time, again for these dual objectives. The latter algorithm is

built on thewrapper taskmechanism: the key idea is toconservethe dynamic slack allocated to scaled tasks for recovery,

which is essential for preserving reliability. To the best of our knowledge, this is the first research effort that provides a

comprehensive energy management framework forperiodicreal-time taskswhile preserving the system reliability.

The remainder of this paper is organized as follows. The system model and problem formulation are presented in

Section 2. In Section 3, we present the task-level, utilization-based static RA-PM schemes. Thewrapper-taskconcept

is introduced and the job-level dynamic RA-PM scheme is presented in Section 4. Simulation results are presented and

discussed in Section 5. Section 6 reviews the closely related work and Section 7 concludes the paper.

2 System Model and Problem Description

2.1 Application Model

We consider a set of independent periodic real-time tasksΓ = {T1, . . . , Tn}. The taskTi is characterized by a pair

(pi, ci), wherepi represents its period andci denotes its worst case execution time (WCET). Thejth job of Ti, which is

referred to asJij , arrives at time(j − 1) · pi and has a deadline ofj · pi.

In DVFS settings, it is assumed that the WCETci of taskTi is given under the maximum processing speedfmax.
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For simplicity, we assume that the execution time of a task scaleslinearly with processing speed1. That is, at speedf ,

the execution time of taskTi is assumed to beci · fmax

f .

The system utilization is defined asU =
∑n

i=1 ui, whereui = ci

pi
is the utilization of taskTi. The tasks are to be

executed on a uni-processor system according to the preemptive EDF policy. Using the well-known feasibility condition

for EDF [20], we assume thatU ≤ 1.

2.2 Power Model

The relation between the supply voltage and operating frequency is known to be almost linear [4]. DVFS reduces supply

voltages for lower frequencies [28] and we will use the termfrequency changeto stand for both supply voltage and

frequency adjustments. Considering the ever-increasing static leakage power due to scaled feature size and increased

levels of integration [17] as well as the power-saving states provided in modern power-efficient components (e.g., CPU

[6] and memory [18]), in this work, we adopt the simplesystem-level power modelproposed in [34], where the power

consumptionP of a computing system is given by:

P = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceffm) (1)

Here,Ps is thestatic power, which can be removed only by powering off the whole system. It includes the power to

maintain basic circuits and keep the clock running.Pind is thefrequency-independent active power, which is a constant

and corresponds to the power that is independent of CPU processing speed. It can be efficiently removed by putting

systems into sleep state(s) [6, 18].Pd is the frequency-dependent active power, which includes processor’s dynamic

power and any power that depends on system processing speeds [4, 18].

When there is a computation in progress, the system isactiveandh̄ = 1. Otherwise, when the system is in power-

saving sleep mode or turned off,h̄ = 0. The effective switching capacitanceCef and the dynamic power exponentm (in

general,2 ≤ m ≤ 3 [4]) are system-dependent constants andf is the processing frequency. For simplicity, normalized

frequencies are used (i.e.fmax = 1.0).

Despite its simplicity, the above power model captures the essential components for system-wide energy manage-

ment. Note thatenergyis the time integral of power. For a given job, the energy consumption to execute it will be

E = P · t, whereP is the power level andt is the job’s execution time. Intuitively, lower frequencies result in less

frequency-dependent active energy consumption. But with reduced speeds, the job runs longer and thus consumes more

static and frequency-independent active energy. Therefore, a minimalenergy-efficient frequencyfee, below which DVFS

starts to consume more total energy, does exist [13, 17, 24]. From the above equation, one can find thatfee is given as2

[34]:

fee = m

√
Pind

Cef · (m− 1)
(2)

Consequently, we assume that the CPU frequency is never reduced below the thresholdfee for energy efficiency. We

1A number of studies have indicated that the execution time of tasks does not scale linearly with reduced processing speed due to accesses to
memory [26] and/or I/O devices [3]. However, exploring the full implications of this observation is beyond the scope of this paper and it left as future
work.

2Considering the prohibitive overhead of turning on/off a system (e.g., tens of seconds), we assume that the system will not be turned off during
the interval considered andPs is always consumed.
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develop our framework by assuming that the frequency can vary continuously fromfee to fmax. However, we also

discuss the implications of having discrete speed levels in Section 5.3.

2.3 Fault Model

During a job’s execution, a fault may occur due to various reasons, such as hardware failures, software errors, electro-

magnetic interferences as well as the effects of cosmic ray radiations. Thetransientfaults occur much more frequently

thanpermanentfaults [15], especially with the continued scaling of CMOS technologies and reduced design margins [8].

Consequently, in this paper, we focus on transient faults and explore backward recovery techniques to recovery them. It

is assumed that the faults are detected usingsanity(or consistency) checks at the completion of a job’s execution, and if

needed, the recovery task is dispatched, by taking the form of re-execution [23].

In our previous work [34], we have studied the negative effects of DVFS on transient faults induced by cosmic ray

radiations. Assuming that transient faults follow Poisson distribution [30], the average transient fault rate for systems

running at frequencyf (and corresponding supply voltage) can be expressed as [34]:

λ(f) = λ0 · g(f) (3)

whereλ0 is the average fault rate corresponding to the maximum frequencyfmax. That is,g(fmax) = 1. With reduced

processing speeds and supply voltages, thecritical charge, which is the smallest charge needed to cause a soft error,

generally decreases and leads to increased fault rates [25]. Therefore, we haveg(f) > 1 for f < fmax.

Moreover, considering the relationship between transient fault rates, critical charge, supply voltages and the number

of particles in the cosmic rays [11, 25, 36], we have derived anexponentialfault rate model:λ(f) = λ0 · g(f) =

λ010
d(1−f)
1−fmin , where the exponentd (> 0) is a constant which indicates the sensitivity of fault rates to DVFS [34].

The maximum fault rate is assumed to beλmax = λ010d, which corresponds to the minimum frequencyfee (and

corresponding supply voltage).

2.4 Problem Description

Our primary objective in this paper is to develop power management schemes for periodic real-time tasks executing on

a uni-processor system and to preserve system reliability at the same time. Define thereliability of a real-time job as the

probability of being correctly executed before its deadline. One of the key findings reported in [34] is that the reliability

of any job whose execution is scaled through DVFS decreases drastically due to the increased fault rates andextended

execution time.

Without loss of generality, we assume that the system reliability issatisfactorywhen no power management scheme

is applied, even under the worst-case scenario (i.e., all tasks take their WCETs). Note that the reliability of a real-time

system depends on thecorrectexecution ofall jobs within their deadlines. In order to preserve system reliability, for

simplicity, we focus on maintaining the reliability ofindividual jobs in this work. For the cases where recovery jobs are

used to achieve the specified reliability, such recovery jobs can be considered as normal jobs and their reliabilities are

also preserved. Specifically,for a periodic real-time task set with utilization U , we consider the problem of how to

use the spare CPU utilization1 − U , as well as the dynamic slack generated at run-time, for maximizing energy

savings while keeping the reliability of any job of taskTi no less thanR0
i (i = 1, . . . , n), whereR0

i = e−λ0ci (from
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Poisson fault arrival pattern and the average fault rateλ0 [32]) is the original reliability for jobs of taskTi, when there

is no power management and the jobs uses their WCETs.

2.5 Reliability-Aware Power Management (RA-PM)

Conventionally, DVFS-basedordinary power management schemes exploit all the available (dynamic or static) slack

for energy management and are, consequently,reliability-ignorant (in the sense that no attention is paid to the potential

effects of DVFS on task reliabilities). Instead of usingall the available slack for DVFS to save energy, one can reserve

a portion of the slack to schedule onerecovery jobRJ for any jobJ whose execution is scaled down, to recuperate the

reliability loss due to the energy management [32]. The recovery jobRJ will be dispatched (at the maximum frequency

fmax) only if a transient fault is detected whenJ completes. The recovery is in the form of re-execution andRJ has the

same WCET as that ofJ [23].

With the help ofRJ , the overallreliability R of job J will be the summation of the probability ofJ being executed

correctly andthe probability of having transient fault(s) duringJ ’s execution while the recovery jobRJ being executed

correctly. Therefore,if the amount of available slack ismore than the WCET of a job, by scheduling a recovery

job (e.g., re-execution), one can guarantee to preserve the reliability of a real-time job while still obtaining energy

savings using the remaining slack, regardless of different fault rate increases and scaled processing speeds[32].

In increasing level of sophistication and implementation complexity, we first introduce thetask-level staticschemes

and thenjob-level dynamicschemes in the next two sections.

3 Task-Level Static Schemes
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Figure 1: Static schemes for three tasks{T1(1, 7), T2(2, 14), T3(2, 7)}.

To start with, we can consider static RA-PM schemes that make their decisions at thetask-level. In this approach, for

simplicity, all the jobs of a task have the same treatment. That is, if a given task is selected for energy management, all its

jobs will run at the same scaled frequency; otherwise, they will run atfmax. From the above discussion, to recuperate

reliability loss due to scaled execution, eachscaled job3 will need a corresponding recovery job within its deadline,

should a fault occur.

3We use the expressionscaled jobto refer to any job whose execution is slowed down through DVFS, for energy management purposes.
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To provide the required recovery jobs, we can constructrecovery tasks (RT)by exploiting the spare CPU capacity

(or, static slack). The recovery task will have the same timing parameters (i.e., WCET and period) as those of the task

to be scaled. By incorporating the recovery tasks, EDF could schedule a recovery job for any scaled job within its

deadline and preserve its reliability. Here, the recovery job will be assigned a lower priority level than the corresponding

(primary) job with the same deadline, and it will be activated only when the primary job incurs a fault.

As a concrete example, suppose that we have a periodic task set of three tasksΓ = {T1(1, 7), T2(2, 14), T3(2, 7)}
with system utilization asU = 4

7 . Without considering system reliability, theoptimalordinary static power management

(SPM) under EDF will scale down all tasks at the speedf = U · fmax = 4
7 as shown in Figure 1a [1, 22]. In the figure,

the X-axis represents time and the height of task boxes represents processing speed. Due to the periodicity, only the

schedule within the least common multiple (LCM) of tasks’ periods is shown. However, by uniformly scaling down the

execution in this way, the reliability figures of all the tasks (and that of the system) would be significantly reduced [34].

When applying static RA-PM, we first compute the spare capacity as1 − U = 3
7 . After constructing the recovery

taskRT1(1, 7), which has the same WCET and period as the taskT1 with the utilization asru1 = 1
7 , the overall system

utilization will beU ′ = U + ru1 = 5
7 . If we allocate the remaining spare capacity (i.e.,1−U ′ = 2

7 ) to taskT1, all jobs

of T1 can be scaled down to the speed of1
3 . With the recovery taskRT1 and the scaled execution ofT1, theeffective

system utilization isexactly1 and the modified task set is schedulable under EDF as shown in Figure 1b. From the

figure, we can see that every scaled job of taskT1 has a corresponding recovery job within its deadline. Therefore, all

the jobs of taskT1 could preserve their reliability levelR0
1. Notice that, the jobs of tasksT2 andT3 still run atfmax and,

hence, their reliability figures are preserved at the levels ofR0
2 andR0

3, respectively.

Therefore, by incorporating a recovery task for each task to be managed, the task-level utilization-based static RA-

PM scheme could preserve system reliability while obtaining energy savings. In [33], we reported that it is not optimal

(in terms of energy savings) for the RA-PM scheme to utilize all the slack for a single task in case ofaperiodictasks.

Similarly, we may use the spare capacity formultipleperiodic tasks for better energy savings. For instance, Figure 1c

shows the case where bothT1 andT2 are scaled to speed23 after constructing the recovery tasksRT1 andRT2. For

illustration purposes, we assume that the system power is given by a cubic function. Simple algebra shows that, manag-

ing only taskT1 could achieve the energy savings of8
9E, whereE is the energy consumed by all jobs of taskT1 within

LCM under no power management. In comparison, the energy savings would be11
9 E if both T1 andT2 are managed,

which is a significant improvement.

Intuitively, when more tasks are to be managed, more computation can be scaled down for more energy savings.

However, more spare capacity will be reserved for recovery tasks, which, in turn, reduces the remaining spare capacity

for DVFS to save energy. A natural question to ask is, for a periodic task set with multiple real-time tasks, whether

there exists a fast (i.e. polynomial-time) optimal solution (in term of energy savings) for the problem of task-level

utilization-based static RA-PM. Unfortunately, the answer is negative, as we argue below.

3.1 Intractability of Task-Level Utilization-Based RA-PM

The inherent complexity of the optimal static RA-PM problem warrants an analysis. Suppose that the system utilization

of the task set isU and the spare capacity issc = 1 − U . If a subsetΦ of tasks are selected for management with total

utilization X =
∑

Ti∈Φ ui < sc, after accomodating all recovery tasks, the remaining spare capacity (i.e.,sc − X)

could be used to scale down the selected tasks for energy management. Considering the convex relation between power

and processing speed (see Equation 1), the solution that minimizes the energy consumption is to uniformly scale down
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all jobs of the selected tasks, where the scaled processing speed will bef = X
X+(sc−X) = X

sc . Therefore, without

considering the execution of recovery jobs, the amount of totalfault-freeenergy consumption withinLCM would be:

ELCM = LCM · Ps + LCM(U −X)(Pind + cef · fm
max)

+LCM · sc
(
Pind + cef ·

(
X

sc

)m)
(4)

where the first part is the energy consumption due to static power, the second part is for jobs of unselected tasks and the

third part is for scaled jobs of the selected tasks. Simple algebra shows that, whenXopt = sc · (Pind+Cef

m·Cef
)

1
m−1 , ELCM

will be minimized.

If Xopt ≥ U , all tasks should be scaled down appropriately to minimize energy consumption. Otherwise, the problem

becomes essentially a task selection problem, where the summation of the selected tasks’ utilization should beexactly

equal toXopt, if possible. In other words, such a choice would definitely be the optimal solution.

Theorem 1 For a set of periodic tasks, the problem of the task-level utilization-based static RA-PM is NP-hard.

Proof We consider a special case of the problem withm = 2, Cef = 1 andPind = 0; that is,Xopt = sc
2 . We show

that even this special instance is intractable, by transforming the PARTITION problem, which is known to be NP-hard

[10], to that special case.

In PARTITION, the objective is to find whether it is possible to partition a set ofn integersa1, . . . , an (where
∑n

i=1 ai = S) into two disjoint subsets, such that the sum of numbers in each subset is exactlyS
2 .

Given an instance of the PARTITION problem, we construct the corresponding static RA-PM instance as follows:

we haven periodic tasks, whereci = ai andpi = 2 · S. Note that, in this case,U =
∑ ci

pi
= 1

2 , sc = 1 − U = 1
2 .

Observe that, the energy savings will be maximized if it is possible to find a subset of tasks whose total utilization is

exactlyXopt = sc
2 = 1

4 . Sincepi = 2S ∀i, this is possible if and only if one can find a subset of tasksΦ such that
∑

i∈Φ ci = S
2 . But this can happen only if the original PARTITION problem admits a YES answer. Therefore, if

RA-PM problem had a polynomial-time solution, one could also solve the PARTITION problem in polynomial-time,

by constructing the corresponding RA-PM problem, and checking if the maximum energy savings that can be obtained

correspond to the amount we could gain through managing exactlyXopt = sc
2 = 25% of the periodic workload.

3.2 Heuristics for Task-Level Utilization-Based RA-PM

Considering the intractability of the problem, we propose two simple heuristics for selecting tasks for energy manage-

ment:Largest-utilization-first (LUF)andSmallest-utilization-first (SUF). Suppose that the tasks in a given periodic task

set are indexed in the non-decreasing order of their utilizations (i.e.,ui ≤ uj for 1 ≤ i < j ≤ n). SUF will select the

first k tasks, wherek is the largest integer that satisfies
∑k

i=1 ui ≤ Xopt. Similarly, LUF will select the lastk tasks,

wherek is the smallest integer that satisfies
∑n

i=k ui ≤ Xopt.

Here, SUF tries to manage as many tasks as possible, since any managed jobs could achieve better reliability [32].

However, at some point, when the remaining spare capacity is not enough to accomodate a recovery task for the task

with the next smallest utilization, SUF may waste significant portion of the spare capacity. LUF tries to select larger

utilization tasks first, where the amount of wasted spare capacity is at most the smallest utilization among all tasks.
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The potential drawback of LUF is that, sometimes, relatively few tasks might be managed for energy savings. These

heuristics are evaluated in Section 5.

4 Job-Level Dynamic RA-PM

In our backward recovery framework, the recovery jobs are executed only if their corresponding scaled jobs fail. Other-

wise, the CPU time reserved for recovery jobs are removed (freed) and become dynamic slack at run-time. Moreover,

it is well-known that real-time tasks typically take a small fraction of their WCETs [9]. Therefore, significant amount

of dynamic slack can be expected at run time, which should be exploited to further save energy and/or enhance system

reliability by managing individualjobs.

Unlike the greedy RA-PM scheme which allocates all available dynamic slack for the next ready task when the tasks

share a common deadline [32], in periodic execution settings, the run-time dynamic slack will be generated at different

priorities and may not be always reclaimable by the next ready job [1]. Moreover, possible preemptions that a job

experiencesafter it has reclaimed some slack further complicates the problem. This is because, once a job’s execution is

scaled through DVFS, additional slackmustbe reserved for potential recovery operations to preserve system reliability.

Hence, maintaining the reclaimed slack until the job completes successfully is essential in reliability-aware settings.

The slack management problem has been studied extensively (e.g., Slack Stealing [19], CASH-queue [5] andα-queue

[1] approaches) for different purposes. By borrowing and also extending some fundamental ideas from these studies, we

provide a new framework which guarantees theconservationof the reclaimed slack, thereby maintaining the reliability

figures.

Specifically, in this work, we propose thewrapper-taskmechanism to track/manage dynamic slack. For any dynamic

slack generated at run-time, a new wrapper-task will be created with the following two timing parameters: asizethat

equals the amount of dynamic slack generated and adeadlinethat is the deadline of the job whose early completion

gave rise to this slack.

A wrapper-task is destroyed when all the slack it represents isreclaimedor wasted. Otherwise, it will compete for

CPU along with normal real-time jobs. When a wrapper-task has the highest priority (i.e., the earliest deadline) and is

scheduled, it will “fetch” the highest priority job in the ready queue (if any) andwrap the job’s execution during the

interval when the wrapper-task occupies the CPU. If no such job is is ready, the CPU will become idle, the wrapper-task

is said to “execute no-ops” and the corresponding dynamic slack is consumed/wasted during this time interval.

4.1 An Example for Wrapper-Task Mechanism

Before formally presenting the algorithm, we first illustrate the idea of wrapper-tasks through a detailed example. We

consider a task-set with four periodic real-time tasksΓ = {T1(1, 6), T2(6, 10), T3(2, 15), T4(3, 30)}. For the jobs

within LCM (= 30), suppose thatJ21, J22, J23 andJ41 take2, 3, 4 and21
3 time units, respectively, and all other jobs

take their WCETs.

Recall that EDF scheduling is used. For jobs with the same deadline, the one of the smaller index task is assumed

to have higher priority.WhenJ21 completes early at time3, 4 units of dynamic slack will be generated and the system

state is shown in Figure 2a. Here, a wrapper-task (shown asdotted rectangle) is created to represent the slack, which is

labeled by two numbers: asize(e.g.,4) and adeadline(e.g.,10). Similar to ready jobs that are kept in the ready queue
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Figure 2: Using wrapper-tasks to manage dynamic slack

(Ready-Q) (where the deadlines are indicated by the numbers at the bottom of the job boxes), wrapper-tasks are kept in

aWT-Queuein increasing order of their deadlines.

It is known that, the slack that a jobJx can reclaim (i.e. thereclaimableslack) should have a deadline no later than

the deadline ofJx [1]. From our previous discussion, to recuperate reliability loss due to energy management, a recovery

job needs to be scheduled withinJx’s deadline. Hence, a non-scaled job will reclaim the slack only if the amount of

reclaimable slack is larger than the job size.
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Thus, at time3, J31 reclaims the available slack and scales down its execution as shown in Figure 2b. Here, a recovery

job RJ31 is created. The scaled execution ofJ31 uses the time slots of the reclaimed slack and is scaled at speed2
4 = 1

2 ,

while RJ31 will take J31’s original time slots. BothJ31 andRJ31 could finish their execution withinJ31’s deadline in

the worst case.

Suppose that the scaledJ31 finishes its execution correctly at time8, after being preempted byJ12 at time6. The

recovery jobRJ31 will be removed fromReady-Qand all its time slots will become slack as shown in Figure 2c. But

this slack is not sufficient for reclamation byJ41. However, since the corresponding wrapper-task has higher priority, it

is scheduled and wraps the execution ofJ41. When the wrapper-task finishes at time10, a newwrapper-task with the

same size is created, but with the deadline ofJ41. It can also be viewed asJ41 borrowing the slack for its execution and

returning it with the extended deadline (i.e., the slack ispushed forward). The schedule and queues at time10, afterJ22

arrives, are shown in Figure 2d.

WhenJ22 completes early at time14 (after being preempted byJ13 at time12), 3 units of slack is generated with

deadline of20, as shown in Figure 2e. Now, we have two pieces of slack (represented by two wrapper-tasks, respectively)

with different deadlines.

Note that, as faults are assumed to be detected at the end of a job’s execution, afull recovery job is needed to

recuperate the reliability loss due to evenpartially scaledexecution4. Thus, when thepartially-executedJ41 reclaims

all the available slack (since both wrapper-tasks have deadlines no later thanJ41’s deadline), a full recovery jobRJ41 is

created and inserted intoReady-Q. J41 uses the remaining slack to scale down its execution appropriately as shown in

Figure 2f.

When the scaledJ41 finishes early at time15, both its unused CPU time andRJ41 are freed as slack. After the arrival

of J32 at time15, the schedule and queues are shown in Figure 2g. Here,J32 will reclaim the slack and be scaled with

speed2
5 after reserving the slack for the recovery jobRJ32. After the scaledJ32 is preempted byJ14 andJ23, at time

18 and20, respectively, andJ23 completes early at time24, Figure 2h shows the newly generated slack and state of

Ready-Q, which containsJ15 (with arrival time24). Note that, the recovery jobRJ32 (i.e., the slack time) is conserved

even afterJ32 is preempted by higher priority jobs.

J15 reclaims the new slack. Suppose that both of the scaled jobsJ15 andJ32 fail, then,RJ15 andRJ32 will be

executed as illustrated in Figure 2i. It can be seen that all jobs (including recovery jobs) finish their executions on time

and no deadline is missed.

4.2 Job-Level Dynamic RA-PM Algorithm (RA-DPM)

As the example illustrated, in addition toReady-Qthat is used to hold the ready jobs, a wrapper-task queue (i.e.,WT-

Queue) is used to track/manage available dynamic slack. The rules for managing dynamic slack with wrapper-tasks are

as follows:

• Rule 1 (slack generation):When new slack is generated due toearly completion of jobsor removal of recovery

jobs, a new wrapper-task is created. However, it may be merged with an existing element inWT-Queueif they have

the same deadline. That is, all wrapper-tasks inWT-Queuerepresent slack with different deadlines. Wrapper-tasks

in WT-Queueare kept in the increasing order of their deadlines.

4Although checkpointing could be used for partial recovery [30, 31], we have shown that checkpoints with single recovery section cannot guarantee
to preserve task reliability [32].
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• Rule 2 (slack reclamation):The slack is reclaimed when: (a) a non-scaled job has the highest priority inReady-

Q andits reclaimable slack is larger than the job size; or (b) the highest priority job inReady-Qhas been scaled

(i.e., its recovery job has been reserved) but its speed is higher thanfee and there is reclaimable slack. After the

slack is reclaimed, the corresponding wrapper-tasks are removed fromWT-Queueand destroyed.

• Rule 3 (slack forwarding/wasting): the wrapper-tasks of non-reclaimed slack compete for CPU along with

ready jobs. When a wrapper-task has higher priority (i.e., earlier deadline) and wraps the execution of a job, the

corresponding slack ispushed forward; otherwise, if a wrapper-task executes no-ops, the corresponding slack is

wasted. Note that, when wrapped execution is interrupted by higher priority jobs, only part of slack (which is

consumed by the wrapped execution) will be pushed forward, while the remaining part has the original deadline.

Algorithm 1 EDF-based RA-DPM Algorithm

1: Step 1:
2: Suppose thattpast is the elapsed time since last scheduling point;J andWT are current job and wrapper-task (could beNULL

if no such job or wrapper-task);J.rem andWT.rem are remaining time requirements; andJ.d andWT.d are the deadlines;
3: if (J !=NULL and J.rem− tpast > 0) {
4: J.rem − = tpast;
5: if (J completes)
6: CreateWT(J.rem, J.d);//slack of early completion
7: elseEnqueue(J , Ready-Q);}
8: if (WT !=NULL and WT.rem− tpast > 0) {
9: WT.rem − = tpast; Enqueue(WT , WT-Queue);}

10: if (WT !=NULL and J !=NULL)
11: CreateWT(tpast, J.d);//push forward slack;
12: if (J is scaled and succeeds){
13: RemoveRecoveryJob(J ,Ready-Q);
14: CreateWT(J.c, J.d);//slack from recovery job;}
15: Step 2:
16: for (all newly arrived jobNJ){ NJ.rem = NJ.c;
17: NJ.f = fmax; Enqueue(NJ , Ready-Q);}
18: Step 3://in the following,J andWT will represent the next job and wrapper-task to be processed, respectively;
19: J=Dequeue(Ready-Q);
20: if (J !=NULL) ReclaimSlack(J , WT-Queue);
21: WT=Header(WT-Queue);
22: if (J !=NULL){
23: if (WT ! = NULL andWT.d < J.d)
24: //WT wrapsJ ’s execution (a timer is needed)
25: WT = Dequeue(WT-Queue);
26: elseWT = NULL;//normal execution ofJ
27: Execute(J);}
28: else if(WT !=NULL)
29: WT = Dequeue(WT-Queue);//WT executes no-ops

Considering that the execution of real-time jobs may be wrapped by a higher priority wrapper-task, the outline of

EDF-based RA-DPM algorithm is shown in Algorithm 1. Note that, RA-DPM may be invoked by three types of events:

job arrival, job completionandwrapper-task completion(a timer can be used to signal the completion of a wrapper-task

to the operating system). As common routines, we useEnqueue(J, Q)to add a job/wrapper-task to the corresponding

queues and,Dequeue(Q)to fetch the highest priority (i.e., the header) job/wrapper-task and remove it from the queue.

Moreover,Header(Q)is used to retrieve the header job/wrapper-task without removing it from the queue.

At each scheduling point, as the first step (from line3 to line 14), the remaining execution time information of the

currently running job and wrapper-task (if any) are updated. If they did not finish, put them back toReady-Qand
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WT-Queue(lines7 and9), respectively. When a wrapper-task (WT ) is used and wraps the execution ofJ (line 11), as

discussed before, the corresponding amount of slack (i.e.,tpast) is pushed forward by creating a new wrapper-task with

the deadline of the currently wrapped job. Otherwise, the slack is consumed (wasted).

If the current job completes early (line6) or its recovery job is removed due to the primary job’s successful scaled

execution (lines13 and14), new slack is generated and corresponding wrapper-tasks are created. Note that, only if the

deadline of newly created wrapper-task is different from the ones inWT-Queue, can it be added toWT-Queue; otherwise,

it will be merged with the one that has the same deadline.

Secondly, if new jobs arrive at the current scheduling point, they are added toReady-Qaccording to their EDF priority

(line 17). The remaining timing requirements will be set as their WCETs at the speedfmax. The last step is to choose

the next highest priority ready jobJ (if any) for execution (lines19 to 29). J first tries to reclaim the available slack (line

20; details are shown in Algorithm 2). Then, depending on the priority of the remaining wrapper-tasks, the execution

of J may be wrapped by a wrapper-task (line25) or executed normally (line26). When a wrapper-task has the highest

priority but no job is ready, the wrapper-task executes no-ops (line29).

Algorithm 2 ReclaimSlack(J , WT-Queue)

1: if (J is a recovery job) return; //recovery job is not scaled
2: Step 1: //collect reclaimable slack
3: slack = 0;
4: for (WT ∈WT-Queue)
5: if (WT.d ≤ J.d) slack+ = WT.rem;
6: Step 2: //scale downJ if the slack is enough
7: if (!J.scaled && slack <= J.c) return;
8: if (!J.scaled) slack− = J.c; //reserve for recovery
9: tmp = min(fee,

J.rem∗J.f
slack+J.rem

fmax);

10: slack = J.rem∗J.f
tmp

− J.rem; //slack needed for PM
11: J.f = tmp; //new speed
12: if (!J.scaled){CreateRecoveryJob(J);slack+ = J.c;}
13: J.scaled = true; //label as scaled
14: //remove reclaimed slack fromWT-Queue;
15: while (slack > 0){
16: WT =Header(WT-Queue);
17: if (slack ≥ WT.rem){
18: WT =Dequeue(WT-Queue);slack− = WT.rem;}
19: else{WT.rem− = slack; slack = 0;}
20: }

Algorithm 2 shows the further details of slack reclamation. As mentioned previously, recovery jobs are executed at

fmax and are not scaled (line1). For a jobJ , by traversingWT-Queue, we can find out the amount reclaimable slack

(lines3 and5). If J is not a scaled job (i.e., its recovery job is not reserved yet) and the amount of reclaimable slack is no

larger than the size ofJ (i.e.,J.c), the available slack is not enough for reclamation (line7). Otherwise, after properly

reserving the slack for recovery (line8), J ’s new speed is calculated, which is bounded byfee (line 9; as discussed

in Section 2). The actual amount of slack used byJ includes those for energy management (line10) as well as the

slack for recovery job (where the recovery job is created and added toReady-Qin line 12). For the reclaimed slack, the

corresponding wrapper-task(s) will be removed fromWT-Queueand destroyed (lines15 to 20), which ensures that this

slack isconservedfor the scaled job, even if higher-priority jobs preempt the scaled job’s execution later.
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4.3 Analysis of RA-DPM

Note that, when all jobs in a task set present their WCETs at run time, there will be no dynamic slack and no wrapper-

task will be created. In this case, RA-DPM will perform the same as EDF and generate the same worst case schedule,

which is feasible by assumption. However, as some jobs complete early, RA-DPM will undertake slack reclamation

and/or wrapped execution, and one needs to show that the feasibility is preserved even after these changes in CPU time

allocation of jobs.

In RA-DPM, the slack is reclaimed fordualpurposes of scheduling a recovery block and slowing down the execution

to save energy with DVFS. Similarly, the slack may be added to theWT-Queueas a result of early completion of a

job/recovery block, or release of the recovery block (in case of a successful, non-faulty completion of a job). However,

the feasibility of the resulting schedule is orthogonal to these details; hence, we will not further concern about whether

the slack is obtained from a main job or a recovery block, and for what purpose (i.e. recovery or DVFS) it is used.

Recall that, the elements ofWT-Queuerepresent the slack of tasks that complete early. These slack elements, while

being reclaimed, may be entirely or partially re-transformed to actual workload. Our strategy will consist of proving

that,at any timet during execution, the remaining workload could be feasibly scheduled by EDF, even if all the slack

elements in WT-Queue were to be re-introduced to the system, with their corresponding deadlines and remaining worst-

case execution times (sizes). This, in turn, will allow us to show the feasibility of the actual schedule, since the above-

mentioned property implies the feasibility even with an over-estimation of the actual workload, for any timet.

Before presenting the proof for the correctness of RA-DPM, we first introduce the concept ofprocessor demandand

the fundamental result in the feasibility analysis of task systems scheduled by preemptive EDF [2, 16].

Definition 1 Theprocessor demandof a real-time job setΦ in an interval[t1, t2], denoted ashΦ(t1, t2), is the sum of

computation times of all jobs inΦ with arrival times greater than or equal tot1 anddeadlines less than or equal tot2.

Theorem 2 ([2, 16])A set of independent real-time jobsΦ can be scheduled (by EDF) if and only ifhΦ(t1, t2) ≤ t2−t1

for all intervals[t1, t2].

Let us denote byJ(r, e, d) a job J that is released att = r, and that must complete its execution by the deadlined,

with worst-case execution timee. We next prove the following lemma that will be instrumental in the rest of the proof.

Lemma 1 Consider a setΦ1 of real-time jobs which can be scheduled by preemptive EDF in a feasible manner. Then,

the setΦ2, obtained by replacingJa(ra, ea, da) in Φ1 by two jobsJb(ra, eb, db) andJc(ra, ec, dc), is still feasible if

eb + ec ≤ ea, andda ≤ db ≤ dc.

Proof

Since the EDF schedule ofΦ1 is feasible, from Theorem 2, we havehΦ1(t1, t2) ≤ t2 − t1∀ t1, t2. We need to show

thathΦ2(t1, t2) ≤ t2 − t1∀ t1, t2.

It is well-known that, when evaluating the processor demand for a set of real-time jobs, one can safely focus on

intervals that start at ajob release timeand end at ajob deadline[2, 16]. Noting that the only difference betweenΦ1

andΦ2 consists in substituting two jobsJb andJc for Ja, we first observe thathΦ2(rx, dy) = hΦ1(rx, dy) ≤ dy − rx,

wheneverrx is a job release time strictly greater thanra, ordy is a job deadline strictly smaller thanda. Hence, we need
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to consider only the intervals[rx, dy] whererx ≤ ra anddy ≥ da. By taking into account the fact thatda ≤ db ≤ dc,

the following properties can be easily derived for all possible positionings ofdy with respect to these three deadlines:

• hΦ2(rx, dy) = hΦ1(rx, dy)− (ea − eb − ec) if dc ≤ dy,

• hΦ2(rx, dy) = hΦ1(rx, dy)− (ea − eb) if da ≤ db ≤ dy < dc,

• hΦ2(rx, dy) = hΦ1(rx, dy)− ea if da ≤ dy < db ≤ dc.

Sinceea ≥ eb + ec by assumption, in all three cases,hΦ2(rx, dy) ≤ hΦ1(rx, dy) ≤ dy − rx, and the job setΦ2 is

also feasible.

Now, we introduce some additional notations and definitions for the execution state of RA-DPM, at timet.

• JR(t) denotes the set of ready jobs at timet. Each jobJi ∈ JR(t) has a corresponding remaining worst-case

execution timeei at timet and deadlinedi. Note thatJi can be seen as released at timet, and with worst-case

execution timeei and deadlinedi.

• JF (t) denotes the set of jobs that will arriveafter t, with their corresponding worst-case remaining execution

times and deadlines.

• JW (t) denotes the set of jobs obtained through theWT-Queue. Specifically, for every slack element inWT-Queue

with sizesi and deadlinedi, JW (t) will include a jobJi(t, si, di).

Definition 2 TheAugmented Remaining Workloadof RA-DPM at timet, denoted byARW(t), is defined as

JR(t)
⋃

JF (t)
⋃

JW (t).

Informally,ARW(t)denotes the workload obtained by re-introducingall the slack elements inWT-Queueto the ready-

queue, with their corresponding deadlines. This is clearly anover-estimationof the actual workload at timet, since the

amount of workload re-introduced by slack reclamation can never exceedJW (t).

Theorem 3 ARW(t) can be scheduled by EDF in a feasible manner during the execution of RA-DPM, for everyt.

Proof The statement is certainly true att = 0, when theWT-Queueis empty, and the workload can be scheduled in

a feasible manner even under the worst-case conditions. So, assume that the statement holds∀ t ≤ t1.

Note that fort = t1, t1 + 1, . . . , ARW(t)remains feasible as long as there is no slack reclamation or ’wrapped

execution’. This is because, under these conditions, the task with highest priority in the ready queue is executed at

every time slot according to EDF – and being an optimal preemptive scheduling policy, it preserves the feasibility of

the remaining workload. Also note that, if the ready queue is empty for a given time slot, then the slack at the head of

WT-Queueis consumed, which corresponds to the fact thatARW(t)is updated dynamically according to EDF execution

rules.

Let t2 be the first time instant aftert1, if any, where RA-DPM performs a slack reclamation orstarts the “wrapped

execution”. We denote the head ofWT-Queueby H at t = t2, with deadlinedH and sizeeH . We will show thatARW()

remains feasible after such a point in both scenarios, completing the proof.
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• Case 1:At t = t2, slack reclamation is performed through theWT-Queue. Assumek units of slack is transferred

fromH to the jobJA which is about to be dispatched, with deadlinedA ≥ dH and remaining worst-case execution

time eA. Note that this slack transfer can be seen as replacingJH(t2, eH , dH) in ARW(t2) by two new jobs

JH1(t2, k, dA) andJH1(t2, eH − k, dH); and by virtue of Lemma 1,ARW(t)remains feasible after the slack

transfer. If, the slack is transferred from multiple elements inWT-Queuesuccessively, then we can repeat the

argument for the second, third,... elements in the same order.

• Case 2:At t = t2, a ’wrapped execution’ starts, to end att = t3 > t2. We will show thatARW(t)remains feasible

for t2 ≤ t ≤ t3, completing the proof.

The wrapped execution (i.e., slack forwarding) in the interval[t2, t3] is functionally equivalent to the following:

in everytime slot[ti, ti+1] in the interval[t2, t3], one unit of slack fromH (the head ofWT-Queue) is replaced

by another item inWT-Queuewith size 1, and deadlinedAi
, which is the deadline of jobJAi

that executes on the

CPU in the interval[ti, ti+1]. On the other hand, when seen from the perspective of changes inARW(t), this is

equivalent to the reclaiming byJAi one unit of slack fromH in slot [ti, ti+1] –even though, in actual execution,

this slack unit will not be used because of wrapped execution. As a conclusion,ARW(t)remains feasible at every

time slot in the interval[t2, t3] as slack reclamation onARW(t)was shown to be safe in Case 1 above.

SinceARW(t)is an over-estimation of the actual workload, we obtain the following conclusion.

Corollary 1 RA-DPM preserves the feasibility of any periodic real-time task set under preemptive EDF.

4.4 Complexity of RA-DPM

Note that, the deadlines of wrapper-tasks correspond to the deadlines of jobs in the task set considered. At any timet,

there are at mostn different deadlines corresponding to jobs with release times on or beforet anddeadlines on or after

t. That is, the number of wrapper-tasks inWT-Queueis at mostn. Therefore, slack reclamation can be performed (by

traversingWT-Queue) in timeO(n). Hence, the complexity of RA-DPM isO(n) at each scheduling point.

5 Simulation Results and Discussion

To evaluate the performance of our proposed schemes, we developed a discrete event simulator using C++. In the

simulations, we consider six different schemes. First, the scheme ofno power management (NPM), which executes all

tasks/jobs atfmax and puts system to sleep states when idle, is used as the baseline for comparison. Theordinary static

power management (SPM)scales all tasks uniformly at speedf = U · fmax (whereU is the system utilization). For

the task-level static RA-PM, after obtaining the optimal utilization (Xopt) that should be managed, two heuristics are

considered:smaller utilization task first (RA-SPM-SUF)and larger utilization task first (RA-SPM-LUF). For dynamic

schemes, we implemented ourjob-level dynamic RA-PM (RA-DPM)and thecycle conserving EDF (CC-EDF)[22], a

well-known but reliability-ignorant energy management algorithm.
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Figure 3: Reliability and energy for static schemes.

We focus on active power and assumePind = 0.1, Cef = 1 andm = 3. Considering normalized frequency with

fmax = 1, the minimum energy efficient frequency isfee = 0.37 (see Section 2). Transient faults are assumed to arrive

according to a Poisson distribution with an average fault rate asλ0 = 10−6 atfmax (and corresponding supply voltage),

which corresponds to 100,000 FITs (failure in time, in terms of errors per billion hours of use) per megabit and is a

reasonable fault rate as reported [11, 36]. To take the effects of DVFS on fault rates into consideration, we adopt the

exponential fault model developed in [34] and assume that the exponentd = 2. That is, the average fault rate is assumed

to be100 times higher at the lowest speedfee (and corresponding supply voltage). The effects of different values ofd

have been evaluated in our previous work [32, 33, 34].

We consider synthetic real-time task sets where each task set contains20 periodic tasks. The periods of tasks (p)

are uniformly distributed within the range of[10, 20] (for short period tasks) or[20, 200] (for long period tasks). The

WCETs of tasks are uniformly distributed in the range of1 and their periods. Finally, the WCETs of tasks are scaled by

a constant such that the system utilization of tasks reaches a desired value [22]. The variability in the actual workload is

controlled by theWCET
BCET ratio (that is, the worst-case to best-case execution time ratio), where the actual execution time

of tasks follows a normal probability distribution function with mean and standard deviation beingWCET+BCET
2 and

WCET−BCET
6 , respectively [1].

We simulate the task set’s execution for107 and108 time units, for short- and long-period task sets, respectively.

That is, approximately 20 million jobs are executed at each run. Moreover, for each result point in the graphs,100 task

sets are generated and the presented results correspond to the average.

5.1 Performance of Task-Level Static Schemes

For different system utilization (i.e., spare capacity), we first evaluate the performance of the task-level static schemes.

It is assumed that all jobs take their WCETs. Figure 3a first shows the probability of failure (i.e.,1−reliability) for NPM

and static schemes for task sets with short periods (i.e.,p ∈ [10, 20]). Here, the probability of failure shown is the ratio

of the number of failed jobs over the total number of jobs executed.

From the figure, we can see that, as system utilization increases, for NPM, the probability of failure increases slightly.

The reason for this is that, with increased total utilization, the computation requirement for each task increases and tasks

run longer, which increases the probability of being subject to transient fault(s). The probability of failure for SPM

increases dramatically due to increased fault rates as well as extended execution time. Note that, the minimum energy
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Figure 4: Reliability and energy for dynamic schemes.

efficient frequency isfee = 0.37. For very low system utilization (i.e.,U < 0.37), SPM executes all tasks withfee. The

probability of failure increases slightly with increased utilization due to the same reason as for NPM. However, when

system utilization is higher than0.37, the processing speed of SPM increases with increased utilization, which has lower

failure rates and results in decreased probability of failure.

For reliability-aware SPM schemes (i.e., RA-SPM-SUF and RA-SPM-LUF), by incorporating a recovery task for

each task to be scaled, the probability of failure is lower than that of NPM and system reliability is preserved, which

confirms the theoretical result obtained in Section 3. Note that, with20 tasks in a task set, the utilization for each task is

a small number and is close to each other. Therefore, RA-SPM-SUF and RA-SPM-LUF perform roughly the same.

The probability of failure for long-period task sets is shown in Figure 3b, where all schemes have similar behavior to

that of short-period task sets. However, for the same system utilization, long-period task sets will have longer execution

time (almost10 times longer), which leads to roughly10 times larger probability of failure.

Figure 3c further shows the normalized energy consumption for short-period tasks with NPM as a baseline. Here,

reliability-aware SPM schemes consume roughly20% more energy than that of ordinary SPM due to less spare capacity

available for energy management. Moreover, the figure also shows the energy consumption forOPT-BOUND, which

is calculated as the fault-free energy consumption with the assumption that the managed tasks have the accumulated

utilization exactlyasXopt. Clearly,OPT-BOUNDprovides a performance bound for theoptimalstatic solution. Thus,

from the figure, we can see that the normalized energy consumption for two heuristics will be within5% of that for the

optimal solution. For long-period tasks, the normalized results are similar, and are not included due to space limitations.

5.2 Performance of Job-Level Dynamic Schemes

With system utilization fixed atU = 1.0, we vary WCET
BCET ratio and evaluate the performance of the dynamic schemes.

Figure 4a first shows the probability of failure for short period tasks. Here, we can see that, asWCET
BCET ratio increases,

more dynamic slack is available and the probability of failure for CC-EDF decreases radically due to scaled execution.

Again, by reserving slack for recovery jobs, RA-DPM preserves system reliability by having a lower probability of

failure than that of NPM. The result for long period tasks is similar.

Figure 4b shows the normalized energy consumption for short period tasks. Initially, as the ratio ofWCET
BCET increases,

more dynamic slack is available and normalized energy consumption decreases. Due to limitation offee, whenWCET
BCET >

5, the normalized energy consumption for both schemes stays roughly the same and RA-DPM consumes about15%
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more energy than CC-EDF. RA-DPM performs much worse than CC-EDF for long period tasks (in terms of energy) as

shown in Figure 4c. One possible explanation could be that, slack is pushed forward too much by the long period tasks,

which prevents other jobs from reclaiming them, and may be wasted.

5.3 Effects of Discrete Speeds

So far, we have assumed that the clock frequency can be scaled in continuous manner. However, on current DVFS-

enabled processors (e.g., Intel XScale [12]), there are only a finite number of speed levels. Nevertheless, our schemes

can be easily adapted to discrete speed settings. After obtaining the scaled speed (e.g., Algorithm 2 line9), we can either

use two adjacent frequency levels to emulate the task’s execution at that speed [14], or use the next higher discrete speed

that will always ensure to maintain the feasibility of the algorithm. Assuming Intel XScale model [12] with5 speeds

{0.15, 0.4, 0.6, 0.8, 1.0} and using the next higher speed, we re-ran the simulations. The results for normalized energy

consumption are represented asRA-DPM-DISCand shown in Figure 4bc. From the figures, we can see that, the cases

for discrete speeds consume at most2% more energy than that of continuous speed. The reason is that, with the next

higher discrete speed, the unused slack is not wasted but actually saved for future usage.

6 Closely Related Work

In [27], Unsalet al.proposed to postpone the execution of backup tasks to minimize the overlap of primary and backup

execution and thus the energy consumption. The optimal number of checkpoints, evenly or unevenly distributed, to

achieve minimal energy consumption while tolerating one fault was explored by Melhemet al. in [21]. Elnozahyet al.

proposed anOptimistic TMRscheme that reduces the energy consumption for traditional TMR systems by allowing one

processing unit to slow down provided that it can catch up and finish the computation before the application deadline

[7]. The optimal frequency settings for OTMR was further explored in [35]. Assuming a Poisson fault model, Zhanget

al. proposed an adaptive checkpointing scheme that dynamically adjusts checkpoint intervals for energy savings while

tolerating a fixed number of faults for a single task [30]. The work is further extended to a set of periodic tasks [31].

Most of the previous research either focused on tolerating fixed number of faults [7, 21] or assumed constant fault

rate [30, 35] when applying DVFS for energy savings. However, it has shown that there is a direct and negative effect

of voltage scaling on the rate of transient faults [8, 34]. In our recent work, we presented a reliability-aware power

management scheme based on single-task model [32], which is extended to a set of aperiodic tasks sharing a common

deadline [33].

7 Conclusions

Although an efficient energy management technique, dynamic voltage and frequency scaling (DVFS) was recently

shown to have negative impact on settings where transient faults become more prominent with continued scaling of

CMOS technologies and reduced design margins. For mission critical applications, where system reliability may be

more important than energy consumption,reliability-cognizantenergy management becomes a necessity. Based on our

previous research, which concluded that system reliability can be preserved by scheduling suitable recovery tasks before

applying DVFS [32], in this work, we proposed for the first time a reliability-aware energy management (RA-PM)
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framework forperiodic tasks. Focusing on EDF scheduling, we first studiedtask-levelutilization-based static RA-PM

schemes that exploit the spare capacity in the system. We showed theintractability of the problem and proposed two

efficient heuristics. Moreover, we proposed thewrapper-taskmechanism for efficiently managing dynamic slack and

presented ajob-leveldynamic RA-PM scheme. The scheme is able toconservethe slack reclaimed by a scaled job,

which is an essential requirement for reliability preservation, across preemption points.

The proposed schemes are evaluated through simulations with synthetic real-time workloads. The results show that,

compared to those of ordinary energy management schemes, the new schemes could achieve significant amount of

energy savings while preserving system reliability. However, ordinary energy management schemes that arereliability-

ignorant, often lead to drastically decreased system reliability.
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