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Abstract— Opposed to the situation that the constrained mini-
mum Steiner tree (CMST) problem has been attracting much at-
tention in quality of service (QoS) routing area, little work has
been done on multicast routing subject to multiple additive con-
straints even though the corresponding applications are obvious.
In this paper, we propose a heuristic HMCMC to solve this prob-
lem. The basic idea of HVICMC is to construct the multicast tree
step by step, which is done essentially based on the latest research
results on multi-constrained unicast routing. Computer simula-
tions demonstrate that the preposed heuristic can find a feasible
muiticast tree with a fairly high probability if there is one.

I. INTRODUCTION

Delivering only one copy of information on links shared
by multiple paths to different destinations, multicast routing
makes a good example {or the efficient utilization of network
resources. Initial research on multicast routing mainly focused
on the problem of finding a minimurm Steiner tree (MST) [14],
which has proved to be NP-complete [6]); maior efforts were
then dedicated to developing efficient heuristics that can pro-
duce a low-cost tree in reasonable time complexity [9]. The
protocols based on these heuristics cannot provide additional
quality of service (QoS) guarantees, and thus are called QoS-
oblivious protocols [3]. In recent years, however, many newly
emerging multimedia applications have very stringent QoS re-
quirements, necessitating great research efforts for developing
QoS-sensitive protocols.

Most prior research on QoS-aware multicast routing is lim-
ited to the constrained minimum Steiner tree (CMST) problem,
i.e., to find a delay-constrained multicast tree such that the de-
lay between the source and each destination meets certain delay
upper bound, and the total cost of the tree is minimal. Heuristics
proposed to solve this NP-complete problem range from those
that have extremely low cost solutions [17] to those with very
low time complexities [12]. There are also algorithms that have
both excellent cost performance and time performance as well
(41,

Opposed to the great progress made to solve the CMST prob-
lem, little work has been done on multicast routing subject
to multiple constraints, even though the corresponding appli-
cattons are obvious like the multi-constrained unicast routing.
Probably as the only previous work, Kuipers and Mieghem
{10] proposed a Multicast Adaptive Multiple Constraints Rout-
ing Algorithm (MAMCRA) to solve this problem, but unfortu-
nately the performance of this algorithm is unknown (there is
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neither theoretical proof nor simulations to evaluate the perfor-
mance of MAMCRA in [10]).

In this paper, we propose a brand new heuristic HMCMC
to solve the multi-constrained multicast QoS routing problem.
The basic idea of our heuristic is to construct the multicast tree
step by step, which is done essentially based on the latest re-
search results on multi-constrained unicast routing [8], [11],
[13). Simulations indicate that the proposed heuristic, even
though simple (and therefore responsive), can find a feasible
multicast tree with a fairly high probability if there is one.

In the following, we first give formal definitions of the mul-
ticast constrained multicast routing problem, i.e., the multi-
constrained minimum Steiner tree (MCMST) problem, in Sec-
tion II. We then elaborate the motivation of our work and review
the related work in Section I Heuristic HMCMC is discussed
at length in Section IV, and in Section V the performance of
HMCMC is investigated through a large number of computer
simulations. Section VI concludes the paper.

11. NOTATION AND PROBLEM DEFINITION

A nerwork is represented by a directed graph G(V, E}, where
V is the set of nodes, and E is the set of links. Associated
with each link e there are J non-negative weights w;(e),j =
1,2,-+-,J and a cost c{e).

A path is a sequence of non-repeated nodes p =
(v1,%2,---,vg) such that for a given 1 € ¢ < k there exists
a link from v; to v;41, i.e., (vi,viy1) € E. The notatione € p
means that path p passes through link e. The wj-weight and
cost of path p are given by .

wi(p) =Y w;(e) and e(p) = Y _ cle),

€cp e&p

respectively.

Given a multicast tree T spanning a source ¢ and a set of
destinations D, let pr(s, v} denote the path on T from s to des-
tination v € D, The cost of the multicast tree T is defined by
¢(T) = ¥ ,er c(€). The upper bound of destination v corre-
sponding to weight w; is denoted by A7,

Definition I—MCMST Problem: Given a source s, a set of
destinations D, a set of upper bounds AY,j = 1,2,..-,J for
destination v € I}, the MCMST problem needs to find a tree
T* spanning D U {s} such that

(1) wj (pT' (slv)) S A;'J)Vv € Dw] = 1: 2) Tt Jw and

(ii} cf{T*) < e(T) for any tree T that satisfies (i).
If a tree T only satisfies (i) in the above definition, it is called a
feasible multicast tree (or feasible solution).
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We also give a formal definition of the multi-constrained path
{(MCP) problem [1] since the proposed heuristic searches for a
feasible solution to the MCMST problem by converting it to
multiple MCP unicast routing problems, which will be elabo-
rated later.

Definition 2—MCP Problem: Given a routing request be-
tween a source s, a destination ¢, a set of upper bounds Af, j =
1,2,---,J, the MCP problem s to find a path p between s and
tsuchthatwy(p) < AkLVi=1,2,---,J.

Iil. MOTIVATION AND RELATED WORK

The heuristic to be proposed is motivated by the recent
progress of research on the CMST and MCP problems. As
briefly mentioned in Section I, various heuristics have been
proposed to solve the CMST problem in the past few years,
and some of them have been demonstrated to have excellent
cost performance as well 2s reasonably low time complexities.
For instance, the bounded shortest multicast algorithm (BSMA)
proposed by Zhu et al. has proved to be capable of locating a
feasible tree with an extremely low cost. Even though the orig-
inal implementation of BSMA was very time consuming, an
alternative implementation recently proposed by Feng et al. {4]
shows the time complexity can be considerably reduced with-
out sacrificing the cost performance. With the alternative im-
plementation, it runs a lot faster than many renowned heuristics
such as KPP [7], CAO [16], etc., which were demonstrated 10
have worse cost perfortance yet [ower time complexities than
the original implementation of BSMA [14].

BSMA [17]solves the CMST problem by starting with a fea-
sible solution and then gradually improving the solution. It first
runs Dijkstra’s shortest path algorithm [2] to find a minimum-
delay tree as the initial solution. Then, certain type of partial
path on the tree (called “super-edge”™ in [171) is replaced by
another path if the cost of the resulting tree is iower. This pro-
cedure repeats until the cost cannot be reduced any more.

Obviously the basic idea of BSMA can be used to solve the
MCMST problem as long as we can find an initial feasible tree.
However, unlike the case for the CMST problem, to find a fea-
sible solution to the MCMST problem is NP-complete. In view
of this, we concentrate our attention on how to find an initial
feasible solution to the MCMST problem in this paper. Our ba-
sicidea is to construct a partial feasible tree spanning the source
and a subset of destinations, and then join the remaining desti-
nations to the partial tree through a feasible path. The whole
procedure can be completed by repeatedly running a heuristic
for the MCP unicast routing problem.

Like the CMST problem, the MCP probiem has been at-
tracting a great deal of attention in recent years due to the fact
that there are many QoS roufing problems in which the search
for a feasible path to the MCP problem is a fundamental step.
For such reason, a slight change of the performance of a MCP
heuristic may have a significant impact on the performance of
any higher-level algorithm. Currently, almost all known heuris-
tics demonstrated to have good performance for the MCP prob-
lems [8], [11] originated from the pioneering work conducted
by Neve and Mieghem [13], in which they proposed a tunable
accuracy multiple constraints routing algorithm (TAMCRA).
The essential idea of TAMCRA is to use a modified Dijkstra’s

algorithm to search for a feasible path by determining the pre-
decessor of a node based on a nonlinear length function given
by

Q(P)=mﬂ{gi%gl,j:=l,2,v--,.]}.

The probability that TAMCRA can find a feasible solution is
tunable by adjusting the number of (k) paths stored in the queue
of each intermediate node. Simulations indicate that the proba-
bility of finding feasible solutions is already satisfactorily high
evenwhen k& = 2 [11}.

Korkmaz ef al. proposed a heuristic HHMCOP {8], in which
the searching process is finished in two steps. A modified Di-
jkstra’s algorithm is first executed in reverse direction with a
linear length function to find a post-path from an intermediate
node to destination ¢; then, it is run in forwarg direction with the
nonlinear length function g(-) to find a pre-path from source ¢
to an intermediate node. A feasible solution can thus be re-
tuned if at any intermediate node the pre-path joined with the
post-path satisfies all constraints.

Even though the question which of these two heuristics,
TAMCRA and H MCOP, is better is still controversial (see [8]
and [11]), the overall performance of both of the two heuris-
tics is of very high standard. In the following Section, we first
describe a modified heuristic for the MCP problem, based on
which the heuristic HMCMC for the multi-conistrained mulu-
cast routing problem is discussed in detail.

IV. HEURISTIC HMCMC
A. Heuristic HMCP

Heuristic HMCOP was originally proposed for solving the
multi-constrained optimal path (MCOP) problem, i.e., to find a
path with the minimal cost that satisfies all constraints. Even
though it can be directly used to solve a MCP problem by skip-
ping all codes regarding the cost ¢, it does not achieve the best
performance due to the particularity of the MCP problem, for
which we are concerned with feasible solutions.

Considering the above reasons, we present a heuristic
HMCP for the MCP problem, which is modified from
HMCOP. As shown by the top-levet description in Fig. 1,
H_MCP first runs Dijkstra’s algorithm in reverse direction to
find the shortest path with respect to g(-) from any other node
to destination ¢ (line 1). The path from s to ¢ found by Re-
verse Dijkstra will be retumed if it is a feasible path (lines 2
- 3). Otherwise, Dijkstra’s algorithm is executed in the for-
ward direction to search for a feasible solution, which may be
a combination of the pre-path (from s to a node %) found by
Look_Ahead Dijkstra and the post-path (from u to £) found by
Reverse_Dijkstra (lines 4 - 5). However, even if no feasible so-
lution can be found, the path found by Look_Ahead Dijkstra
will still be returned as the best available path. The reason for
returning the best available tree will be explained later.

Figs. 2 and 3 are the relaxation procedures for subrou-
tines Reverse Dijkstra and Look_Ahead Dijkstra, respectively.
Fig. 4 is a preference rule which arbitrates whether a node z
should become the predecessor of @ node v. With such pref-
erence rule, a feasible solution takes precedence over all other
options.
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The notations used in H.MCP are defined as follows. r[u)
denotes the length w.r.t. g{-) of the post-parh from u to ¢ found
by Reverse_Dijksira, while f[u] is the length of the pre-path
from s to u found by Look_Ahead Dijkstra. Labels B;[u), j =
1,2,---,J represent the individual accumulated link weights
along the post-path with the predecessor of u stored in m,[u].
Correspondingly, labels G;[u], j = 1,2,---,J represent the
individual accumulated link weights along the pre-path with the
predecessor of u stored in my[u].

When comparing H-.MCP with H.IMCOP, one should notice
that there are two major modifications in addition to that all
codes for processing cost ¢ have been ignored and that the best
available path will be returned even if there is no feasible solu-
tion. First, Reverse Dijkstra in H.MCP uses the same nonlin-
ear length function as the one used in Look_Ahead_Dijkstra,
unlike in HMCOP a linear function is used. Second, in
Look_Ahead Dijkstra, the length function f{-] is evaluated only
for a pre-path from s to v instead of a complete path from s to £.
The reason for making these two modifications is due to our re-
cent finding that such modifications can increase the probability
of finding a feasible solution {5].

HMCP(G(V, E}, s, t,w;, A}, j =1,2,---,J)
Reverse Dijkstra (G(V, E), t,w;,j = 1,2,---,J)
if (Rsls] < A}, ¥5=1,2,---,.J) then

return the path found by Reverse_Dijkstra
Look_Ahead Dijkstra(G{V, E), 5,w;, AS, 7 = 1,2, J)
return the path found by Look_Ahead_Dijksira

- R R

return NULL

Fig. 1. The hewristic algorithm H.MCP for the MCP problem

Reverse_Dijkstra_Relax (u, v)

1 ifrly >max{ﬂlﬂ%&f—),j=l,2,---,.]} then

2
2 vl = max { B0 5, g}
3 Ryfu) = Rylo) + wy (u, v)
4 v = U

Fig. 2. The retaxation procedure of subroutine Reverse_Dijkstra

Look_Ahead.Dijkstra_Relax(u, v}

1 Let tmp be a temporary node

2 fltmp]zmax{gﬂ_“_'%‘l’iw’jzl‘gm‘]}
3

3 Gjltmp] = Gi[u] + wi(u,v)forj =1,2,---,J

4 R;[tmp] = Rifv]forj =1,2,--+,J

5 if (Prefer_the_best(tmp, v) = tmp) then

6 flup = fltmp]

7 Gj[v} = Gi[tmp]forj =1,2,...,J

8 molv] = u

Fig. 3. The relaxation procedure of subroutine Look Ahead Dijkstra

B. Heuristic HMCMC

Heuristic HMCMC searches for a feasible solution to the
MCMST problem by first finding a feasible partial tree that
spans the source and some of the destinations, and builds up
the tree by joining the remaining destinations through the paths

Prefer_the best (a, b}

1 if (Vi = 1,2,---,J,Gjla] + Ry[a] < A}) then return (a)
2 if(Vj=1,2,---,J,G;[4] + R;[B] < A%) then retum (b)
3 if (f[a] < f{b]) then return {e)

4 return (&)

Fig. 4. The preference rule used in HMCP

found by HMCP. As depicted in Fig. 5, HMCMC first finds an
initial tree T}, which will be retumed if it is a feasible solution
(lines 1 - 3). Otherwise, the path on T from s to each destina-
tion node is checked for feasibility. For any node v € D, if the
corresponding path pr, (s,v) satisfies all constraints imposed
on node v, pr, (s,v) is included in T, as a component of the
partial feasible tree, and the incoming links to all nodes on path
pr, (8, v) except those links that form the path are pruned (lines
4 - 9). On the contrary, for any node v € D, if the cotrespond-
ing path pr, (s, v) does not meet all the constraints, a new path
p between s and v found by HMCP is included in T3, followed
by the same pruning operation {lines 10 - 16). As a result, 7%
is returned as the final solution after all destination nodes are
included.

The initial tree T} (line 1) is found by running a modified Di-
jkstra’s algorithm starting from the source node s with a non-
linear length function given by

h(p) = ma’x{ﬂ,ﬁ—(?l:] = 192)"'3J})
where A; = 17 3,ep A7, and |Df is the number of desti-
nations. The modified Dijkstra’s algorithm used here is quite
similar to the Lock.Ahead Dijkstra described in H.MCP. The
only difference is that the predecessor of a node will always be
determined based on function h(-). We expect that by selecting
this length function the impact of the constraints of all desti-
nations can be partially taken into account, and therefore the
probability of finding a feasible tree T; could be increased.

Theorem 1: Heuristic HMCMC must be able to return a tree
spanning ¢ and all destinations as long as there is one.

Proof: HMCMC either retums 73 or 7. 7 is a tree because
it is composed of the shortest paths (w.r.t. (-)) from s to each
destination. T is a tree because each time when a path is in-
cluded in T%, the incoming links to all the nodes of that path
except those forming it are eliminated, making sure that when
searching for a path p from s to another destination, p will not
be able to reenter T once it leaves 75. |

The tree returned by HMCMC may not be a feasible solution
because H.MCP will always return a path even if it is not fea-
sible. The reason for returning the best available tree is based
on the consideration that we may still be interested in or even
accept such tree in the case that a feasible tree is very hard, if
not impossible, to find.

Theorem 2: Tt is possible that there does not exist a feasi-
ble multi-constrained multicast tree even if a feasible multi-
constrained path from s to each destination is available.

Proof: Just consider the case where there is only one feasi-
ble multi-constrained path from s to each destination and these
paths do not form a tree. |

Since HMCMC runs modified Dijkstra’s algorithm once to
find the initial tree 77 and runs H MCP at most |D]| times to
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Heuristic HMCMC(G, s, D, A}, v € D,j =1,2,.-- . J)
Input:
G{V, E): graph
s: source; [: set of destinations
AY: the jth upper bound for destination v € D
Qutput:
a multi-constrained tree spanning D U {s}
1 Find an initial tree T}
2 if T} is a feasible tree then
3 tetum Ty
4 Tz {} I* empty set */
5 forv € Ddo{
6 if path pr, (s, v) satisfies all constraints for v then
7 T: — T2 Upz (s,v)
8§ prune all incoming links to the nodes on pr,(s,v)
except those links that form p, (s, v)
9 } :
10 forv e Ddof
11 if p7, (s, v) does not satisfy all constraints for v then
12 p —HMCP(G, s, v, w;, AY, = 1,2,--,J)
13 T, —TaUp
14 prune all incoming links to the nodes on path p
except those links that form path p
15} '
16 return T

Fig. 5. The heuristic algorithm HMCMC for the MCMST problem

construct tree T3, and considering that modified Dijkstra’s algo-
rithm has a time complexity of O (nlogn + m), the time com-
plexity of HMCMC can be expressed as O (|D| (nlogn + m)).

V. PERFORMANCE EVALUATION

The performance of heuristtc HMCMC is investigated
through simulations on network topologies with different num-
ber of nodes and various methods for generating routing re-
quests. Two types of networks with 100 and 200 nodes respec-
tively are generated using Waxman’s method [15). The number
of destinations in a multicast routing request varies from 4 to
20.

For a given size of network with a specific number of desti-
nations, we generate 50 network topologies, for each of which
10 instances of link weights are randomly generated, and for
each instance of a lopology, 50 different routing requests are
produced. For each routing request, heuristics HMCMC and
the simple heuristic described in the following subsection are
executed independently to find a solution. Based on the results
returned by each heuristic, the success ratio of finding a feasible
solution with 95% confidence intervals is computed.

A. A simple heuristic for performance comparison

In order to make the performance evaluation more convine-
ing, we also implement a simple heuristic to compare with HM-
CMC. This heuristic first finds the least-w, tree using Dijkstra’s
algorithm, and if the tree is a feasible solution, it is returned.
Otherwise, it continues 10 check least-we tree, least-w; tree,
-+, least-w; tree for feasibility.

In the following simulation results, we use T to denote the
solution of the simple heuristic described above, T the initial
tree found by HMCMC, and T the final solution returned by
HMCMC. It should be noted that T, = T, if T} is a feasible
solution. To simplify the simulation, we only consider two link
weights w; and we.

B. Success ratio vs. the size of multicast group

We first investigate the impact of the size of the multicast
group on the performance measures. In this case, the upper
bound of the jth constraint for destination v is given by

AY = R[2,4] x w; (pry(s,v)),

where R[2,4] is a random number uniformly distributed on
[2,4), and T is the least-wy tree.

Fig. 6 shows the success ratio with the number of destina-
tions being 4, 8, 12, 16, and 20, respectively. In Fig. 6a, both
of the two link weights w;, and w; are uniformly distributed on
[1,1000}, while in Fig. 6b they are distributed an [1,1000] and
{500, 2000], respectively. Notice that for a specific number of
destinations the results for 100- and 200-node networks are pur-
posely put in different positions to clearly show the confidence
intervals.

From Fig. 6a, we may have the following observations: For
any heuristic the success ratio decreases with the increase of the
number of destinations. This is understandable since the more
the number of destinations, the less the number of feasible so-
lutions, and hence the harder it is to find a feasible sclution. We
should also notice that with a specific number of destinations,
HMCMC can find a feasible initial tree T with a success ratio
much higher than that for the simple heuristic to find a feasible
tree, and the success ratio can be further improved by 15% to
30% (or even more) if the final solution returned by HMCMC
is evaluated. In addition, the success ratio decreases with the
increase of the number of nodes.

We may obtain very similar observations from Fig. 6b ex-
cept that in this case there are more feasible solutions available
with a specific number of destinations, and therefore the suc-
cess ratio is much higher than that for the corresponding case in
Fig. 6a. For instance, the success ratio in Fig. 6b for the case of
200-node networks with 20 destinations is around 90%, while
it is 45% in Fig. 6a. Clearly, the increase of the number of fea-
sible solutions is attributed to the increase of the Jower limit of
the interval on which ws is distributed.

C. Success ratio vs. the upper bound

We also did experiments to show the influence of upper
bounds on the success ratio by fixing the number of destina-
tions to be 8 while generating upper bounds by

AY = Rz, z +0.5] x w; (pr, (s,v))

where x is the lower limit of the interval on which the random
number R is distributed. We let z take several values between
1.5 and 3.5, and the result is shown in Fig. 7.

From Fig. 7a, we can see that the success ratio increases with
the increase of r as excepted. We should also notice the clear
difference between the success ratios for Tp, T3, and T%. Sim-
ilar results are shown in Fig. 7b, and in this case we also no-
tice that the success ratio is higher than that for the correspond-
ing case in Fig. 7a because the number of feasible solutions
increases drastically with x.
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V1. CONCLUSIONS

A QoS multicast routing algorithm that can find qualified so-
lutions in a reasonably low time complexity is very important
for high-speed networks to provide services with stringent and
diverse QoS requirements. In this paper, we proposed a heuris-
tic algorithm HMCMC to search for feasible solutions to the
MCMST problem. Since nearly no previous work has been
done on this problem, our work provides an excellent refer-
ence for future work. Our basic idea is to convert this multi-
constrained multicast routing problem to 2 multi-constrained
unicast routing problem, for which a variety of heuristics are
available. Computer simulations demonstrate that the proposed
heuristic can achieve a very satisfactory success ratio of find-
ing feasible solution. It should also be noted that the propesed
heuristic can be easily modified for solving the MCMST prob-
lem when cost is also concerned.
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