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Abstract. We obtain a polynomial time approximation scheme for the
terrain guarding problem improving upon several recent constant factor
approximations. Our algorithm is a local search algorithm inspired by
the recent results of Chan and Har-Peled [2] and Mustafa and Ray [15].
Our key contribution is to show the existence of a planar graph that
appropriately relates the local and global optimum.

1 Introduction

A 1.5D terrain is a polygonal chain in the plane that is x-monotone, that is,
any vertical line intersects the chain at most once. A terrain T consists of a set
of m vertices {v1, v2, . . . , vm}. The vertices are ordered in increasing order with
respect to their x-coordinates. There is an edge connecting vi with vi+1 for all
i = 1, 2, . . . , m− 1. For any two points a, b ∈ T , we say that a sees b if the line
segment ab lies entirely above or on the terrain.

In this paper, we consider the discrete terrain guarding problem in which we
are given a terrain T and finite sets X, G ⊆ T . For a set G′ ⊆ G, we say that G′

covers/sees/guards X if every point in X can be seen by at least one point in
G′. The goal of the problem is to find a minimum cardinality subset of G that
covers X .

The motivation for guarding terrains comes from placing street lights or
security sensors along roads, as well as constructing line-of-sight networks for
radio broadcasting and other communication networks [1].

A closely related problem is the art gallery problem. Again the goal is to find
a minimum cardinality guarding set, but in this setting we must guard a simple
polygon. The basic version of this problem, vertex guarding, requires guards to
be placed at the vertices of the polygon. Another version, point guarding, allows
guards to be placed anywhere inside the polygon.

The art gallery problem was shown to be NP-complete by Lee and Lin [14]
and was later shown to be APX-hard by Eidenbenz [7]. This means that there
is an ǫ > 0 such that no polynomial time algorithm can compute a guarding
set whose cardinality is within a (1 + ǫ) factor of the cardinality of an optimal
guarding set, unless P = NP. Ghosh gives an O(log n)-approximation algorithm
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for vertex guarding an n-vertex simple polygon [11]. The point guarding problem
seems to be much more difficult as not as much is known about it [5]. A constant
factor approximation is given by Nilsson for the special case of the problem when
the polygon is x-monotone [16]. Based on his result, Nilsson gives an O(OPT 2)-
approximation algorithm for rectilinear polygons.

Previous Work on Terrain Guarding. Chen et al. [3] claimed that terrain guard-
ing is NP-hard, but the proof was never completed formally [12]. Most of the
past research has gone into developing approximation algorithms. The first con-
stant factor approximation was a combinatorial algorithm given by Ben-Moshe
et al. [1]. Clarkson and Varadarajan [4] also give a constant factor approxima-
tion based on rounding a linear programming relaxation. King gave a simple
combinatorial 4-approximation which was later determined to actually be a 5-
approximation [12]. Recently, Elbassioni et al. [8] gave a 4-approximation that
also works for the weighted case.

All of the approximation algorithms use the following “order claim”:

Claim. Let a, b, c, d be four points on the terrain in increasing order according
to x-coordinate. If a sees c and b sees d then a sees d.

Natural attempts at constructing NP-hardness reductions for the terrain
guarding problem do not work because of the order claim. Recently Krohn and
King [13] were able to get around the order claim and prove NP-hardness.

Our Contribution. We give a polynomial time algorithm that returns a guard
cover whose cardinality is at most (1+ǫ)·OPT for any ǫ > 0. Here, OPT denotes
the cardinality of an optimal guard cover. Thus we obtain the first PTAS for the
problem improving upon several recent constant factor approximations. Given
the hardness result [13], this settles the computational complexity of the problem.

The inspiration for our work comes from the recent results of Chan and Har-
Peled [2] and Mustafa and Ray [15]. Chan and Har-Peled show that a local search
algorithm actually yields a PTAS for the maximum independent set problem
given a collection of disks. Unlike a previous PTAS for the problem [9], their
analysis does not use packing arguments and thus also applies to “pseudo-disks”.
Mustafa and Ray consider several geometric hitting set and set cover problems
and describe local search algorithms that yield PTASs. For instance, in a rather
surprising result they obtain a PTAS for the problem of covering a set of points by
the smallest number of a given set of disks. Both papers use separator theorems
for planar graphs. In particular, they show that there exists a planar graph that
relates the locally optimal solution returned by the local search and the global
optimal solution. The separator theorem is then used to show that the locally
optimal solution is not too much worse than the global optimum.

Our PTAS for the terrain guarding problem is also based on local search.
Our key contribution is to show the existence of an appropriate planar graph
even for the terrain guarding context. Having shown this, the rest of the analysis
is very similar to that of Mustafa and Ray [15].
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2 Guarding Terrains via Local Search

Recall that our input is a polygonal terrain, a set X of points on the terrain
that need to be guarded, a set G of possible guard locations, and a parameter
0 < ǫ < 1. For purposes of exposition, we will initially assume that X ∩ G = ∅.
We later show how this assumption can be removed. We describe a polynomial
time algorithm that returns a subset Q ⊆ G that sees X , so that |Q| is at most
a factor (1 + ǫ) times the size of the smallest subset of G that sees X . Let n
denote the input size – the number of vertices in the terrain, plus |G|, plus |X |.

We say that a subset of G that sees X is b-locally optimal if one cannot
obtain a smaller set of guards that sees X by deleting at most b guards from it
and inserting at most b− 1 guards.

Our algorithm simply returns a b-locally optimal solution for b = α
ǫ2 , where

α is a suitably large constant, by performing local search. We start with some
arbitrary Q ⊆ G that covers X . For every subset S ⊆ Q of size at most b, we see
if there exists a subset T ⊆ G \Q of size at most |S| − 1 such that (Q \ S) ∪ T
guards X . If so, we set Q← (Q \S)∪T . Every such exchange decreases the size
of Q by at least one, and as such can happen at most n times. Since there are
(

n
b

)

subsets S to consider, the running time is bounded by nO(b).

2.1 Approximation Analysis

Let R′ denote the optimal cover for X , and B′ the set of guards output by our
local search algorithm on termination. We show that |B′ \R′| ≤ (1 + ǫ)|R′ \B′|,
and thus |B′| ≤ (1 + ǫ)|R′|. Let R ≡ R′ \B′, B ≡ B′ \R′, and abusing notation,
let X denote the set after removing all points seen by R′ ∩ B′. So now both R
and B cover X and we wish to show that |B| ≤ (1+ǫ)|R|. We will refer to points
in B as blue points and points in R as red points.

The following lemma is our main contribution; it shows that the locality
condition of Mustafa and Ray [15] is satisfied.

Lemma 1. There exists a planar graph G = (V ≡ R ∪ B, E) with the property
that for each x ∈ X, there is an edge (r, b) in G between guards r ∈ R and b ∈ B
that both see x.

Before giving the proof, we show how the lemma implies that |B| ≤ (1+ǫ)|R|;
this is similar to [2, 15]. We need the following partition theorem on planar graphs
due to Frederickson [10]. For U ⊆ V , let Γ (U) denote the set of neighbors in G
of vertices in U with U excluded. Let µ = |V |.

Lemma 2. For any parameter 1 ≤ r ≤ µ, we can find a set S ⊆ V of size at
most c1µ/

√
r and a partition of V \ S into µ/r sets V1, V2, . . . , Vµ/r, satisfying

(i) |Vi| ≤ c2r, (ii) |Γ (Vi)| ≤ c3
√

r, and (iii) (Vi ∪ Γ (Vi)) ∩ Vj = ∅ for i 6= j.
Here, c1, c2, and c3 are absolute positive constants.

Let us apply the lemma with r ≡ b/(c2 + c3). We have |Vi ∪ Γ (Vi)| ≤ c2r +
c3
√

r ≤ b. Thus, letting Ri = R ∩ Vi and Bi = B ∩ Vi, we must have |Bi| ≤
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|Ri|+ |Γ (Vi)|. For otherwise, the local search can replace Bi by Ri ∪ Γ (Vi) and
obtain a smaller set that still covers X (Lemma 1), a contradiction.

Thus

|B| ≤ |S|+
∑

i

|Bi| ≤ |S|+
∑

i

|Ri|+
∑

i

|Γ (Vi)| ≤ |R|+ c
µ√
r

≤ |R|+ c′
|R|+ |B|√

b
,

where c and c′ are positive constants. With b a large enough constant times 1/ǫ2,
this implies that |B| ≤ (1 + ǫ)|R|.

2.2 Proof of Lemma 1

We begin with some notation. For points a and b on the terrain, we say a ≤ b
to mean that the x-coordinate a.x of a is at most b.x. We use the notation of
intervals that this implies – for instance, [a, b] denotes all points c on the terrain
so that a ≤ c ≤ b.

We now prove Lemma 1. Let us first construct the planar graph G. For each
x ∈ X , let λ(x) denote the leftmost point that sees x among points in R ∪ B
to the left of x, assuming such a point does exist. Similarly, let ρ(x) denote the
rightmost point that sees x among points in R ∪ B to the right of x, assuming
such a point does exist. Note that at least one of λ(x) or ρ(x) does exist.

Let A1 denote the set of segments λ(x)x, for x ∈ X . Because of the order
claim, these segments do not cross. For each v ∈ R ∪ B, shoot a vertical ray
up from v; if this ray hits some segment in A1, let λ(y)y denote the first such
segment hit; we add the edge (v, λ(y)) to a set E1 if v and λ(y) are of opposite
colors.

Now, the edges in A1 ∪ E1 can be embedded above the terrain in a non-
crossing way. To see this, let A1 be embedded as the original straight line seg-
ments. To embed an edge of the form (v, λ(y)) ∈ E1 as above, we travel straight
up from v till we hit λ(y)y, and then slide along the segment λ(y)y to reach
λ(y). See Figure 1. A more formal argument that A1 ∪ E1 can be so embedded
is given in the appendix.

Let A2 denote the set of segments xρ(x), for x ∈ X . Again, these segments
do not cross. For each v ∈ R ∪B, shoot a vertical ray up from v; if this ray hits
some segment in A2, let yρ(y) denote the first such segment hit; we add the edge
(v, ρ(y)) to a set E2 if v and ρ(y) are of opposite colors.

The edges in A2 ∪ E2 can also be embedded above the terrain in a non-
crossing way. We “flip” the embedding of A1 ∪ E1 to obtain a non-crossing
embedding below the terrain; see Figure 2. This gives us a planar embedding of
A1 ∪ E1 ∪A2 ∪E2.

Finally, for each x ∈ X , we add the edge (λ(x), ρ(x)) to a set E3 if λ(x) and
ρ(x) are of opposite colors. Our graph G consists of the edge set E1∪E2∪E3. This
is a planar graph; just embed E1 and E2 as above, and for each (λ(x), ρ(x)) ∈ E3,
embed it using the embedding of the segments λ(x)x and xρ(x).
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Fig. 1. The embedding of A1∪E1, with X = {x, x′, x′′}, and R∪B = {v0, v1, v2, v3, v4}.
Segments in A1 are shown in dashed lines, and the edges in E1 are embedded as dashed
curves with arrows. Note that v0 = λ(x) = λ(x′′), and v2 = λ(x′).
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Fig. 2. A combinatorial embedding of A1 ∪ E1 from Figure 1, and flipping it so that
A1 ∪ E1 is now embedded below the terrain. Note that only the edges in A1 ∪ E1 are
being flipped to make room for A2∪E2; the vertex set R∪B∪X retains its embedding.
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Now we need to show that for each x ∈ X , there are points r ∈ R and b ∈ B
that see x, and (r, b) ∈ E1 ∪ E2 ∪ E3. Fix an x ∈ X . If λ(x) and ρ(x) are of
opposite colors, then (λ(x), ρ(x)) ∈ E3, and we are done. Otherwise, it must be
the case that there are red and blue points to the left of x that see x, or that
there are red and blue points to the right of x that see x.

Let us assume that the first case holds (there are red and blue points to the
left of x that see x), and that λ(x) is red. The other situations are symmetric. Let
b be the leftmost blue point that sees x; it must be that b ∈ (λ(x), x). Thus the
ray shot up from b hits λ(x)x; let λ(y)y be the first segment in A1 that it hits.
See Figure 3. Because segments in A1 don’t cross, it must be that λ(y) ∈ [λ(x), b)
and y ∈ (b, x). The order claim (applied to λ(y), b, y, and x) implies that λ(y)
sees x. Now λ(y) cannot be blue, otherwise b is not the leftmost blue point that
sees x. Thus λ(y) ∈ R, b ∈ B, both λ(y) and b see x and (b, λ(y)) ∈ E1. This
completes the proof.

b

y

x

λ(x)

λ(y)

Fig. 3. Here, λ(y) sees y and b sees x. By the order claim, λ(y) sees x.

2.3 Relaxing the Disjointness Assumption

For ease of exposition, we have so far assumed that the set of possible guard
locations has an empty intersection with the set of points to be guarded. We now
relax that assumption. The algorithm remains unchanged, and we indicate how
the analysis is modified. For each x ∈ X , the point λ(x) (resp. ρ(x)) denotes the
leftmost (resp. rightmost) point that sees x among points in R∪B strictly to the
left (resp. right) of x, assuming such a point does exist. With this understanding,
the construction of the planar graph G proceeds with the sets A1, E1, A2, and
E2 defined exactly as above.

There is a change in the construction of E3. For each x ∈ X that is not in
R ∪ B, we proceed as before and add the edge (λ(x), ρ(x)) to E3 if λ(x) and
ρ(x) are of opposite colors. For x ∈ X that is also in R ∪ B, we add the edge
(λ(x), x) to E3 if λ(x) exists and λ(x) and x are of opposite colors; we also add
the edge (x, ρ(x)) to E3 if ρ(x) exists and ρ(x) and x are of opposite colors.
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This completes the construction of the graph, which is readily seen to be
planar. To show Lemma 1, we need to argue that for each x ∈ X , there are
points r ∈ R and b ∈ B that see x, and (r, b) ∈ E1 ∪E2 ∪E3. If x 6∈ R ∪B then
the argument is exactly as before. Without loss of generality, assume that x ∈ R.
Since B sees X , there must be a point in B that sees x. Assume that such a blue
point lies to the left of x. The other case is symmetric. In this case, it must be
that λ(x) exists. If λ(x) ∈ B, then we are done since we added (λ(x), x) to E3.
Therefore assume that λ(x) ∈ R. Let b be the leftmost blue point that sees x.
Now we can use the reasoning in the last paragraph of the previous section to
show that there is an edge (b, u) ∈ E1 such that both b and u see x, b is blue,
and u is red.

3 Conclusions

We have shown that the discrete terrain guarding problem admits a polynomial-
time approximation scheme. We can also obtain a PTAS in the scenario where
the possible guard locations are from a finite set, and we want to see the entire
terrain – this problem is readily reduced to discrete terrain guarding. In the
continuous terrain guarding problem, guards are allowed to be located anywhere
on the terrain. The local search can be seen to work even here, and we can show
that a single iteration of the local search can be implemented in polynomial time
along the lines of Section 4 of [6]. There is one issue that remains, however, and
this is to bound the number of bits needed to represent the guards maintained
by the local search. We are currently investigating how this can be handled.
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A Appendix

We present here a more formal argument for a piece of Lemma 1 that shows
that the graph (X ∪ R ∪ B, A1 ∪ E1) has a planar embedding with X ∪ R ∪ B
on a horizontal line and A1 ∪ E1 drawn above the line. We now think of A1 as
a set of combinatorial edges rather than as line segments. Let us say that two
edges in A1 ∪ E1 cross if all four end points are distinct, and can be ordered
as a < b < c < d with the edges being (a, c) and (b, d). Notice that crossing in
this sense is determined entirely by the ordering of the endpoints, and makes no
reference to a drawing of the edges. We first argue that no two edges in A1 ∪E1

cross.

1. Let (λ(x), x) and (λ(y), y) be any two edges in A1. They do not cross, for if
λ(x) < λ(y) < x < y, then by the order claim, y sees λ(x), contradicting the
definition of λ(y).

2. We argue that an edge in A1 and an edge in E1 do not cross. Let us recall how
edges in E1 are defined. Let us say that an edge (λ(x), x) is above v ∈ R∪B
if λ(x) < v < x. We look at all edges in A1 that are above v, and if this
set is non-empty we find the “innermost” such edge (λ(y), y). We add the
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edge (λ(y), v) to E1 if λ(y) and v are of opposite colors. Let us say that
(λ(y), y) ∈ A1 defines (λ(y), v) in this case.
Now suppose (λ(y), v) crosses some (λ(x), x) ∈ A1. Now if λ(x) < λ(y) <
x < v, then (λ(x), x) and (λ(y), y) cross, a contradiction. On the other hand,
if λ(y) < λ(x) < v < x, there are two cases: either x ≤ y, in which case the
contradiction is that (λ(y), y) is not the innermost edge in A1 that is above
v; or x > y, in which case the contradiction is that (λ(y), y) and (λ(x), x),
which are both edges in A1, cross.

3. We now show that no two edges in E1 cross. Consider two such edges
(λ(y1), v1) and (λ(y2), v2), defined by (λ(y1), y1) and (λ(y2), y2) respectively.
These edges do not cross, for if λ(y1) < λ(y2) < v1 < v2, then (λ(y1), v1)
crosses (λ(y2), y2), which contradicts the fact that an edge in E1 and an edge
in A1 do not cross.

Thus, no two edges in A1 ∪ E1 cross. From this, it follows that the required
embedding exists. For instance, embed the vertices X ∪B ∪R as distinct points
in the correct order on the lower half of the unit circle, and draw the edges in
A1 ∪ E1 as straight line segments. Using convexity arguments, this can be seen
to be a planar embedding. Now we “bend” the lower half of the unit circle into
a horizontal segment, allowing the drawing of edges in A1 ∪ E1 to now become
curved.


