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Abstract— In a hierarchical network, each subnetwork
advertises its topology information to the other subnet-
works. Many studies have been done to minimize the
amount of advertised topology information. The existing
works assume a logical link can be represented with only
few parameters. However, for the QoS and policy-based
networks, more parameters will be used to represent the
state of a link (e.g., cost, policies). For these networks, with
the existing methods, the amount of advertised information
linearly increases to the order of the number of link-state
parameters. To solve this problem, this work proposes a
new topology aggregation method.

I. INTRODUCTION

FOR a network with a hierarchical structure, each sub-
network advertises its topology information to the

other subnetworks. To reduce the amount of topology-
advertising information and to hide the internal topology
of subnetworks for security reasons, topology aggregation
is done before topology advertisement. Topology aggre-
gation can cause some information loss, however this loss
is not so critical in terms of call blocking rate, call access
delay, and crank-back rate [3].

A topology aggregation model should represent the
original topology adequately for efficient routing and
compress the original topology significantly [6]. To keep
the original topology information adequately, the con-
ventional full-mesh method is the most preferable one.
However, more works are done to compress the topol-
ogy more significantly: spanning-tree, shuffle-net, source-
oriented aggregation method [5], [6], [9]. For example,
the spanning-tree method can reduce the number of ad-
vertised links from O(n2) (a full-mesh method) to O(n),
where n is the number of border nodes of subnetwork. In
case that a logical link of a full-mesh graph is modeled
with a vector [BW, DELAY], the spanning-tree method can
represent the full-mesh graph with two spanning trees:
one for bandwidth and the other for delay. To support
a quality-of-service (QoS)-based or policy-based routing,
more link-state parameters are to be advertised (e.g., cost,
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policy, etc). Therefore, more than two link-state param-
eters are required to model a link in the QoS-supporting,
policy-based, multi-class networks.

In the literature, the existing methods advertise a sub-
graph (e.g., spanning tree, shuffle-net, etc) for each topol-
ogy parameter. Thus when k topology parameters are
used, the existing methods advertise k subgraphs, and the
advertised information will linearly increase to the order
of the number of topology parameters. To avoid the com-
plexity due to the number of topology parameters, this
work proposes a new topology aggregation method, which
converts a subgraph into a full-mesh graph, a full-mesh
into multiple spanning trees, and each spanning tree into
an isomorphic star graph. which is shown in Section III-
B. And this work merges these isomorphic star graphs
into one merged star graph. With the proposed method,
the number of advertised links is always (n − 1), and is
independent of the number of topology parameters.

II. RELATED WORKS

ATM PNNI 1.0 specification defines three topology ag-
gregation methods (symmetric-node, star, full-mesh ap-
proach) [4]. More methods are proposed later [6], [9].
The above methods are described in the following subsec-
tions, where each subnetwork has n border nodes.
• Symmetric-Node Approach: the entire subnetwork is
represented with a single node, and the worst case param-
eter becomes the value of advertised parameter. The merit
is that this approach clearly offers the greatest reduction
of advertising information. The demerits are that it can-
not adequately reflect any asymmetric topology informa-
tion, and that it cannot capture multiple connectivity in the
original subnetwork.

A star approach is an extension of the symmetric-node
approach. This approach defines a pseudo center node in
the subnetwork and a logical link connects the center node
and a border node. The merit is that the complexity is lin-
ear to the number of border nodes. The demerit is that it
cannot capture multiple connectivity in the original sub-
network.
• Full-Mesh Approach: each pair of border nodes of a
subgraph are connected with a logical link. The weight of
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a logical link is the weight of a representative path, which
connects the pair of border nodes. The merit is that it is
adequate for efficient routing and resource allocation. The
demerit is that the number of advertised links increases as
the square of the number of border nodes.
• Spanning-Tree Approach : this approach converts a full-
mesh graph into multiple spanning-trees. This approach
can be applied to a symmetrical network, and reduce the
number of advertised links from n·(n−1)

2 (that of the full-
mesh approach) to k·(n−1). This approach constructs and
advertises a spanning tree for each link-state parameter, so
it advertises k spanning trees in case a link is represented
with k link-state parameters.
• Shuffle-net Approach : this approach converts a full-
mesh graph into a shuffle-net graph. Each border node
in a subnetwork is mapped onto a node of a shuffle-net
graph. The merit is that it can be applied to asymmetric
networks. The number of links of the shuffle-net graph is
p · n, where p is an integer and n is the number of border
nodes, while the number of links of a directed full-mesh
graph is n2.

III. PROPOSED MERGED-STAR GRAPH METHOD

A. Multiple Subgraphs are Fine?

This work considers the QoS, policy-based, multi-class
networks in the next generation Internet (NGI), where a
link is represented with multiple link-state parameters.
To aggregate the topology of a subnetwork, the existing
methods set up a subgraph (e.g., a spanning tree) for each
link-state parameter and advertise these subgraphs via
topology broadcasting [1],[6],[7],[9]. With these meth-
ods, the number of advertised links increases to the order
of linear to the number of the link-state parameters. Con-
sequently, for example, when a spanning tree is used as the
subgraph, the total number of advertised links is k·(n−1),
where k is the number of link-state parameters and n is the
number of border nodes.

The vector [BW, DELAY] has been considered enough to
represent the state of a link. To support QoS and policy-
based services, more link-state parameters will be used to
represent the other states of a link (such as delay, cost,
policy, etc) [2], [5]. To represent a subnetwork, where
a link is modeled with a vector of k link-state param-
eters, the existing methods will advertise k subgraphs.
Thus above a certain threshold value k ≥ kth, the ex-
isting methods will advertise more information than the
full-mesh method, whose aggregation is considered as the
lower bound. For example, with the spanning tree method,
k spanning trees are advertised, and the number of adver-
tised links is k · (n−1). With the full-mesh approach, one

full-mesh graph is advertised, and the number of adver-
tised links is n·(n−1)

2 . Thus for k > (n−1)
2 , the spanning-

tree method advertises more links. This result shows that
the existing methods may not be enough in the networks
with multiple link states.

B. Converting a Spanning Tree into a Star Graph
This section shows that a weighted spanning tree (n

nodes and scalar weight) can be uniquely mapped onto
a pre-defined weighted star graph (n nodes and vector
weight). The following notations are used in the follow-
ing lemmas. In graph theory, a graph is represented with
G={V(G),E(G)}, where V(G) is the set of vertices, and E(G)
is the set of edges.

V (G) = {n1, n2, · · · , nn}
E(G) = { (n1, n2, ln1,n2), · · · , (nn−1, nn, lnn−1,nn)}. (1)

Like Eq.(1), with the most general form, a link can be
represented with a vector (ni, nj , l1, l2, · · ·, lk), where ni

and nj are two adjacent nodes, and lis are link weights.
For the convenience, each vertex ni in V(G) is assigned
with a unique sequence number, which is denoted with
sn(ni). For example, if a vertex ni is in the mth sequence
(or position) in V(G), sn(ni) = m.

Definition 1: sn(ni) is the sequence number of vertex ni in
V(G).

Property 1: For any two spanning trees that are subgraphs of a
graph with n nodes, a node of a spanning tree is adjacent to at
least one link of the other spanning tree.
Proof: A spanning tree connects every node and does not con-
form any circuit, thus the degree of a node is at least one. As a
result, for a node ni on a spanning tree, it always has an adja-
cent link (ni,nj) on the other spanning tree.

Property 2: For a star graph and a spanning tree that are sub-
graphs of a graph, for a node ni of the star graph with i ≥ 2 (n1

is the root node), at least one adjacent link (ni, nj) for j �= i

exists on the other spanning tree.
Proof: A star graph is also a kind of spanning tree. Thus from
property 1, for a node of a star graph, there is an adjacent link
on the other spanning tree.

Lemma 1: For a spanning tree that is a subgraph of a graph (G)
with n nodes, this spanning tree has (n-1) links. Let denote the
set of these (n-1) links with a link set E1. Let randomly choose
(n-1) nodes from V(G) and denote the set of these (n-1) nodes
with node set V1. The set V1 can be uniquely mapped onto the
set E1.
Proof: Let exclude a node from V(G) and denote it with
node n1: n1 = V (G) − V1. With the topology information
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of the spanning tree, the link set E1 and the node set V1 are
one-to-one mapped each other, with the following mapping
function f(E1,V1).

• Mapping function f(E1,V1):
Case 1: For an element of E1, link (ni, nj), if this link is an
edge link and if the edge node ni is not n1, this edge link can
be uniquely mapped onto the edge node ni of V1. Let denote
a node on which a link is mapped with an assigned node. Let
denote a spanning tree whose mapped links are deleted from
the original spanning tree with the updated spanning tree.
Case 2: For an edge link (ni, nj) of an updated spanning tree,
if the edge node ni is n1 or an assigned node, the edge link can
be uniquely mapped onto the node nj .
Case 3: For an edge link (ni, nj) of an updated spanning tree,
if the edge node ni is neither n1 nor an assigned node, the edge
link can be uniquely mapped onto the node ni.

• Mapping function f(E1, V1) provides a one-to-one mapping:
From the topology of a spanning tree, the case that the edge
node ni of an edge link (ni, nj) is n1 or an assigned node only
happens on the links (na, nb), where na is n1 or a parent node
of n1. Here, the parent nodes of node n1 are the nodes that are
located between the node n1 and the root node of the spanning
tree. Therefore, after mapping according to the Cases 1 and
3, the remaining, unmapped links are only the links (na, nb),
where na is n1 or the parent nodes of n1. If the number of par-
ent nodes of n1 is P , after updating the spanning tree according
to Cases 1 and 3, the the number of unmapped links of E1 is
P and the number of unmapped nodes of V1 is P too. The
unmapped nodes in the spanning tree are the node n1 and its
parent nodes. If each remaining link (ni, nj) of E1 is mapped
onto the node nj of V1, each remaining link is also uniquely
mapped to a remaining node. As a result, the mapping is one-
to-one.

Lemma 2: For a spanning tree and a star graph that are sub-
graphs of a graph with n nodes, a link of the spanning tree can
be uniquely mapped onto a link of the star graph.
Proof: Assume the root node of the star graph is node n1. Let
denote the set of the nodes of the star graph except n1 with Vs,
and the set of the links of the star graph with Es. The set Vs

can be uniquely mapped onto Es according to lemma 1. Each
node element ni of Vs can be uniquely replaced with a link (n1,
ni). Let denote this new set of links with Es2 , which is equal to
the edge set of the star graph. There is a unique mapping from
Vs to Es2 . Because there is a unique mapping from Es to Vs

and from Vs to Es2 , there is a unique mapping from Es to Es2 .
Consequently, there is a unique mapping from a set of links of
a spanning tree to a set of links of a star graph.

Lemma 3: For a spanning tree and a star graph that are
subgraphs of a graph (G) with n nodes, the spanning tree can
be mapped onto the star graph, and the star graph also can be

mapped uniquely onto the spanning tree by using an additional
index with a one-to-one mapping.
Proof: Converting the spanning-tree graph into the star graph
(proof from left to right): With the information of V(G), a link
(ni, nj) of a weighted spanning tree can be represented with
a vector (ni, nj , lni,nj

). According to lemma 2, a link of a
spanning tree can be uniquely mapped onto a link of a star
graph. Thus from lemma 2, the link (ni, nj) of the spanning
tree can be uniquely mapped onto the link (n1, nk) of a star
graph with the vector (n1, nk, lni,nj

, ld). Here, lni,nj
is the

link-state parameter of link (ni, nj) of the spanning tree, ni

is the edge node of link (ni,nj), nk is either ni or nj , and the
value ld is

ld = sn(nj) − sn(ni). (2)

For given spanning-tree and star graph (the root node is n1),
the algorithm that converts the spanning-tree graph into the star
graph is:

list E0 = edge links of a spanning tree
while (E0 �= empty)

list E = edge links of an updated spanning tree
while (E �= empty)

choose an edge link e (ni, nj ) at the front of list E
map the link onto the link (n1, ni) of star graph
update the spanning tree by deleting link e

end
end

Converting the star graph into the spanning-tree graph (proof
from right to left): From property 2, for a link (n1, ni) of the
star graph, the node ni is adjacent to at least one link in the
spanning tree. And, from lemmas 1 and 2, there is a one-to-
one mapping between the link set of a star graph and that of a
spanning-tree graph. For a link (n1, ni) of the star graph, the
corresponding link of the spanning-tree graph is (ni,nj). From
the link-state vector (n1, ni, lni,nj

, ld) of the link (n1,ni) of
the star graph, we can decode the other adjacent node nj of the
corresponding link of the spanning tree: sn(nj) = sn(ni)+ ld.
Therefore, for a link of the star graph, the corresponding link of
the spanning tree can be decoded from the link-state vector of
the link of the star graph.

In summary, with propositions and lemmas, a spanning-
tree graph can be mapped onto a predefined star graph
with a new vector link cost.

Definition 2: When the link cost of a link of a spanning-tree
graph is lc, the link cost of the corresponding link of the pre-
defined star graph is lc

′
= (lc, ld), where ld is defined in Eq.(2).

An example of one-to-one mapping between a
spanning-tree graph and a star graph is shown in Fig.s
1, · · ·, 8. A spanning and star graphs are shown in Fig.s
1 and 2 respectively. The star graph is predefined, and
the topology information of the spanning-tree graph is en-
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coded into the star graph. The encoding procedure starts
from the edge nodes of the spanning-tree graph. At the
beginning, the given spanning-tree graph has three edge
nodes. Each edge node corresponds to the Case 1 of map-
ping function f(E1, V1), which is defined in lemma 1. So,
as Fig.3 shows, these edge links can be mapped onto the
corresponding links with vector link costs, which is de-
fined as lc

′
in Definition 2. After mapping with f(E1,V1),

the spanning-tree graph (=deleting the mapped nodes and
links) can be updated, and the resultant graph is shown
in Fig.4. The updated spanning-tree graph has two edge
nodes, and each edge node corresponds to the Case 3 of
f(E1, V1). Thus as Fig.5 shows, these two edge links also
can be mapped onto the corresponding links with vector
link costs. After updating the previous updated spanning-
tree graph, a new updated spanning-tree graph can be got-
ten in Fig.7. The updated spanning-tree graph in Fig.6
has one edge link, and it belongs to the Case 2 of f(E1, V1)
(note that the edge node n1 is the root node of star graph).
Thus as Fig.3 shows, these edge links can be mapped
onto the corresponding links with vector link costs. The
resultant star graph is shown in Fig.7. From lemma 3,
the procedure of the reverse one-to-one mapping is clear:
from the mapped star graph onto the original spanning-
tree graph. For an edge node, ni, in the mapped star graph,
its adjacent node can be known from sn(ni) + ld. For ex-
ample, for the edge node 2 of the mapped star graph in
Fig.7, its adjacent node is 2 + (−1) = 1, the link cost of
link (2,1) of the spanning-tree graph is L2, and so on. The
corresponding spanning-tree graph that is decoded from
the star graph in Fig.5 is shown in Fig.8.
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Fig. 1. Spanning Tree Graph

C. Merging Multiple Spanning Trees into a Star Graph

For k link-state parameters, the existing methods use k

subgraphs [1], [6], [7], [9]. If k subgraphs are used for k

parameters, the number of advertised links increases to the
order of linear to the number of parameters. To avoid using k

subgraphs, the proposed method constructs k spanning trees
(one spanning tree for each parameter), and merges these k
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Fig. 2. Predefined Star Graph
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Fig. 3. Encoding (Step 1): Encode the Edge Links of the Spanning
Tree Graph
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Fig. 4. Encoding (Step 2): Update the Spanning Tree Graph
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Fig. 5. Encoding (Step 3): Encode the Edge Links of the Updated
Spanning Tree Graph
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Fig. 6. Encoding (Step 4): Update the Spanning Tree Graph

Globecom 2004 1381 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



(L1,-4)(L2,-1) (L5,-1)(L3,-1) (L4,-3) (L6,-1)

76

1

32 4 5

Fig. 7. Encoding (Step 5): Encode the Edge Links of the Updated
Spanning Tree Graph
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Fig. 8. Decoding

spanning trees into one star graph. The Section III-B shows that
a spanning tree can be converted into a predefined star graph.
Thus k spanning trees can be converted into k isomorphic star
graphs.

Lemma 4: The k weighted isomorphic star graphs can be
merged into one weighted star graph.
Proof: If the k isomorphic star graphs are overlapped, the
resultant graph is also an isomorphic star graph. The link-state
of a link of the overlapped star graph can be represented with
a vector, whose ith element corresponds to the link-state of the
ith overlapped star graph. Thus the link-state of a link of the
merged-star graph is

l1,j = ((l11,j , ld
1
1,j), · · · , (lk1,j , ld

k
1,j)), for 2 ≤ j ≤ n.

By converting and merging k spanning trees into a star graph,
the number of advertised links is always (n − 1) regardless of
the number of parameters, where n is the number of border
nodes. When converting a spanning tree into a star graph, a
weighting lni,nj

of a link (ni, nj) is converted into a weighting
vector (lni,nj

, ldn1,nk
) and stored in the link (n1, nk) of a star

graph, where nk is either ni or nj . Thus a link parameter l of
a spanning tree is represented with the link parameter l and an
additional index value ld in a star graph.

IV. COMPLEXITY OF EACH APPROACH IN TERMS OF

TOTAL ADVERTISED LINKS AND INFORMATION

The spanning-tree method is the most representative one
among the methods using multiple subgraphs. Thus this work

compares the complexity of the proposed method and the span-
ning tree method.
• Complexity in terms of Total Advertised Links: for a sym-
metric subnetwork with n border nodes and k link parameters,
with the full-mesh approach, n·(n−1)

2 links are needed; with the
spanning tree approach, k · (n − 1) links are needed; and with
the proposed merged-star graph, only (n− 1) links are needed.
• Complexity in terms of Total Advertised Information: without
losing generality, it can be assumed that a node ID is encoded
with m bytes and a link-state parameter is encoded with s bytes.
Then, to represent a graph G=(V,E) in Eq.(1), n·m+e·(2m+s)
bytes are needed.

Each aggregation method can be compared in terms of the
amount of advertisement information. Assume there are k link
states at each link and the value ld can be encoded with logn

2
8 ,

which is denoted with ε. Then with the multiple spanning-
tree method, the total amount of advertisement information is
k · (n ·m+ e · (2m+s)) bytes. And with the proposed merged-
star method, total n · (m + ε) + e · (2m + k · s + ε) bytes are
needed. The difference is 3knm−3nm−2m(k−1)+(1−2n)ε
� 3knm = O(knm), where e = n − 1 from the spanning-tree
structure.

V. CONCLUSIONS

For the topology aggregation problem with k parameters,
with the existing methods, k topologies are to be advertised. To
solve this communication complexity problem, this work pro-
poses to merge multiple k spanning trees into one merged-star
graph, which can handle any number of link-state parameters.
As a result, the number of advertised links is always (n−1), and
the total advertisement information is decreased to the order of
O(knm) compared to the multiple spanning-tree method. Here
n is the number of border nodes, k is the number of link param-
eters, and m is the bytes to encode a node ID.
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