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Bayesian Sparse Correlated Factor Analysis

Abstract

In this paper, we propose a new sparse correlated factor model under a Bayesian framework that

intended to model transcription factor regulation in a cell. Unlike the convention factors model, the

factors are assumed to be non-negative and correlated. The correlation is due the the prior knowledge on

the structure of the factors. To model the factors, a rectified function and the Dirichlet process mixture

(DPM) prior are introduced. Moreover, the factors are . The loading matrix is sparse and since the

prior knowledge of non-zero elements are assumed available, the sparse pattern of the loading matrix is

significantly constrained, resulting unambiguous factor order. A Gibbs sampler is proposed to uncover

the unknown non-negative factors and the loading matrix from data. The model and the Gibbs sampler

are validated on the simulated systems.

Index Terms

Bayesian factor analysis (BFA), Gibbs sampling, Dirichlet process mixture (DPM), sparse, correlated

I. INTRODUCTION

In many signal processing applications, the observations are resulted by a linear combination of a set

of latent variables, or factors [1], [2]. In speech processing, factors are directly related to multiple sound

sources or speakers. In EEG application, factors are event-related brain potentials indicative of the activity

of brain. Recognizing and understanding the activities of factors are important tasks therein, which are

tackled by factor analysis (FA) methods including, most notably, PCA and ICA.
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In this paper, we proposed a new factor analysis model that is motivated by the study of reconstruct-

ing a transcriptional regulatory networks (TRN) using microarray data. TRN represents genome-wide

regulation of mRNA gene expressions by important regulatory proteins known as transcription factors

(TFs). Following a common analogy, TFs function as switches that directly turn on and off gene product

at mRNA level, resulting also indirect effects on the translational process for the protein synthesis.

Understanding and reconstructing TRNs comprised one of the most active research area in genomics signal

processing. To reconstruct TRNs in a cell, microarray measurements of gene mRNA expression profile

is often used, which represents the output of a TRN to be reconstructed. If assuming gene expression is

due to linear combination of TF regulations, a FA model would be a natural choice of modeling with

factors representing the unobserved protein-level activities of all the TFs, since simultaneous protein

level measurements of TF are not commonly available. The loading matrix in this FA model indicates

the strength and the type (up- or down- regulation) of regulation.

However, due to distinct features of TRNs, conventional FA model is not readily applicable. First,

since many TFs can either share the same protein complex or regulate each other, the factors should be

correlated. However, in the exiting FA models, factors are overwhelmingly assumed independent, which,

although true in many applications, is not a realistic assumption for TRNs. Secondly, since a TF regulates

a small subset of genes, the loading matrix should be sparse. While with the knowledge of TF regulated

genes becomes more complete and increasingly available, the prior probabilities of non-zero elements

of the loading matrix is available and should included in modeling. The inclusion of prior for sparsity

naturally calls for a Bayesian solution. As an added advantage, having this prior knowledge actually

resolves the factor order ambiguity of the conventional factor analysis. Thirdly, the TF activities could

be nonGaussian and a nonGaussian factor model should be in place.

In a response to meet these requirements of TRNs, we proposed here a novel Bayesian sparse correlated

factor model. The sparsity of loading matrix is constrained by a sparse prior that directly reflects our
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knowledge of TF regulation [5]. To model the correlated factors, a Dirichlet process mixture (DPM) prior

[4] was placed on the factors. DPM imposes a natural clustering effect on TFs, which, as will be shown,

also leads to non-Gaussian distributions on the factors. Moreover, its enables automatic determination of

the optimal number of clusters. To effectively estimate the sparse loading matrix and the factor clusters,

a Gibbs sampling solution is proposed. Simulation results demonstrate the validity of the model and

effectiveness of the proposed Gibbs sampling algorithm.

II. BAYESIAN SPARSE CORRELATED FACTOR ANALYSIS

Let yn ∈ RG×∞ for n = 1, . . . , N represent the nth vector observations, which for TRNs denote the

microarray data of G genes. Assume yn is generated by the following factor model

yn = Axn + en (1)

xn = h(sn) (2)

where

h(·)- is the component-wise rectification (or cut) function defined as h(·) = max(·, 0). The rectification

function ensures non-negativity of factors.

sn- is the vector of pseudo factors, through which the nonnegative factor is defined. sn is also assumed

to exhibit clustering effect, which is modeled a priori by a Dirichlet process mixture (DPM) of

Gaussian as

sl,n ∼ N (θl,n); θl,n ∼ G; G ∼ DP (α,NIG(λ0))

where θ = {µl,n, σ
2
l,n}, DP denotes the Dirichlet process, and NIG is short for the conjugate

Normal-Inverse-Gamma (NIG) distribution with the parameters λ0 = µ0, κ0, α0, β0. This DPM

prior can also be expressed as

p(sl,n|γl,θγl,n) = N (θγl,n);
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p(θγl,n) ∼ NIG(λ0); γl ∼ π; π ∼ GEM(α)

where γl represents the cluster label of the l-th factor, which is governed by a discrete distribution π

that follows the GEM distribution [4] that defines the stick breaking process of parameter α. Based

on this definition, the conditional distribution

p(sl,n, γl|s−l,n, γ−l)

= (
K∑
k=1

N−l,kp(sl,n|si,n∀i ∈ S−l,k, γl)δ(γl − k)

+αp(s1,n)δ(γl − k̄))/(α+ L− 1) (3)

where, γl = k; S−l,k = {i|i ̸= l, γi = k} represents the set of the factors besides sl that also belong

to cluster k, N−l,k is size of S, and k̄ is a new cluster label other than the K existing ones. The

distribution (14) demonstrates the correlation between factors - sl depends only on other factors

belonging to the same cluster. The predictive density p(sl,n|s−l,n, γl) is shown to be a Student-t

distribution, which can be conveniently approximately by the normal distribution for large Nk as

p(sl,n|s−l,n,γ−l, γl) ≈ N (µ̂l,n, σ̂
2
l,n) (4)

where,

γj ∈ {1, 2, ...,K, k̄}

µ̂l,n = (µ0κ0 +
∑

i∈S−l,k

si,n)/κ̄; κ̄ = κ0 +N−l,k

σ̂2
l,n = (κ̄+ 1)β̄/κ̄/(α0 +N−l,k/2− 1)

β̄ = β0 + (
∑

i∈S−l,k

s2i,n + κ0µ
2
0 − κ̄µ̂2

l,n)/2.

For the special case, when γl = k̄, the factor prior p(sl,n) can be also shown to be a Student-t

distribution and approximated by

p(sl,n) ≈ N (µ0, σ
2
s0);σ

2
s0 = (κ0 + 1)β0/κ0/(α0 − 1).
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Although the Gaussian approximation holds well for large α0, the fact that the factor prior is a

Student-t distribution suggests that the factors are nonGaussian in our model. To overcome the scale

ambiguity of the factor model, we assume a fixed variance σ2
s0.

xn- the L × 1 vector of the non-negative correlated factors. For TRNs, xn represents the non-negative

activity of L TFs of interest. Given the latent factors sn, the conditional prior of xl,n can be expressed

as

p(xl,n|sl,n) = δ(xl,n − h(sl,n))

= U(−sl,n)δ(xl,n) + δ(xl,n − sl,n)U(xl,n) (5)

where U(·) represents the unit step function. This is a more realistic model for TF activities since

they should be positive. In the literature, the truncated Gaussian distribution is often adopted to model

nonnegative random variables. Compared with the truncated Gaussian distribution, the distribution

5 puts a mass π̃xl,n
at xl,n = 0. Consequently, it induces sparsity among factors. Moreover,

this distribution provides an added convenience that allows analytical solutions for the required

conditional distributions in the subsequent Gibbs sampling solution.

A- the G×L sparse loading matrix. The elements of A are assumed to be independent and with the a

priori distribution [5]

p(agl) = (1− πgj)δ(agj) + πgjN (agl|0, σa,0) (6)

where πgj is the a priori probability of agl to be nonzero. For TRNs, databases such as Transfac

provide experimentally validated target genes of TFs and this knowledge TF regulation is reflected

by setting, for instance, πgj = 0.8, if TF j is known to regulate gene g, and πgj = 0.8, otherwise.

en - the G×1 white Gaussian noise vector with the covariance matrix defined by Φ = diag(σ2
e,1, . . . , σ

2
e,G).

The goal of Bayesian analysis is to infer A, xn, sn ∀n, γ and Φ based on the observations yn ∀n.

For convenience, Θ, y1:N , and X are introduced to denote the sets of all these unknowns, all the
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observations, and all the factors, respectively. Note that the total number of factor clusters K and θk ∀k

are also unknown but treated implicitly by the proposed Bayesian solution.

III. THE PROPOSED GIBBS SAMPLING SOLUTION

Gibbs sampling devises a Markov Chain Monte Carlo scheme to generate random samples of the

unknowns from the desired but intractable posterior distributions and then approximate the (marginal)

posterior distributions with these samples. The key of Gibbs sampling is to derive the conditional posterior

distributions and then draw samples from them iteratively. The intended conditional distributions of the

proposed Gibbs sampling solution are detailed next.

1. p(agl|Θ−agl
,y1,N ) : Let ŷgl = [ŷgl,1, . . . , ŷgl,N ]⊤ with ŷgl,n = yg,n −

∑L
i=1,i̸=l agixi,n and xl =

[xl,1, . . . , xl,N ]⊤. It then follows ŷgl ∼ N (ŷgl|xlagl, σ
2
e,gIN ) and

p(agl|Θ−agl,y1,N
)

= p(agl|xl, ŷgl, σ
2
e,g) (7)

= Z0p(ŷgl|xl, agl, σ
2
e,g)p(agl) (8)

= (1− π̂gl)δ(agl) + π̂glN (agl|µ̂a,gl, σ̂
2
a,gl) (9)

where Z0 is a normalizing constant, and π̂gl = πgl/((1− πgl)BF01 + πgl) is the posterior probability of

agl ̸= 0 and BF01 is the Bayes factor of model agl = 0 vs. model agl ̸= 0 and expressed by

BF01 =
p(ŷgl|xl, agl = 0, σ2

e,g))

p(ŷgl|agl ̸= 0)
(10)

=
N (ŷgl|0, σ2

e,gIN )

N (ŷgl|0, σ2
e,gIN + xlx

⊤
l σa,0)

(11)

and µ̂a,gl = σ̂2
a,glx

⊤
l ŷgl/σ

2
e,g and (σ̂2

a,gl)
−1 = (σa,0)

−1 + x⊤
l xl/σ

2
e,g.

Sampling agl from (7) resulting a draw of either 0 with probability 1 − π̂gl or from f(agl) with π̂gl.

Notice that π̂gl is inversely associated by BF0,1 and when πgl = 0.5, i.e, a noninformative prior on
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sparsity is assumed, π̂gl depends only on BF0,1 and when BF0,1 > 1, π̂gl < 0.5. Since model selection

based BF0,1 favors agl = 0, it suggests that this Bayesian solution favors sparse model even when

πgl = 0.5.

2. p(γl|Θ−xl,γl
,y1:N ) It should be noted that γl does not depend on xl in the distribution. It is intended

that samples of γl from this distribution is not affected by the immediate sample of xl, thus achieving faster

convergence of the sample Markov chains. To derive this distribution, first let ŷl,n = yn −Axn + alxl,n

with al being the lth column of A and hence ŷl,n ∼ N (ŷl,n|alxl,n,Φ). Then,

p(γl|Θ−xl,γl
,y1:N )

= p(γl|γ−l, ŷl,1:N )

=

∫
p(γl,xl|γ−l, ŷl,1:N )dxl

= Z0

∫
p(ŷl,1:N |xl)p(xl,n, γl|x−l,n,γ−l)dxl

=
1

Zl
(

K∑
k=1

N−l,kgl,kδ(γl − k) + αgl,k̄δ(γl − k̄)) (12)

where

Zl =
∑K

k=1N−l,kgl,k + αgl,k̄,

gl,k =
N∏

n=1

N (ŷl,n|0,Φ)Q(
−µ̂l,n

σ̂l,n
)

+N (ŷl,n|µŷl,n
,Σŷl,n

)[1−Q(
−µ̂l,n

σ̂l,n
])

where, µŷl,n
= alµxl,n

and Σŷl,n
= ala

⊤
l σ

2
xl,n

and gl,k̄ is a special case of gl,k
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3. p(xl|Θ−xl
,y1:N ) This distribution can be expressed as

p(xl|Θ−xl
,y1:N )

= p(xl|γ−l, s−l, ŷ1:N ,Φ)

= Z0

N∏
n=1

p(ŷn|xl,n)p(xl,n|s−l,n,γ−l)

= Z0

N∏
n=1

p(ŷn|xl,n)(
K∑
k=1

p(xl,n|s−l,n,γ−l, γl = k) + p(xl,n|s−l,n,γ−l, γl = k̄))

= Z0

N∏
n=1

N (ŷl,n|alxl,n,Φ)((
K∑
k=1

p(xl,n|si,n∀i ∈ S−l,k, γl)δ(γl − k)) + p(xl,n)δ(γl − k̄))

=

N∏
n=1

π̂δ(xl,n) + (1− π̂)N (xl,n|µxl,n
, σ2

xl,n
)U(xl,n)

where

π̂ =
N (ŷl,n|0,Φ)Q(−µ̂l,n

σ̂l,n
)

N (ŷl,n|0,Φ)Q(−µ̂l,n

σ̂l,n
) +N (ŷl,n|µŷl,n

,Σŷl,n
)[1−Q(−µ̂l,n

σ̂l,n
)]

where

µŷl,n
= alµxl,n

Σŷl,n
= ala

⊤
l σ

2
xl,n

µxl,n
= σ2

xl,n
µ∗

σ2
xl,n

= (a⊤l Φ
−1al + (σ̂2

l,n)
−1)−1

µ∗ = a⊤l Φ
−1ŷl,n + (σ̂2

l,n)
−1µ̂l,n

4. p(sl,n|Θ−xl
,y1:N ) The conditional probability is:

p(xl,n|sl,n) = δ(xl,n)U(−sl,n) + δ(xl,n − sl,n)U(sl,n)

= π̃xl,n
δ(xl,n) + (1− π̃xl,n

)δ(xl,n − sl,n)
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where, π̃xl,n
= U(−sl,n)

Since (4), the posterior distribution is:

p(sl,n|xl,n, s−l,n,γ−l, γl) = (1− πxl,n
)N (xl,n|µ̂l,n, σ̂

2
l,n)U(−sl,n)

+πxl,n
δ(sl,n − xl,n)

where

πxl,n
=

N (xl,n|µ̂l,n, σ̂
2
l,n)

δ(xl,n)Q(−µ̂l,n

σ̂l,n
) +N (xl,n|µ̂l,n, σ̂

2
l,n)U(xl,n)

= sgn(xl,n)

5. p(σ2
e,g|Θ,y1:N ) Let ŷg,n = yg,n−a⊤g xn and thus p(ŷ1:N |σ2

e,g) = N (0, σ2
e,gIN ). Given the conjugate

prior,

p(σ2
e,g|Θ,y1:N ) = p(σ2

e,g|ŷg,1:N )

= Z0

N∏
n=1

p(ŷ1:N |σ2
e,g)p(σ

2
e,g)

= IG(αg, βg) (13)

where αg = α0 +N/2 and βg = β0 +
∑N

n=1 ŷ
2
g,n/2.

The proposed Gibbs sampler can be summarized as follows.

Gibbs Sampling for BSCFA

Iterate the following steps and for the tth iteration

1) Sample a
(t)
gl ∀g, l from (7);

2) for l=1 to L

Sample γ
(t)
l from (12); Set K = K + 1 if γ(t)l = K + 1;

Sample x
(t)
l from (13) given γ

(t)
l ;
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3) Sample σ2
e,g ∀g from (13). item Remove empty clusters of x and reduce K accordingly.

The convergence is determined based on a scheme described in section 11.6 of [3]. The samples after

convergence will be collected to approximate the marginal posterior distributions and the Bayesian

estimates of the unknowns.

IV. RESULTS

The proposed approach was evaluated on simulated system. The toy data was constructed to mimic a

microarray experiment that measures the expression profiles of 50 genes (at 15 sample times), which are

regulated by 15 transcription factors that belong to 2 clusters, each of probability 0.6 and 0.4. We assume

the density of non-zero elements in A is 0.2, and the hyperparameters are: µ0 = 1, σ−2
x0 = 0.25, κ0 =

0.2, α0 = 101;β0 = κ0/(1 + κ0)(α0 − 1)σx0.

Experiments are developed to testify the convergence of proposed Gibbs sampling approach, the

precision-recall-curve of non-zeros elements in A, and the estimation of x. 10000 samples were computed

using Gibbs sampler (Fig. 1), since the convergence is reached after around 5000 iterations, the first half

was discarded to allow for the samplers to burn in. The precision and recall curve for the identification

of non-zero elements of A is depicted in Fig. 2 to demonstrate the capability to retrieve the regulation

relationships between transcription factors and genes. The proposed actually demonstrate a very strong

ability to retrieve TF-gene regulation. As it can be seen from Fig. 2, When σe = 0.5, 90% regulations

can be retrieved with precision larger than 0.8, and when σe = 0.7, 90% regulations can be retrieved with

precision larger than 0.7. As for the estimation of x, the performance decreases as the noise increases,

and when σe = 1, the noise mean squared error (MSE) is equal to 0.25.
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Fig. 1 Gibbs sampling convergence
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Fig. 2 Identifying Non-Zero Elements of A

V. CONCLUSION

In this paper, we proposed a new factor model with correlated factors and sparse loading matrix. The

factor correlation is modeled by the DPM, which imposes clustering effect on factor. A Gibbs sampler

was proposed for resolving the unknown factors and loading matrix. The algorithm has been tested and

evaluated on the simulated systems.
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VI. APPENDIX

A. Derivation of p(xl,n|s−l,n,γ−l, γl)

Using the results of (5) and (4), we have

p(xl,n|s−l,n,γ−l, γl)

=

∫
p(xl,n|sl,n)p(sl,n|s−l,n,γ)dsl,n

= Q(−µ̂l,n/σ̂l,n)δ(xl,n)

+N (xl,n|µ̂l,n, σ̂
2
l,n)U(xl,n) (14)

where

µ̂l,n =
µ0κ0 +

∑
i∈S−l,k

si,n

κ

κ = κ0 +N−l,k

σ̂2
l,n =

(κ+ 1)β

κ(α0 +
N−l,k

2 − 1)

β = β0 +

∑
i∈S−l,k

s2i,n + κ0µ
2
0 − κµ̂2

l,n

2

where, γl = k; S−l,k = {i|i ̸= l, γi = k} and N−l,k is the size of S−l,k.
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