1. (25 points) Graph search and topological sorting
 a. (10 points) Consider a breadth-first search of the following directed graph, starting at vertex 0. Draw the breadth-first tree and the time stamps in which the vertices are visited. Iterate through the neighbors of v in increasing order. Did BFS eventually visit all vertices in the graph?

 ![Graph for BFS](image)

 b. (10 points) Consider a depth-first search of the following directed graph, starting at vertex 0. Draw the depth-first tree, the time stamps in which the vertices are first visited, and the time stamps in which the vertices are finished. (Iterate through the neighbors of v in increasing order.) Did DFS eventually visit all vertices in the graph?

 ![Graph for DFS](image)

c. (5 points) Show the topologically sorted order of the vertices of the above graph, using the results you obtained above in 1(b).
2. (15 points) **P and NP**
 Determine whether the following statement is true or false. Briefly justify your answers.

a. **P** is the class of all problems that can be solved in polynomial time.

b. **NP** is the class of all decision problems that cannot be solved in polynomial time.

c. A problem is **NP-complete** if it is both **NP-hard** and in **NP**.

d. If SAT can be solved in polynomial time, all problems in **NP** can be solved in polynomial time.

e. Suppose Π_1 and Π_2 are two decision problems and Π_1 is polynomial time reducible to Π_2, i.e., $\Pi_1 \leq_p \Pi_2$. If Π_1 is in **NP**, then Π_2 is also in **NP**.

3. (Extra credit: 15 points) **Suffix Tree**

a. Draw a suffix tree for the string `taataataaa`. Label the edges and terminal nodes explicitly.
b. **Shortest nonrepeated substring.** Design an efficient algorithm for finding the shortest substring that appears in a text only once.

c. **Shortest signature substrings.** Design an efficient algorithm to find the minimum l for a set of strings T_1, T_2, \ldots, T_k, such that there exist a unique “signature” substring of length l for each string. For example, if $T_1 = \text{ACGACGTA}$, $T_2 = \text{ACTATGAC}$, and $T_3 = \text{GATAGTA}$, the smallest $l = 2$, since a signature of length 2 can be found for each string: CG only appears in T_1, CT only in T_2 and AG only in T_3.

4. (Extra credit - 10 points) Please provide any comments/suggestions about the lecture, recitation, and homework. Use additional page if necessary.