
An Efficient Spectral Algorithm for Network Community Discovery
and Its Applications to Biological and Social Networks

Jianhua Ruan and Weixiong Zhang
Department of Computer Science and Engineering

Washington University in St Loius
One Brookings Dr, St Louis, MO 63130

{jruan,zhang}@cse.wustl.edu

Abstract

Automatic discovery of community structures in complex
networks is a fundamental task in many disciplines, includ-
ing social science, engineering, and biology. Recently, a
quantitative measure called modularity (Q) has been pro-
posed to effectively assess the quality of community struc-
tures. Several community discovery algorithms have since
been developed based on the optimization of Q. However,
this optimization problem is NP-hard, and the existing algo-
rithms have a low accuracy or are computationally expen-
sive. In this paper, we present an efficient spectral algorithm
for modularity optimization. When tested on a large num-
ber of synthetic or real-world networks, and compared to
the existing algorithms, our method is efficient and and has
a high accuracy. We demonstrate our algorithm on three
applications in biology, medicine, and social science. In
the first application, we analyze the communities in a gene
network, and show that genes in the same community usu-
ally have very similar functions, which enables us to pre-
dict functions for some new genes. Second, we apply the
algorithm to group tumor samples based on gene expres-
sion microarray data. Remarkably, our algorithm can au-
tomatically detect different types of tumor without any prior
knowledge, and by combining our results and clinical in-
formation, we can predict the outcomes of chemotherapies
with a high accuracy. Finally, we analyze a social network
of Usenet newsgroup users, and show that, without any se-
mantic information, we can discover the organization of the
newsgroups, and detect users groups with similar interests.

1 Introduction

The study of complex networks has become a fast grow-
ing subject in many disciplines, including physics, biol-

ogy, and social science. At least part of the reason can be
attributed to the discovery that real-world networks from
totally different sources can share surprisingly high simi-
larities in their topological properties, such as the power-
law degree distributions and high clustering coefficients.
(See [1, 20] for reviews.)

One of the key properties in complex networks that have
attracted a great deal of interest recently is the so-called
community structures, i.e. relatively densely connected
sub-networks [21]. Community structures have been found
in social and biological networks, as well as technological
networks such as the Internet and power grid. Automati-
cally discovering such structures is fundamentally impor-
tant for understanding the relationships between network
structures and functions, and has many practical applica-
tions. For example, identifying communities from a collab-
oration network may reveal scientific activities as well as
evolution and development of research areas [15]; detecting
hidden communities on the World Wide Web may help pre-
vent crime and terrorism [4]; discovering communities in a
network of biomolecules may help us better understand the
organizational principles of the cell, and identify important
biological pathways for further studies [29, 34].

Community discovery is similar but not equivalent to the
conventional graph partitioning problem, both of which are
amount to clustering vertices into groups. A key challenge
for the former, however, is that the algorithm has to decide
what is the “best”, or in other words, the “most natural”
partition of a network. In contrast, in conventional graph
partitioning, the user has to provide information such as
the number of partitions or the sizes of the sub-networks.
Furthermore, a community discovery algorithm should not
force a network to be partitioned if there is no good com-
munity structures, while it is always possible for a graph
partitioning algorithm to return some arbitrary results.

To design effective community discovery algorithms,
Newman and Girvan [22] proposed a quantitative measure,

called modularity (Q), to assess the quality of community
structures, and formulated community discovery as a opti-
mization problem. Since optimizing Q is a NP-hard prob-
lem, several heuristic methods have been developed, as sur-
veyed in [6]. The fastest algorithm available uses a greedy
strategy and suffers from poor quality [5]. A more accu-
rate method is based on simulated annealing, which requires
a prohibitively long running time on large networks [14].
Several spectral algorithms have been developed, which
have relatively good performance, but still inefficient for
large networks [33, 21].

In this paper, we propose a spectral algorithm that is ef-
fective in finding high quality communities as well as effi-
cient on large networks. The algorithm adopts a recursive
strategy to partition networks while optimizing Q. Unlike
the existing algorithms, our method is a hybrid of direct
k-way partitioning and recursive 2-way partitioning strate-
gies [33, 21]. We evaluate our algorithm on a large number
of synthetic and real-world networks. The results show that
the algorithm is more efficient and more accurate than a re-
cursive 2-way partitioning method. Compared to a direct
k-way partitioning method, our algorithm is much more ef-
ficient, while having a comparable accuracy.

We demonstrate our algorithm on several real applica-
tions in different domains. First, we apply our algorithm
to identify functional modules from a network of genes in
the yeast S. cerevisiae, and predict functions for some genes
based on the community structures. Second, we use the al-
gorithm to classify tumor samples based on gene expression
microarray data, which is a challenging and important task
for effective therapy of cancer. Finally, we analyze the com-
munity structure in a social network of Usenet newsgroup
users. We show that, by simply looking at the communi-
cation history among the users, our algorithm can identify
groups of users sharing common interests, without any se-
mantic information of the messages.

The paper is organized as follows. In Section 2, we intro-
duce some basic concepts, notations, and previous works.
We describe our algorithm and its complexity in Section 3,
and present some evaluation results in Section 4. Finally,
we demonstrate our algorithm in several real applications
in Section 5, and conclude in Section 6.

2 Preliminaries

2.1 Spectral graph partitioning

Let G = (V, E) be a network of n vertices in V and m
edges in E. Let A = (Aij) be the adjacency matrix of G.
A graph partitioning problem is to find two or more vertex
subsets of nearly equal sizes, while minimizing the number
of edges cut by the partitioning [11]. Known to be NP-
hard, the problem exists in many real applications, such as

circuit design and load balancing in distributed computing.
Many heuristic methods have been developed for the prob-
lem, among which spectral methods have received much at-
tention and are the most popular.

Spectral graph partitioning is in fact a family of methods.
These methods depend on the eigenvectors of the Laplacian
matrix or its relatives of a graph. Depending on the way
they partition a graph, spectral methods can be classified
into two classes. The first class uses the leading eigenvec-
tor of a graph Laplacian to bi-partition the graph. The sec-
ond class of approaches computes a k-way partitioning of a
graph using multiple eigenvectors. We briefly review some
representatives of these two classes of algorithms below.

Let D be the diagonal degree matrix of A, i.e. Dii =∑
j Aij . L = D−A is called the Laplacian matrix of G. Let

λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues and µ1, µ2, · · · , µn

be the corresponding eigenvectors for the generalized eigen-
value problem Lµ = λDµ. It can be shown that λ1 = 0,
and µ1 = 1, a vector with all ones.

Given the above notation, a representative of bi-
partitioning, the SM algorithm [26], works as follows. (1)
Compute µ2, the second smallest generalized eigenvector
of L. (2) Conduct a linear search on µ2 to find a partition of
the graph to minimize a normalized cut criterion [26]. It has
been shown that when certain constraints are satisfied, the
SM algorithm can reach the optima of normalized cuts [26].
To find more than two clusters, the SM algorithm can be
applied recursively.

The most popular algorithm in the second class, the NJW
algorithm [23], finds a k-way partition of a network directly
as follows, where k is given by the user. (1) Compute the
k smallest generalized eigenvectors of L and stack them in
columns to form a matrix Y = [µ1, µ2, · · · , µk]. (2) Nor-
malize each row of Y to have unit length. (3) Treat each
row as a point in Rk, and apply standard k-means algorithm
(or any other geometric clustering algorithm) to group them
into k clusters.

Note that the above algorithm is slightly different from
but equivalent to the original NJW algorithm. The original
algorithm computes the k largest eigenvectors of a normal-
ized matrix N = D−1/2AD−1/2. It can be shown that, if
λ and µ are solutions to Lµ = λDµ, 1 − λ and D1/2µ
are precisely the eigenvalues and eigenvectors of N [32].
Therefore, D1/2µi, i = 1, · · · , k, are the largest k eigen-
vectors of N . Since D is diagonal, Y obtained from N is
the same as Y obtained from L, except that each row in the
former is scaled by a factor of

√
Dii. The scaling factor

disappears after normalizing each row to have unit length.
This small modification puts NJW in the same framework
as the SM algorithm, and is numerically more stable, since
no division of D is involved.

2.2 Modularity and community structures

Given a partition of a network, Γk, which divides its
vertices into k communities, the modularity is defined as
Q(Γk) =

∑k
i=1

(eii/c − (ai/c)2), where eii is the number
of edges with both vertices within community i, ai is the
number of edges with one or both vertices in community i,
and c is the total number of edges [22]. Therefore, the Q
function measures the fraction of edges falling within com-
munities, subtracted by what one would expect if the edges
were randomly placed. A larger Q value means stronger
community structures. If a partition gives no more within-
community edges than would be expected by chance, the
modularity Q ≤ 0. For a trivial partitioning with a single
community, Q = 0. It has been observed that most real-
world networks have Q > 0.3 [22].

The Q function provides a good quality measure to com-
pare different community structures. Several algorithms
have been developed to search for community structures
by looking for the division of a network that optimizes
Q (see [6] for a survey). White and Smyth proposed a
spectral algorithm (WS), which is effective on small net-
works [33]. They show that, when the number of commu-
nities k is given, the optimization of Q is equivalent to an
eigen decomposition problem, if relaxing the discrete mem-
bership constraint [33]. Therefore, they directly applied a
k-way spectral graph partitioning algorithm for this pur-
pose. To automatically determine the number of communi-
ties, the spectral algorithm is executed multiple times, with
k ranging from the user defined minimum Kmin to maxi-
mum Kmax number of communities. The k that gives the
highest Q value is deemed the most appropriate number of
communities. A slightly modified version of the WS algo-
rithm is as follows. (1) For each k, Kmin ≤ k ≤ Kmax,
apply NJW to find a k-way partition, denoted as Γk. (2)
k∗ = arg maxk Q(Γk) is the number of communities, and
Γ∗ = Γk∗ is the best community structure.

The key difference between the original WS algo-
rithm [33] and the one above is the underlying spectral al-
gorithm. The original algorithm uses the second to the k-th
largest eigenvectors of a transition matrix P = D−1A, and
ignores the first eigenvector. It can be shown that the eigen-
values and eigenvectors of P are precisely 1 − λ and µ,
where λ and µ are the solutions to the generalized eigen-
value problem Lµ = λDµ [32]. Therefore, the underlying
spectral algorithm in the original WS algorithm is equiva-
lent to NJW except that the first eigenvector. The authors
ignored the first eigen vector since it is a constant, 1. How-
ever, in the NJW algorithm, a normalization step is applied
so that each row of Y has unit length. After the normal-
ization, the first column of Y is often not constant. We no-
ticed that including the first column often gives higher Q
values. Therefore, we use NJW as the underlying spectral

algorithm.
While the WS algorithm is effective in finding good

community structures, it scales poorly to large networks,
because it needs to execute k-means up to Kmax times.
Without any prior knowledge of a network, one may over-
estimate Kmax in order to reach the optimal Q. For sparse
networks, Kmax can be linear in the number of vertices in
the worst case, making it impractical to iterate over all pos-
sible k’s for large networks.

3 The Kcut algorithm

In order to develop a method that scales well to large
networks while retaining effectiveness in finding good com-
munities, we may take the strategy used in the SM algo-
rithm, i.e., to recursively divide a network into smaller ones.
However, two issues remain. First, when should the algo-
rithm halt, or in other words, how do we decide whether
a (sub)network should be partitioned? Since our goal is to
find a partition with a high modularity, we can test whether
the Q value increases after the partition. If no partition can
improve the modularity, the (sub)network should not be di-
vided. Second, it has been empirically observed that if there
are multiple communities, using multiple eigenvectors to di-
rectly compute a k-way partition is better than recursive bi-
partitioning methods [23]. Here, we propose an algorithm
that is a unique combination of recursive partitioning and
direct k-way methods, which will achieve the efficiency of
a recursive approach, while also having the same accuracy
as a direct k-way method.

We follow a greedy strategy to recursively partition a net-
work to optimize Q. Unlike the existing algorithms that al-
ways seek a bi-partition, we adopt a direct k-way partition
strategy as in the WS algorithm. Briefly, we compute the
best k-way partition with k = 2, 3, · · · , l using the NJW
algorithm, and select the k that gives the highest Q value.
Then for each subnetwork the algorithm is recursively ap-
plied. To reduce the computation cost, we restrict l to small
integers. As we will shown in experiments, the algorithm
with l as small as 3 or 4 can significantly improve mod-
ularity over the standard bi-partitioning strategy. Further-
more, the computation cost is also reduced with a slightly
increased value of l compared to bi-partitioning.

Given a network G and a small integer l that is the max-
imal number of partitions to be considered for each subnet-
work, our algorithm Kcut executes the following steps.

1. Initialize Γ to be a single cluster with all vertices, and
set Q = 0.

2. For each cluster P in Γ,
(a) Let g be the subnetwork of G containing the ver-

tices in P .
(b) For each integer k from 2 to l,

i. Apply NJW to find a k-way partitioning of
g, denoted by Γg

k,
ii. Compute new Q value of the network as

Q′

k = Q(Γ
⋃

Γg
k \ P).

(c) Find the k that gives the best Q value, i.e., k∗ =
arg maxk Q′

k.
(d) If Q′

k∗ > Q, accept the partition by replacing P
with Γg

k∗ , i.e., Γ = Γ
⋃

Γg
k∗ \ P , and set Q =

Q′

k∗ .
(e) Advance to the next cluster in Γ, if there is any.

The inner loop, step 2(b), is similar to the first step of the
WS algorithm, except that in 2(b)(ii) we compute the mod-
ularity of the whole network G, which is different from the
modularity Q(Γg

k). On the other hand, we do not need to
iterate over all communities in the network to re-compute
Q. From the definition of Q in Section 2.2, the contribution
of each community towards Q is independent of the other
communities. Therefore, after g is partitioned, Q can be ef-
ficiently updated with the communities that have just been
created in g. At step 2(c), we decide the best way to parti-
tion g that can improve Q the most. This step turns out to be
crucial in identifying globally good community structures
with high Q values. At step 2(d), we test if partitioning g
can contribute positively towards Q, and the partition is ac-
cepted only if Q increases. When the algorithm terminates,
no communities can be further created to improve Q, thus
Γ contains the best community structure.

3.1 Computational complexity

We first review the computational complexity of the WS
algorithm, since the inner loop of Kcut is simply the WS
algorithm, except that the computation of Q is slightly dif-
ferent. The WS algorithm contains two major components:
computing eigenvectors and executing k-means to partition
the network. Note that although WS calls NJW multiple
times, the eigen problem needs to be solved only once to
obtain all Kmax eigenvectors. To compute eigenvectors,
we used the eigs function in MATLAB, which has a time
complexity in O(mKh + nK2h + K3h), where m and n
are respectively the numbers of edges and vertices of the
graph, K = Kmax is the number of eigenvectors to be
computed, and h is the number of iterations for eigs to con-
verge [33]. Since K < n, the running time of eigs can be
simplified to O(mKh+nK2h). Second, we adopted a fast
k-means algorithm [8] in our implementation, which takes
approximately O(nKe) time, where e is the number of iter-
ations for k-means to converge. Since k-means is called K
times, the total running time is O(mKh+nK2h+nK2e),
where the first two terms are for eigs and the last term is
for k-means. Assuming e and h constants, the overall time
complexity of WS is O(mK + nK2), which can be close

to O(n3), since the maximal number of communities for a
sparse network may be linear in n.

The running time of Kcut depends on the depth of the re-
cursive calls. In the worst case, the partitions can be highly
imbalanced, and the depth of the recursion is merely the
number of partitions produced, K. A more practical es-
timate, however, is the average depth, which is close to
logl K, where l is the maximal number of partitions con-
sidered by NJW. Therefore, the running time taken by eigs
can be estimated to be O((mlh + nl2h) logl K), which can
be further simplified to O(mlh logl K), since l is small and
therefore in general m > nl. Similarly, the average-case
running time taken by k-means is O(nl2e logl K), and the
total complexity is given by O((mlh + nl2e) logl K).

Our experimental results show that for large networks
and small values of l, the time taken by eigs dominates,
giving an overall time complexity in O(mlh logl K) =
O(mh ln K l

ln l) for Kcut. Therefore, assuming h is a con-
stant, also given that l is small and K = O(n), the total
complexity is O(m log n), which is much smaller than the
O(n3) running time of the WS algorithm. An important ob-
servation from the analysis is that the total running time of
Kcut is not a monotonically increasing function of l. Ana-
lytically, the minimum value of l/ ln l is achieved at l = 3.
Empirically, we observed that Kcut is most efficient with
l = 3 to 5 (see Section 4.2).

The memory complexity of both algorithms is O(m),
linear to the number of edges.

3.2 Related methods

Besides our algorithm and the WS method, several
other algorithms have also been developed for identify-
ing communities by modularity optimization. Newman
proposed an algorithm that is based on recursive spectral
bi-partitioning [21]. The algorithm computes the leading
eigenvector of a so-called modularity matrix, and divides
the vertices into two groups according to the signs of the
elements in the eigenvector. The algorithm runs recursively
on each subnetwork, until no improvement to Q is possi-
ble. Compared to our method, this algorithm is faster for
small networks, since no k-means is performed. On the
other hand, the modularity matrix is very dense, with al-
most no zero entries. Therefore, the algorithm takes O(n2)
memory even for sparse networks, in contrast to O(m) for
our method. Furthermore, the algorithm takes O(n2 log n)
running time, therefore, it does not scale well to large net-
works. Importantly, we will show that by combining k-way
partitioning with a recursive method, Kcut usually achieves
higher modularity than the Newman method.

White and Smyth also proposed a fast greedy algorithm,
spectral-2, in addition to their optimal WS algorithm [33].
Like the Newman method, spectral-2 is recursive and uses

spectral bi-partitioning to optimize Q. In this algorithm, all
Kmax (a user provided parameter) leading eigenvectors of a
transition matrix P (see section 2.2) are computed and used
throughout the subsequent recursive partitions. For large
networks, however, it is difficult to estimate the number of
communities in advance, and expensive to compute a large
number of eigenvectors.

There are also several methods that are not spectral-
based. The edge betweenness algorithm [12] and the ex-
tremal optimization algorithm [7] are known to be very
slow, with O(n3) and O(n2 log2 n) running time, respec-
tively. Another greedy approach, the CNM algorithm [5],
has approximately the same time complexity (O(m log2 n))
as our method, but the communities returned often have
poor quality [21].

4 Evaluation

We now evaluate our algorithm on a variety of networks
and compare it with three existing algorithms that were
mentioned in Section 3.2: the WS algorithm, the CNM algo-
rithm, and the Newman’s algorithm (NM). In what follows,
the results of our algorithm are denoted by K-2, K-3, · · ·, for
l = 2, 3, · · ·. Note that Newman suggested in [21] a refining
step to improve Q after the initial partitioning. To make a
fair comparison, this refining step was omitted in our study,
since in theory the same strategy can be applied to any other
algorithm as well.

4.1 Computer-generated networks

To evaluate Kcut, we first tested it on computer-
generated networks with artificially embedded community
structures. Each network had 256 vertices forming 8 com-
munities of equal sizes. Edges were randomly placed with
probability pin between vertices within the same commu-
nity and with probability pout between vertices in different
communities. We varied pin from 0.8 to 0.3, representing
networks with dense to sparse communities. For each pin,
we varied pout from 0 to pin

10
with an increment of pin

50
. For

each pair of (pin, pout), we generated 100 networks and
clustered them with WS (Kmin = 2, Kmax = 15), Kcut
(l = 2, 3, 4 and 5), and NM algorithms. To measure the ac-
curacy of the results, we computed the Jaccard Index [30],
which is roughly the percentage of within-community edges
that were predicted correctly. The Jaccard Index between
the true community structure (Γ) and predicted community
structure (Γ′) is defined as

J(Γ, Γ′) =
|S(Γ) ∩ S(Γ′)|
|S(Γ) ∪ S(Γ′)| , (1)

where S(Γ) and S(Γ′) are the sets of within-community
vertex pairs in Γ and Γ′, respectively.

0 0.01 0.02 0.03 0.04 0.05
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

p_out

Ja
cc

ar
d

In
de

x

WS
K−2
K−3
K−4
K−5
NM
CNM

0 0.01 0.02 0.03 0.04 0.05
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
(b)

p_out

Re
la

tiv
e

Q

WS
K−2
K−3
K−4
K−5
NM
CNM

Figure 1. Results on computer-generated
networks. Qrelative = Qdiscovered − Qtrue.

Fig. 1(a) shows the Jaccard Index as a function of pout

for pin = 0.5. Results for other values of pin or using
other types of accuracy measurement are similar (data not
shown). The WS algorithm, which explicitly searches over
all k’s, has the best accuracy. On the other hand, Kcut with
large l values can better approximate WS than with small
l values. Moreover, as shown in Fig. 1(b), the Q values
achieved by the algorithms match their accuracies: WS has
the highest modularity, followed by K-5, K-4, ..., and the
Newman algorithm at last. A third measure, the number
of times an algorithm predicted k correctly, also shows that
WS > K-5 > · · · > K-2 > NM (data not shown). The CNM
algorithm has an accuracy similar to K-2 for smaller pout,
but its accuracy drops significantly when pout increases.

4.2 Real-world networks

We further tested our method on several real-world net-
works. These include an acquaintance network in a Karate
club [35], the opponent network of American NCAA Di-
vision I college football teams in the year 2000 [12], a co-
performing network of Jazz Bands [13], a protein-protein
interaction network of E. coli [25], the Autonomous Sys-
tems topology of the Internet [10], and a collaboration net-

Table 1. Q values for real-world networks.
Q

Network n m K∗ Kmax WS K-2 K-3 K-4 K-5 NM CNM Best
Karate 34 78 4 8 0.420 0.390 0.420 0.420 0.420 0.393 0.383 0.420 [33]
Football 115 613 10 20 0.602 0.524 0.600 0.596 0.590 0.493 0.577
Jazz 198 5484 4 8 0.439 0.444 0.444 0.439 0.439 0.394 0.439 0.445 [7]
PPI 1440 6223 133 200 0.362 0.332 0.344 0.348 0.364 0.341 0.337
Internet 3015 5156 52 100 0.604 0.594 0.600 0.601 0.601 0.524 0.620
Physicists 27519 60793 - 600 - 0.734 0.738 0.739 0.743 - 0.659 0.723 [21]
Kmax: maximal number of communities for WS. K∗: number of communities returned by WS. The last column are the
best Q values achieved by existing methods in the literature, and references to the methods.

Table 2. Total CPU time (seconds).
Network WS K-2 K-3 K-4 K-5 NM CNM*
Karate 0.3 0.3 0.3 0.3 0.4 0.1 0.02
Football 1.1 0.7 0.6 0.7 1.1 0.3 0.04
Jazz 0.5 0.6 0.7 0.7 0.9 0.3 0.06
PPI 8k 40 26 31 23 58 0.8
Internet 3k 37 27 22 23 172 63
Physicists - 6k 3k 2k 2k - 283

*A significant difference between CNM and the other algorithms
here is that CNM was implemented in C, while all the other algo-
rithms compared here were implemented in MATLAB m-files.

work of physicists [19]. As shown in Table 1, the WS algo-
rithm usually returns community structures with the highest
Q value. Although Kcut with l = 2 often performed poorly,
Kcut with l ≥ 3 can usually achieve Q values as good as
that by WS, whereas with a much reduced running time.
Moreover, for the three networks (Karate, Jazz, Physicists)
that have been analyzed by others, Kcut can find modularity
values that are comparable to or better than the best known
ones. The NM algorithm (without the refining step) and the
CNM algorithm usually have much worse accuracy com-
paring to WS and Kcut. The WS and Newman algorithms
failed to finish on the physicist network, due to their exces-
sive running time or memory usage.

In addition, the communities returned by Kcut are often
very close to the known communities if they are available.
For example, for the Karate club network, Kcut precisely
predicted the actual separation of the club caused by a dis-
pute among its members [12]. For the football network,
Kcut correctly revealed the official NCAA conference struc-
ture of the football teams [12], except for a few teams that
do not belong to any conference. Because of space limit,
we omit the detailed results here, and focus on networks of
real applications, which will be shown in Section 5.

4.3 Running time

Table 2 shows the running time of the four algorithms on
the six real-world networks. Table 3 shows the time spent
on eigs and k-means by WS, Kcut and NM. CNM is based
on a different rationale and does not have these two com-

ponents. As shown in Table 2, although WS is efficient for
small networks of up to a few hundred of vertices, it is very
inefficient on large networks. The Kcut algorithm, on the
other hand, can handle networks of several thousand of ver-
tices in less than half minute. It appears in Table 2 that CNM
is the most efficient, especially for small networks. At least
part of the reason is that CNM was implemented in the C
language, while the other three algorithms were all imple-
mented in MATLAB M-files. M-files are interpreted at run
time, and therefore have higher overhead.

Also observe that Kcut is often faster with l = 3, 4, 5
than with l = 2. Based on the analysis in Section 3.1, the
time Kcut spent in eigs is approximately linear to l/ ln l,
which reaches its minimum at l = 3. In contrast, the time
Kcut spent on k-means is proportional to l2/ ln l, which is
monotonically increasing for l ≥ 2. The experimental re-
sults in Table 3 partially support the theoretical analysis.
For large networks, the total running time of Kcut is dom-
inated by eigs. Therefore, Kcut can take advantage of a
slightly increased l to reduce its running time. When l be-
comes too large, however, the running time of both compo-
nents increases, and the efficiency of Kcut may degrade.

5 Real applications

Community discovery algorithms have a broad range of
applications in many disciplines. Here, we demonstrate the
utility of our algorithm on three real applications in biology,
medicine, and social science, respectively.

5.1 Communities in a gene network

It is believed that biological systems are modular, con-
sisting of groups of bio-molecules responsible for differ-
ent functions, such as metabolism, reproduction, and signal
transduction, etc. The relationships between bio-molecules
have been mapped to several types of networks, including
gene regulatory networks [18] and protein interaction net-
works [25]. Therefore, it is interesting to test whether these
networks contain communities, and whether the commu-
nity structure is related to the functional classification of

Table 3. CPU time (seconds) for program components.
Network WS K-2 K-3 K-4 K-5 NM
Karate 0.08 0.16 0.16 0.11 0.1 0.11 0.1 0.2 0.08 0.22 0.11
Football 0.1 0.81 0.33 0.22 0.21 0.23 0.29 0.36 0.23 0.7 0.28
Jazz 0.11 0.29 0.26 0.06 0.31 0.23 0.25 0.3 0.25 0.5 0.25
PPI 14 7857 34 3 20 4 18 7 11 8 53
Internet 12 2892 31 3 19 5 14 6 11 9 150
Physicists - - 5353 79 2451 109 1473 152 1473 170 -

For WS and Kcut, the first and second columns are the time taken by eigs and k-means, respectively.
The last column is the time spent on eigs in the Newman algorithm.

Table 4. Enriched GO functional terms in communities.
Community size Most significant GO term f F p pHCL

1 460 ribosome biogenesis 32.8% 2.9% 1.90E-138 4.30E-120
2 159 nuclear mRNA splicing, via spliceosome 46.5% 1.4% 1.10E-105 4.20E-89
3 272 protein biosynthesis 62.9% 11.1% 9.80E-97 2.10E-65
4 334 transcription 40.4% 6.8% 8.80E-72 2.70E-17
5 172 response to DNA damage stimulus 41.9% 2.6% 9.30E-71 1.80E-31
6 449 secretory pathway 21.8% 2.9% 2.20E-62 1.00E-50
7 226 nucleocytoplasmic transport 23.9% 1.6% 5.60E-50 9.90E-34
8 346 cell cycle 29.5% 5.6% 4.80E-46 1.70E-57
9 118 nitrogen compound metabolism 39.8% 3.3% 2.70E-37 3.90E-18
10 172 proteolysis during cellular protein catabolism 23.3% 1.8% 3.90E-32 6.30E-20
11 90 oxidative phosphorylation 24.4% 0.6% 1.30E-28 5.00E-05
12 94 RNA 3’-end processing 17.0% 0.3% 1.50E-23 1.10E-09
13 9 pre-replicative complex formation and maintenance 77.8% 0.2% 1.70E-17 6.50E-08
14 14 protein amino acid N-linked glycosylation 64.3% 0.6% 1.30E-15 5.50E-14
15 205 protein targeting to mitochondrion 9.3% 0.7% 1.10E-14 4.20E-09
16 585 carbohydrate metabolism 10.1% 3.1% 3.90E-14 9.10E-06
17 8 histone methylation 75.0% 0.2% 1.40E-13 4.80E-05
18 18 mRNA catabolism 50.0% 0.8% 1.60E-13 8.30E-07
19 42 biological process unknown 73.8% 22.0% 9.40E-11 3.70E-09
20 6 chromatin assembly 100.0% 1.2% 1.30E-10 6.20E-12

f , F : percentage of genes in the community or genome associated with the GO term; p: p-value for the enrichment of a GO term in
a community; pHCL: p-value for the enrichment of the same GO term in a gene clusters identified by hierarchical clustering [17].

the molecules.
We applied the Kcut algorithm to study a network of

≈4500 genes in the yeast S. cerevisiae, obtained by integrat-
ing a number of heterogeneous biological data sources [17].
The vertices in the network are genes, and an edge between
two genes indicates that they may be involved in some com-
mon biological process supported by literature or experi-
mental evidence such as gene expression microarray or pro-
tein interaction data [17]. The network may contain errors,
and the edges may have different meaning, depending on
the data source from which they were derived.

Applying Kcut, we obtained 47 communities, whose
sizes range from 2 to 585. Our analysis below is focused on
the 36 communities that contain more than five genes. To
understand the functions of these communities, we checked
the enrichment of Gene Ontology (GO) terms [31], which
are a set of controlled vocabulary used to annotate genes
functions, for the genes within each community. Enrich-
ment is computed using hyper-geometric test [3]. Briefly,
suppose that a community contains m genes, n of which
are annotated by a function T, and that N out of M genes in
the whole genome are annotated by T. the hyper-geometric
test measures the probability that we would expect at least

n genes annotated by T if we had randomly drawn m genes
from the genome. A low probability indicates that the com-
munity is significantly enriched with T. To account for mul-
tiple testing, we corrected the p-values using a Bonferroni
procedure [3], and used p-value = 0.05 as a threshold for the
significance test.

All except one of the 36 communities contain signifi-
cantly enriched GO terms. Overall, these communities con-
tain 2123 enriched GO terms. In contrast, using a hierarchi-
cal clustering method, Lee et. al. obtained 55 clusters [17].
Among them, 32 clusters contributed to a total of 1746 sig-
nificantly enriched GO terms, much fewer than that in Kcut.
Figure 2 compares the p-values for the GO terms that are en-
riched in both Kcut and hierarchical clustering. As shown,
most GO terms are more significantly enriched in Kcut than
in hierarchical clustering, indicating the advantage of our
methods against conventional graph clustering methods.

Table 4 lists 20 communities that have the most signifi-
cantly enriched GO terms. Many communities contain very
significantly enriched GO terms. For example, about one
third of the genes in community 1 have functions in ribo-
some biogenesis, an 11-fold enrichment that are unlikely
due to chance (p < 2e-138). About 40% of genes in com-

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

−log10(p−value) in gene communities by Kcut

−l
og

10
(p

−v
al

ue
) i

n
hi

er
ar

ch
ica

l c
lu

st
er

s

Figure 2. Comparison of GO enrichment
munity 4 are related to transcription (p < 9e-72). In con-
trast, only 21% of genes in the corresponding hierarchical
cluster are annotated by this term (p < 3e-17).

Since genes in the same community often share func-
tions, the community structure may be used to predict
gene functions. For example, community 19 contains 42
genes. The most significant function category is “bio-
logical process unknown” (group A, 31 genes, p < 1e-
10). The second most significant GO term is “telomerase-
independent telomere maintenance” (group B, 5 genes,
p < 1e-6). To test whether the 31 unknown genes
are also related to telomere maintenance, we searched
the Saccharomyces Genome Database (http://www.
yeastgenome.org/) and other experimental data for
more information about these genes. Using whole-genome
ChIP-chip data [18], we found that all 5 group B genes are
regulated by at least three of the following four transcrip-
tion factors: YAP5, GAT3, MSN4, and PDR1. Interest-
ingly, many of the 31 group B genes, but none of the other
genes, are also regulated by the four transcription factors:
18 by YAP5 (p <1e-13), 16 by GAT3 (p <6e-14), 8 by
MSN4 (p <2e-8) and 9 by PDR1 (p <2e-8). In addition,
all the 5 group A genes and 10 of the group B genes have
helicase activity (p < 2e-17). Furthermore, the majority of
the 31 unknown genes are located in the telomere regions of
chromosomes. These seem to be strong evidences that these
unknown genes are very likely related to telomere mainte-
nance functions.

5.2 Automatic detection of tumor types

An accurate classification of tumor cells is crucial for ef-
fective therapy [9]. Traditionally, tumors have been clas-
sified by their morphologic appearance, which is, unfor-
tunately, often very subjective. Furthermore, tumors with
similar histological features often respond very differently
to chemotherapy [2]. To get around this problem, a promis-
ing alternative or complementary strategy is to classify tu-
mors based on their genetic profiles, i.e. the activity of hun-
dreds or thousands of genes that are involved in the dis-

ease. Most of the existing tumor classification approaches
are based on supervised learning, such as support vec-
tor machines or decision trees, which aimed at identifying
genetic features to distinguish two or more known tumor
types [16, 27].

Here, we ask whether it is possible to automatically clas-
sify tumor samples into distinct types or subtypes, with-
out knowing the sample labels or even the number of la-
bels. This unsupervised learning approach has a few ad-
vantages over supervised learning methods. First, the exist-
ing tumor classifications are based on histological features,
which may be unreliable themselves. Second, using unsu-
pervised learning, we may be able to discover novel tumor
sub-types that have not been characterized by histological
features previous. On the other hand, it is crucial to confirm
whether the automatically discovered tumor types are bio-
logically meaningful and can provide useful information for
understanding the disease or for improving its treatment.

In this study, we choose to focus on lymphoma, a family
of tumors involving cells of the immune system, because
of the large number of people it affects and the relative
abundance of microarray data studying the diseases. We ob-
tained the data from [2], which contains the expression data
of 4026 genes for 96 samples belonging to nine cell types,
including three different types of tumors, i.e. diffuse large
B cell lymphoma (DLBCB), chronic lymphocytic leukemia
(CLL), and follicular lymphoma (FL), as well as normal B
and T cells at different stages of cell differentiation [2].

From the gene expression data, we constructed a nearest-
neighbor network of samples. Briefly, we first computed a
pair-wise Pearson correlation coefficient between every two
samples based on their gene expression patterns. We then
connect each sample to five other samples whose correla-
tion to the sample is the highest. This resulted in a net-
work where each sample is connected to five or more sam-
ples. The edges are weighted by the correlation coefficients.
Edges with a weight below a cutoff 0.2 are removed to avoid
false connections.

Applying the Kcut algorithm to the network, we identi-
fied eight communities, each of which contains at most two
cell types (Table 5). Furthermore, the results are almost
invariant when we changed the number of nearest neigh-
bors for each sample between 3 and 7, indicating very sta-
ble community structures among the samples. As shown
in Table 5, FL cells and activated blood B cells are per-
fectly classified into their own communities. Community
6 contains all the blood T cells and only one DLBCB cell.
CLL and resting B cells are clustered into a single com-
munity, which is not surprising since the former has a very
low proliferation rate, similar to the latter [2]. Commu-
nity 1 contains almost half transformed cell lines and half
DLBCB samples. With a closer inspection, however, we
found that three of the DLBCB samples in this community

Table 5. Communities of cell samples
Community Samples Cell type

1 OCI-Ly3*, OCI-Ly10*, DLCL-0042*, OCI-Ly1*, WSU1, Jurkat, U937, OCI-Ly12, OCI-Ly13.2,
SUDHL5, DLCL-0041*

Transformed cell lines
*: DLBCB

2 DLCL-0030, DLCL-0004, DLCL-0029, Tonsil GC B*, Tonsil GC Centroblasts*, SUDHL6, DLCL-
0008, DLCL-0052, DLCL-0034, DLCL-0051, DLCL-0032, DLCL-0018, DLCL-0037, DLCL-0020,
DLCL-0003, DLCL-0033

DLBCB
*:, GCB

3 DLCL-0011, DLCL-0006, DLCL-0049, Tonsil*, DLCL-0039, Lymph Node*, DLCL-0001, DLCL-
0015, DLCL-0026, DLCL-0005, DLCL-0023, DLCL-0027, DLCL-0024, DLCL-0013, DLCL-0002,
DLCL-0016, DLCL-0014, DLCL-0048

DLBCB
*:, Lymph node / tonsil

4 DLCL-0007, DLCL-0031, DLCL-0036, DLCL-0010, DLCL-0025, DLCL-0040, DLCL-0017, DLCL-
0028, DLCL-0012, DLCL-0021

DLBCB

5 Blood T:Adult CD4+ Unstim, Blood T:Adult CD4+ I+P Stim, Cord Blood T:Neonatal I+P Stim, Blood
T:Neonatal CD4+ Unstim, Thymic T:Fetal CD4+ Unstim, Thymic T:Fetal CD4+ I+P Stim, DLCL-0009*

Blood T cells
*:, DLBCB

6 Blood B:memory*, Blood B:naive*, Blood B*, Cord Blood B*, CLL-60, CLL-68, CLL-9, CLL-14,
CLL-51, CLL-65, CLL-71;Richter’s, CLL-71, CLL-13, CLL-39, CLL-52

CLL
*: Resting blood B.

7 Blood B:anti-IgM+CD40L low 48h, Blood B:anti-IgM+CD40L high 48h, Blood B:anti-IgM+CD40L
24h, Blood B:anti-IgM 24h, Blood B:anti-IgM+IL-4 24h, Blood B:anti-IgM+CD40L+IL-4 24h,
Blood B:anti-IgM+IL-4 6h, Blood B:anti-IgM 6h, Blood B:anti-IgM+CD40L 6h, Blood B:anti-
IgM+CD40L+IL-4 6h

Activated blood B cells

8 FL-9, FL-9;CD19+, FL-12;CD19+, FL-10;CD19+, FL-10, FL-11, FL-11;CD19+, FL-6;CD19+, FL-
5;CD19+

FL

(OCI-Ly1, Ly3, and Ly10) are actually laboratory cultivated
cell lines rather than samples from real patients, which may
be the reason that they are grouped together with the trans-
ferred cell lines. The GCB and Lymph node/tonsil cells are
grouped together with DLBCB as expected, but a discus-
sion is out of the scope of this paper [2]. Therefore, our
algorithm has detected most of the cell types successfully,
without any knowledge about the samples.

Furthermore, the majority of the DLBCB samples are
grouped into three communities (2, 3, and 4). It is known
that not all DLBCB tumors are equal: 40% of patients re-
spond well to chemotherapy and have prolonged survival,
while the others have a much shorter survival time after the
treatment [2]. To test whether the three communities cor-
respond to different tumor subtypes, we counted the rate
of survival after chemotherapy for the patients within each
community. Remarkably, the patients in community 2 have
a survival rate much higher than average. The median sur-
vival length for the patients in the three communities are
71.3, 23, and 12.5 months, respectively. In fact, 9/11 (82%)
patients in community 2 lived more than five and half years
after the treatment, while only 5/26 (19%) patients in com-
munities 3 and 4 lived this long.

Furthermore, we combined our classification of DL-
BCB samples with the International Prognostic Index (IPI),
which is a clinical tool developed by oncologists to predict
the prognosis of lymphoma patients [2]. In general, the pa-
tients with IPI > 2 have a much lower survival rate (21.4%)
than those with IPI ≤ 2 (62.5%). By combining our clas-
sifications, we find that all (8/8) the community-2 patients
having IPI ≤ 2 survived more than 5 years after the therapy.
In contrast, for the patients in communities 3 and 4 with IPI
≤ 2, only 23%(3/13) survived more than 5 years. Further-

more, only one of the eight patients in communities 3 and 4
with IPI > 2 survived more than 5 years. These results in-
dicate that by combining genetic and clinical information,
we may be able to better predict the outcome following the
chemotherapies.

5.3 Communities in newsgroups

As the last application, we analyzed the community
structure in the Usenet, the network of topic-oriented news-
groups on the Internet. Most existing attempts in analyzing
the structure of Usenet focused on the semantic properties
of newsgroups, for example, by clustering or classifying the
messages according to their contents [24, 28]. Here, we are
interested in studying the social network among newsgroup
users. We ask whether it is possible to identify groups of
users with common interests without looking at the actual
content of their messages. To this end, we use what we call
a message-replying network, where each vertex is a unique
user, and an edge between two users indicates that one has
replied a message of the other. The links are weighted by
the number of times the communication occurred between
them. The network is made into bidirectional, i.e. we ignore
the directions of edges.

We downloaded from UCI KDD Archive website
(http://kdd.ics.uci.edu/) a data set containing
20,000 messages from 20 newsgroups. We extracted the
email address in the “From:” field of each message, and the
first email address in the text in a sentence like “xxx@yyy
writes:”, which indicates that the current message is a re-
sponse to an earlier message of xxx@yyy. From these mes-
sages, we identified a total of 9746 unique users, 5468 of
which form a giant connected component. Our experiment
is focused on this giant component, which contains 12306

edges. The degrees of the vertices follow a power-law dis-
tribution with r = 3.6.

Applying Kcut, we obtained 48 communities with a Q
value = 0.9116, indicating a very strong community struc-
ture. The sizes of the communities are highly diverse, rang-
ing from 9 to 371. It is important to note that the network
structure is the only information used by our algorithm for
community detection. Semantic information such as the
content of a message, as well as to which newsgroup a mes-
sage was posted, are only used to analyze the communities.

To check whether the members of each community in-
deed have similar interests, we first checked the posting his-
tory of the users. Figure 3 shows the messages posted in the
20 newsgroups by the users in the 25 largest communities,
where each row represents a user, and each column repre-
sents a newsgroup. The horizontal line shows the bound-
ary of communities. The data is normalized so that each
row has a unit length. As shown, the users in each com-
munity post messages primarily to a particular newsgroup,
meaning that the detected communities indeed correspond
to common interests or topics. To have a rough estimation
of the performance, we assume that each newsgroup is a
proxy of a community, and each user belongs to a news-
group/community where he/she has posted the most mes-
sages. This is of course a very crude estimation, since many
users post to multiple newsgroups equally. It is also proba-
bly not true that the number of communities is equivalent to
the number of newsgroups, since the users within a single
newsgroup may have different interests, while some news-
groups often cross-link messages. Nevertheless, 78% of the
users can be assigned to a correct community by looking at
the message-replying network alone, which is not perfect,
but very encouraging.

To test whether the users in different communities have
different interests, we computed statistics of the words used
by the members of each community. We first pooled to-
gether all messages in the 20 newsgroups, and counted the
background frequency that each word is used. We then
combined the messages posted by the members of a com-
munity, and computed the target frequency of each word in
the community. We defined a word as a significant keyword
for a community if its target frequency is ten times higher
than its background frequency. We then sorted the key-
words in each community according to their absolute target
frequency. The top ten most frequently used keywords for
each community are listed in Table 6.

As can be seen, most communities have their unique
combination of keywords highly related to the news-
groups that they frequently send messages to. For exam-
ple, the users in community 1 frequently post to rec.
motorcycles, and the most significant keywords in the
community are “bike” and “ride”. Sometimes users in dif-
ferent communities may post to the same newsgroups. For

Newsgroup

Us
er

2 4 6 8 10 12 14 16 18 20

500

1000

1500

2000

2500

3000

3500

4000

4500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. User posting history. The 20 news-
groups, from left to right, are alt.atheism, comp.graphics, comp.os.ms-
windows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware,
comp.windows.x, misc.forsale, rec.autos, rec.motorcycles,
rec.sport.baseball, rec.sport.hockey, sci.crypt, sci.electronics, sci.med,
sci.space, soc.religion.christian, talk.politics.guns, talk.politics.mideast,
talk.politics.misc, and talk.religion.misc.

example, users in communities 10, 11 and 17 all post to
alt.atheism, and users in communities 4 and 14 often
post to talk.politics.mideast. It can be seen that,
however, these communities are represented by very dif-
ferent keywords, indicating the existence of sub-structures
within these newsgroups (Table 6).

Furthermore, we also observed that users in some com-
munities frequently post to two or more newsgroups,
which indicates some relationship between these news-
groups (Fig 3). Examples include newsgroups 1 (alt.
atheism) and 20 (talk.religion.misc), 3 (comp.
os.ms-windows.misc) and 4 (comp.sys.ibm.pc.
hardware), 17 (talk.politics.guns) and 19 (talk.
politics.misc). The relationships between these
newsgroups are obvious from the names of the newsgroups.

6 Conclusions

We have developed a fast algorithm, Kcut, for identify-
ing community structures in large networks. Our approach
is based on a greedy optimization of a modularity func-
tion Q. Unlike previous methods, Kcut is not restricted to
bi-partitions, but considers all k-way partitions for a small
range of k. We have found that this relaxation not only im-
proves the quality of the identified communities, but also
increases the efficiency of the algorithm. We have demon-
strated the performance of our method on a variety of ran-
dom and real-world networks. Compared to the existing
approaches, Kcut can find better Q values than other greedy
approaches, and has an accuracy comparable to that of a
much slower exhaustive search method.

In addition, we have applied our method to several real
problems in three different fields: biology, medicine and
social science. For all cases, our algorithm is able to de-
tect significant and meaningful community structures, and

Table 6. Keywords within each community
Community Size Newsgroup Keywords
1 371 rec.motorcycles bike,ride,helmet,bikes,riding,dog,motorcycle,viking,passenger,mph
2 362 sci.crypt clipper,encryption,keys,escrow,algorithm,secure,encrypted,phones,proposal,wiretap
3 347 sci.space launch,orbit,mission,shuttle,pat,solar,spacecraft,moon,flight,sky
4 332 talk.politics.mideast holocaust,museum,attacks,civilians,memorial,bullock,occupied,territories,territory
5 327 rec.sport.hockey team,hockey,season,insurance,player,blues,teams,cup,ice,playoffs
6 311 talk.politics.guns gun,guns,weapons,firearms,deaths,handgun,homicides,concealed,boulder,handguns
7 283 rec.sport.baseball convention,political,hit,players,party,baseball,average,clutch,sept,parties
8 280 rec.autos car,cars,engine,dealer,mustang,ford,flat,rear,bird,mph
9 272 soc.religion.christian sin,homosexual,scripture,marriage,worship,baptism,pope,spiritual,sabbath,sinful
10 272 alt.atheism moral,objective,morality,perry,served,immoral,leftover,truelove,prophecy,messiah
11 211 alt.atheism atheism,atheists,atheist,hatching,hens,fallacy,theism,theists,dollar,morals
12 205 talk.politics.misc sex,sexual,homosexual,gay,homosexuals,male,partners,associate,gravity
13 165 talk.religion.misc magi,commandments,conscious,hanging,teaches,persecution,guilt,contradictions
14 119 talk.politics.mideast turks,soviet,genocide,turkey,extermination,population,ottoman,mountain,roads
15 99 sci.electronics wire,wiring,ground,circuit,neutral,cable,outlets,battery,hot,ham,wires,connected
16 99 sci.med vitamin,universe,physical,patients,yeast,doctor,diet,medicine,treatment,clinical
17 97 alt.atheism evolution,theory,gravity,spirit,holy,theories,creed,jack,fox,grace,insert,rich
18 95 talk.politics.misc warrant,drugs,murder,knock,barrel,officers,raid,govt,reno,founding
19 94 comp.sys.mac.hardware apple,keyboard,option,energy,duo,coprocessor,macs,movie,militia,playback
20 93 comp.os.ms-windows.misc windows,win,modem,zip,swap,apps,fonts,ports,icon,mickey
21 90 sci.med cause,diet,corn,patients,thyroid,blood,doctor,treatment,eye,disease
22 89 comp.sys.ibm.pc.hardware bit,bus,mac,fast,memory,controller,drives,mode,interface,faster
23 79 rec.motorcycles bike,riding,dog,rider,technique,helmet,motorcycle,evil,difficult,tom
24 79 rec.sport.hockey game,team,hockey,players,league,wings,baseball,leafs,player,teams
25 58 talk.politics.guns gun,firearms,firearm,section,crime,guns,weapon,license,military,committee

the community structures can provide important informa-
tion about the systems of interest, which may have many
practical applications.

Acknowledgments
This research was supported in part by NSF grants ITR/EIA-

0113618 and IIS-0535257 and a grant from Monsanto Company
to W.Z.

References

[1] R. Albert and A. Barabasi. Statistical mechanics of complex
networks. Reviews of Modern Physics, 74:47, 2002.

[2] A. Alizadeh, M. Eisen, R. Davis, C. Ma, I. Lossos, A. Rosen-
wald, J. Boldrick, H. Sabet, T. Tran, X. Yu, J. Powell,
L. Yang, G. Marti, T. Moore, J. H. J, L. Lu, D. Lewis, R. Tib-
shirani, G. Sherlock, W. Chan, T. Greiner, D. Weisenburger,
J. Armitage, R. Warnke, R. Levy, W. Wilson, M. Grever,
J. Byrd, D. Botstein, P. Brown, and L. Staudt. Distinct types
of diffuse large b-cell lymphoma identified by gene expres-
sion profiling. Nature, 403:503–11, 2000.

[3] D. Altman. Practical Statistics for Medical Research. Chap-
man & Hall/CRC, 1991.

[4] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wal-
lace. Discovering hidden groups in communication net-
works. 2nd NSF/NIJ Symposium on Intelligence and Se-
curity Informatics., 2004.

[5] A. Clauset and et. al. Finding community structure in very
large networks. Physical Review E, 70:066111, 2004.

[6] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas. Compar-
ing community structure identification. J. Stat. Mech., page
P09008, 2005.

[7] J. Duch and A. Arenas. Community detection in complex
networks using extremal optimization. Physical Review E,
72:027104, 2005.

[8] C. Elkan. Using the triangle inequality to accelerate k-
means. In ICML, pages 147–153, 2003.

[9] D. Ellis, M. Eaton, R. Fox, S. Juneja, A. Leong, J. Mili-
auskas, D. Norris, D. Spagnolo, and J. Turner. Diagnos-
tic pathology of lymphoproliferative disorders. Pathology,
37:434–56, 2005.

[10] M. Faloutsos and et. al. On power-law relationships of the
internet topology. In SIGCOMM, pages 251–262, 1999.

[11] P. Fjallstrom. Algorithms for graph partitioning: A survey.
Linkoping Electron. Atricles in Comput. and Inform. Sci.,
1998.

[12] M. Girvan and M. Newman. Community structure in social
and biological networks. Proc Natl Acad Sci U S A, 99:7821–
6, 2002.

[13] P. Gleiser and L. Danon. Community structure in jazz. Ad-
vances in Complex Systems, 6:565, 2003.

[14] R. Guimera and L. N. Amaral. Functional cartography of
complex metabolic networks. Nature, 433:895–900, 2005.

[15] J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Tracking
evolving communities in large linked networks. Proc Natl
Acad Sci U S A, 101 Suppl 1:5249–53, 2004.

[16] J. Jaeger, D. Koczan, H. Thiesen, S. Ibrahim, G. Gross,
R. Spang, and M. Kunz. Gene expression signatures for
tumor progression, tumor subtype, and tumor thickness in
laser-microdissected melanoma tissues. Clin Cancer Res,
13:806–15, 2007.

[17] I. Lee, S. Date, A. Adai, and E. Marcotte. A probabilis-
tic functional network of yeast genes. Science, 306:1555–8,
2004.

[18] T. Lee, N. Rinaldi, F. Robert, D. Odom, Z. Bar-Joseph,
G. Gerber, N. Hannett, C. Harbison, C. Thompson, I. Simon,
J. Zeitlinger, E. Jennings, H. Murray, D. Gordon, B. Ren,
J. Wyrick, J. Tagne, T. Volkert, E. Fraenkel, D. Gifford, and
R. Young. Transcriptional regulatory networks in saccha-
romyces cerevisiae. Science, 298:799–804, 2002.

[19] M. Newman. The structure of scientific collaboration net-
works. Proc Natl Acad Sci USA, 98:404–409, 2001.

[20] M. Newman. The structure and function of complex net-
works. SIAM Review, 45:167–256, 2003.

[21] M. Newman. Modularity and community structure in net-
works. Proc Natl Acad Sci USA, 103:8577–82, 2006.

[22] M. Newman and M. Girvan. Finding and evaluating commu-
nity structure in networks. Phys Rev E, 69:026113, 2004.

[23] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In NIPS, pages 849–856, 2001.

[24] K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell.
Text classification from labeled and unlabeled documents us-
ing EM. Machine Learning, 39:103–134, 2000.

[25] L. Salwinski, C. Miller, A. Smith, F. Pettit, J. Bowie, and
D. Eisenberg. The database of interacting proteins: 2004
update. Nucleic Acids Res, 32:D449–51, 2004.

[26] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 22:888–905,
2000.

[27] M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar,
M. Gaasenbeek, M. Angelo, M. Reich, G. Pinkus, T. Ray,
M. Koval, K. Last, A. Norton, T. Lister, J. Mesirov, D. Neu-
berg, E. Lander, J. Aster, and T. Golub. Diffuse large b-cell
lymphoma outcome prediction by gene-expression profiling
and supervised machine learning. Nat Med, 8:68–74, 2002.

[28] N. Slonim and N. Tishby. Document clustering using word
clusters via the information bottleneck method. In Proc. of
ACM SIGIR conf on Research and development in informa-
tion retrieval, pages 208–215, New York, NY, USA, 2000.
ACM Press.

[29] V. Spirin and L. Mirny. Protein complexes and functional
modules in molecular networks. Proc Natl Acad Sci U S A,
100:12123–8, 2003.

[30] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison Wesley, 2005.

[31] The Gene Ontology Consortium. The gene ontology (go)
database and informatics resource. Nucleic Acids Res, 32,
2004.

[32] D. Verma and M. Meila. A comparison of spectral clustering
algorithms. Technical report, Univ. of Washington, 2003.

[33] S. White and P. Smyth. A spectral clustering approach to
finding communities in graph. In SIAM Data Mining, 2005.

[34] D. Wilkinson and B. Huberman. A method for finding com-
munities of related genes. Proc Natl Acad Sci U S A, 101
Suppl 1:5241–8, 2004.

[35] W. Zachary. An information flow model of conflict and fis-
sion in small groups. J. Anthropol. Res., 33:452–473, 1993.

