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Abstract: Multi-constraint quality-of-service routing will 
become increasingly important as the Internet evolves to 
support real-time services. It is well known however, that 
optimum multi-constraint QoS routing is computationally 
complex, and for this reason various heuristics have been 
proposed for routing in practical situations. Among these 
methods, those that use a single mixed metric are the most 
popular. Although mixed metric routing discards potentially 
useful information, this is compensated for by significantly 
reduced complexity. Exploiting this tradeoff is becoming 
increasingly important where low complexity designs are 
desired, such as in battery operated wireless applications. In 
this paper, a novel single mixed metric multi-constraint routing 
algorithm is introduced. The proposed technique has similar 
complexity compared with existing low complexity methods. 
Simulation results are presented which show that it can obtain 
better performance than comparable techniques in terms of 
generating feasible multi-constraint QoS routes. 

I. INTRODUCTION 
Routing is one of the most basic and widely studied 

problems in computer networking. The current Internet 
however, uses only best-effort routing [1] and thus supports 
services without any quality of service (QoS) guarantees. 
Applications such as real-time audio and video however, 
require strict performance guarantees in order to achieve 
acceptable performance. For these types of applications, a 
fundamental issue is how to find a feasible path that satisfies 
multiple constraints. This problem is known as multi-
constraint QoS routing. 

QoS routing is very complex, and dealing with multiple 
QoS requirements makes this problem NP-Complete [2]. In 
the multi-constraint case, each network link has multiple 
weights which can be classified as additive, multiplicative or 
concave. For additive weights, the end-to-end weight of the 
path is the sum of the individual link values. Delay is an 
example of additive weights. A multiplicative path weight is 
the product of the link values along the path. Path reliability 
is an example of multiplicative weights. Bandwidth belongs 
to the class of concave weights. The overall bandwidth of the 
path is equal to the minimum bandwidth of the links. Dealing 
with concave weights and constraints is very easy. It can be 
proven that optimum QoS routing with more than one 

constraint involving additive and/or multiplicative weights is 
an NP-Complete problem. For this reason it is difficult to 
have an algorithm which is computationally efficient in all 
possible situations [2]. In this paper we use weight and 
metric as synonymous. Since it is possible to transform the 
multiplicative weight case into the additive case by taking 
logarithms, we only consider cases with several additive 
constraints. Hence, the Multi-Constraint Path (MCP) 
problem can be stated as follows. 

Definition: Consider a network that is represented by a 
directed or undirected graph G=(V, E), where V is the set of 
nodes and E is the set of links. Each link Eji ∈),(  has K 
additive non-negative QoS weights, ),( jiwm , Km ,...,1= . 
Given K constraints, mC , Km ,...,1= , the MCP problem is 
to find a path P from a source node S to a destination node D 
such that, 

 m
ji

mm CjiwPw ≤∑=
),(

),(ˆ)(  (1) 

There are various methods for solving the MCP problem. 
Depth-First Search (DFS) is one approach. Although this 
method is able to find a feasible path if one exists, its worse-
case time complexity is exponential. Shin and his co-workers 
have suggested a heuristic based on DFS which limits the 
number of crankbacks to control the worst case time 
complexity. Even though the time complexity is reduced it is 
possible that the algorithm will not find a feasible path even 
when one exists [3].  

There are a number of methods that use a single mixed 
metric instead of dealing with multiple link weights. 
According to Wang and Crowcroft [2], a single mixed metric 
method at best can be used as criterion in path selection but it 
does not contain sufficient information alone to determine if 
QoS requirements are satisfied. However, using a mixed 
metric can reduce the time complexity because we can 
employ a single source single destination shortest path 
algorithm such as Dijkstra’s algorithm, but this is not as 
effective as it may appear. When a single mixed metric is 
used for routing, some information is lost [4][5][6][7]. The 
TAMCRA algorithm presented in [5] uses a single metric 

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE2042



 

and a k-shortest path algorithm in order to solve a MCP 
problem. The k-shortest path algorithms are able to find 
multiple shortest paths between a given source and a 
destination. This method reduces the performance 
shortcomings of using a mixed metric. Other routing 
algorithms also exist for solving the MCP problem, based on 
mixed metrics, manipulated weights or distributed algorithms 
and flooding [8][9][10][11][12][13][14][15]. 

In this paper, we propose a novel algorithm for the MCP 
problem using a single mixed metric. Simulation results 
show that our proposed method can have better performance 
than existing algorithms with a similar computational 
complexity. The remainder of the paper is organized as 
follows. In Section 2 a brief review is presented of MCP 
routing based on a single mixed metric. In Section 3 our new 
algorithm is proposed. Simulation results are presented in 
Section 4 and some concluding remarks are given in Section 
5. 

II. ROUTING BASED ON A SINGLE MIXED METRIC 
In [4] the following mixed metric was introduced for the 

two-constraint problem, 

 )()()( 2211 ewdewdew +=  (2) 

where e is a link with two different metrics, )(1 ew  and 
)(2 ew . Here, 1d  and 2d  are two constants and )(ew  is the 

mixed metric associated with link e. This formulation is 
known as Jaffe’s method. If a graph has weights given by 

)(ew , and a shortest path algorithm such as Dijkstra’s 
Algorithm is used, then for a path ),,...,,( DvuSp = , the path 
weight )( pw  can be written as follows, 

 
)],,(...),([
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Figure 1.  Use of a single mixed metric. (a) feasible solution is found (b) 
algorithm fails.  

where )( pw  is minimal. Equation (3) describes parallel lines 
such as, cpwdpwd =+ )()( 2211 . These parallel lines are 
illustrated in Fig. 1 and show how this method searches for a 

feasible path. In this figure the horizontal axis is associated 
with the 1w  metric and the vertical axis is associated 

with 2w . The objective is to find a path, *p , such that 

( ) ( ) 2
*

21
*

1 CpwandCpw ≤≤ . Constraints 1C  and 2C  are 
shown in Fig. 1 as dashed lines. Each path p between source 
S and destination D has weights )(1 pw  and )(2 pw . 
Therefore, associated with each path is an achievable point in 
the )(1 pw - )(2 pw  plane. In Fig. 1 there are some examples 
of these paths shown as black points. Clearly all of the points 
inside the rectangular region are associated with feasible 
paths and the Jaffe method searches for a path with the 
minimum )( pw . Fig. 1(a) illustrates a situation where the 
Jaffe method finds a feasible path, i.e., the point shown 
closest to the origin. Since using mixed metrics discards 
some useful information, it is possible for the Jaffe method to 
fail. Fig. 1(b), shows a simple case where this happens, i.e., 
the right-most path found does not satisfy the constraints. 

An approach for improving the chance of finding a 
feasible path is to modify the path weight in order to 
influence the search region. For example, if 1d  and 2d  are 
selected based on 1221 // CCdd = then before leaving the 
feasible path region, half of it will be searched [5]. It is also 
possible to define the following weight for a path, 

 ( )∑
=

=
K

j
jj CwpW

1
/)( λ

λ  (4) 

where p is a path that minimizes the mixed metric λW  for 
a given 1≥λ . Fig. 2 illustrates how the feasible path search 
region is affected by an algorithm that uses (4), with two 
constraints and 2=λ  to find its mixed weights. It is clear 
from this figure that when we use squaring in the mixed 
weight computation, it will take longer for the algorithm to 
leave the feasible path region. It was proven in [6] that after 
using a mixed metric algorithm for a MCP problem in order 
to find a path p, when a feasible path *p  exists then, 

 






≤

≤

othersforCKpW

jsomeforCpW

jj

jj

λ)(

)(  (5) 

It is clear that larger values of λ  lead to a higher 
probability of obtaining feasible results. It has also been 
proven that when ∞→λ  the following metric can be used 
[6], 

 }/)(,...,/)(max{)( 11 KK CpwCpwpW =∞  (6) 

III. PROPOSED METHOD 
We first consider the mixed metric routing method when 

there are only two constraints and 1=λ . As shown in Fig. 3 
we assume a situation where paths t and q are between the 
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source and destination nodes. Path t is a feasible path since it 
satisfies the constraints. On the other hand, path q minimizes 
the mixed metric but it does not satisfy the constraints. The 
mixed metric of path t is 2211 /)(/)()( CtwCtwtW += and 
for the path q, 2211 /)(/)()( CqwCqwqW +=  and also we 
have )()( tWqW <  while path t satisfies both constraints. 
Based on (5), path q at least satisfies one of the constraints. 
Assume 1/)( 11 ≤Cqw . Then we can write: 

 
2

2

2

2

1

1

1

1 )()()()(
C

qw
C

tw
C

tw
C

qw
−+<  (7) 

but since )/)(()/)(( 2222 CqwCtw < , based on (7): 
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Figure 2.  Use of a quadratic single mixed metric. 
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Figure 3.  A feasible path exists but is not found. 
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Figure 4.  Relative positions of the parameters in (14) and (15). 

Fig. 4 shows the relative position of the above four ratios. 
In the general multi-constraint case we define: 

 ∑
=

=
K

i
ii Cpw

K
p

1
/)(1)(µ  (9) 

and 

 ∑
=







−=∆

K

i i

i p
C

pw
p

1

2

)(
)(

)( µ  (10) 

It is clear that for the example of Fig. 3 with two 
constraints that )()( qt µµ >  and )()( qt ∆<∆ . 

In existing algorithms, routing for a path, p, is based only 
on )( pµ . We propose to use )( p∆  as well as )( pµ  in the 
routing decisions. Hence, we define the following mixed 
metric, 

 [ ]εµ +∆= )()(ˆ)( pppG  (11) 

where ε  is a constant and 10 ≤≤ ε . By using )( pG  as a 
single metric, both )( pµ  and )( p∆  are considered. A 
constant coefficient such as ε  allows )( pµ  to have a direct 
effect on the solution found. In addition, the 
product )()( pp ∆µ is taken into account and obviously larger 
values of )( pµ  and )( p∆  increases )( pG . The constant ε  
achieves the proper weighting for the role of )( pµ . The best 
value of ε  is dependent upon network size and its weights.  

A complete description of the routing algorithm is shown 
in Fig. 5. The algorithm operates as a modified version of 
Dijkstra’s shortest path algorithm, however in this case 

)( pG  is used only as an indicator function. An alternative is 
to apply (11) for each link, e , i.e., and then use )(eG  as the 
link weight for e. Simulation results show that using )( pG  is 
advantageous over )(eG .  

In the algorithm description shown in Fig. 5, SRC and 
DEST are the source and destination nodes. In each node V 
of the network, Wj[V] is the j-th weight of the selected path 
between SRC and V. Also, µ[V] is the average of Wj[V] for 
all j’s. The corresponding ∆  function is ∆(V) . We define 
PREVIOUS[V] to hold the previous node of V when 
traversing on the path between SRC and V. The parameter 
L(V,B) gives the length between nodes V and B. 
PERMANENT[V] indicates if V is a permanent node. TAG 
is the node whose neighbors are currently being examined. 
This description is similar to that commonly used for 
Dijkstra’s algorithm. 

It can be shown that the complexity of the overall 
algorithm is ( )2KNO  where N is the number of network 
nodes. The complexity of the single mixed metric algorithms 
with 1>λ  is not better because their structure does not differ 
from the new one and the difference is in the mixing 
functions. Hence, our new algorithm is comparable with 
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existing low complexity algorithms in terms of time 
complexity. 

IV. SIMULATION RESULTS 
A large variety of simulation experiments have been 

performed using a wide range of different parameter values. 
In this section some representative results are presented 
which illustrate the relative performance of the proposed 
algorithm. In the results to be presented, the performance 
measure used for comparison is the Success Ratio (SR), 
which is defined as the percentage of time that the algorithm 
finds a feasible path when at least one exists. Single mixed 
metric routing methods introduced in Section 2, for 

41 ≤≤ λ  are simulated as well as our proposed algorithm. In 
addition, the method based on (6) is simulated. In all of the 
existing algorithms of Section 2, the single mixed metric is 
used only as a path indicator. 

Random network topologies for the simulations were 
generated using Waxman’s method [16]. After generating 
each topology, weights for each link were selected randomly. 
For a link e, )(1 ew  is a uniformly selected random number 
from [ ]5,0  or from [ ]50,0 , and )(2 ew  is uniformly selected 
from [ ]10,0  or [ ]200,0 . Source, destination and constraints 
are generated based on the method of [6]. The source and 
destination are randomly generated such that the minimum 
hop-count between them is at least three. If p and q are the 
two shortest paths between the source and destination, and 
using weights 1w  and 2w , then the constraint 

1C  is 
uniformly selected from [ ])(2.1),(8.0 11 qwqw  and 

2C  is 
uniformly selected from [ ])(2.1),(8.0 22 pwpw . Networks 
with 10, 15, 20, 25, 30, 35 and 40 nodes are used and 
simulation results are shown for the 2-constraint cases. 

Fig. 6 indicate that the proposed algorithm achieves 
better performance than the other mixed metric methods with 

4=λ  and is comparable with the algorithm that is based on 
(6). Fig. 7 shows the importance of the parameter, ε . When 
ε  is zero, the performance of our method is very poor 
compared with the linear combination of weights. Also, the 
effect of ε  is shown in Figs. 8 and 9 where the value of the 
single mixed metric function (G) is shown for a two-
constraint case. It is clear from these figures that when 

5.0=ε , the value of the single metric function inside the 
feasible solution area is always less than its value outside of 
this area. This is not true when 0=ε . 

Fig. 7, also shows the case where the new mixed metric 
is not used as a path indicator but is used for computing a 
single weight for each link. This situation is compared with 
the one that deploys a mixed metric only as a path indicator. 
When the mixed metric function that is a non-linear function 
of the weights is used as a path indicator, better performance 
is obtained.  

ROUTING ALGORITHM  
(NETWORK, SRC, DEST, CONSTRAINTS) 
{SRC is the source node. DEST is the destination node} 
{ Lj(U,V) is the j-th weight of the link between nodes U and V} 
BEGIN 
01 FOR (all nodes V)  DO 
02 BEGIN 
03  FOR (j=1 to K) DO 
04   Wj[V] ← ∞; 
05  µ(V) ← ∞; 
06  ∆(V) ← ∞; 
07  PREVIOUS(V) ←NULL; 
08  PERMANENT(V) ←FALSE; 
09 END; 
10 FOR (j=1 to K) DO 
11 Wj[SRC] ← 0; 
12 µ[SRC] ← 0; 
13 PREVIOUS[SRC] ← NULL; 
14 PERMANENT[SRC] ← TRUE; 
15 TAG ← SRC; 
16 WHILE (TAG ≠DEST) DO 
17 BEGIN 
18  FOR (all nodes, V, neighbors of TAG) DO  
19  BEGIN 
20   IF Not (PERMANENT[V]) THEN 
21   BEGIN 
22         FOR (j=1 to K) DO 
23              Wj[TEMP] ← Wj[TAG]+ Lj(TAG,V) 
24         FIND µ[TEMP] and ∆[TEMP] 
25         G(TEMP) ← µ[TEMP]*(∆[TEMP]+ε); 
26         FIND µ[V] and ∆[V] 
27         G(V) ← µ[V]*(∆[V]+ε); 
28         IF (G(TEMP) < G(V)) THEN 
29         BEGIN 
30               FOR (j=1 to K) DO 
31    Wj[V] ←  Wj[TEMP]; 
32               PREVIOUS[V] ← TAG; 
33         END; 
34   END; 
35  END; 
36  FIND PERMANENT NODE V WITH SMALLEST G(V);
37  TAG ← V; 
38  PERMANENT[TAG] ← TRUE; 
39 END; 

END. 
 

Figure 5.  Proposed Multi-Constraint routing algorithm 

V. CONCLUSIONS 
In this paper a new single mixed metric routing algorithm 

was presented for solving the MCP problem. The proposed 
method takes into account variations of the link weights in 
performing path selection, and the results suggest that this is 
as important as the linear combination of these weights. The 
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proposed algorithm uses a parameter, ε, that helps control the 
region over which searching is performed. It is possible to 
use the single mixed metric function as either a path 
indicator or for computing a single weight for each link.  
Better results may be obtained if the single mixed is used as 
a path indicator. 
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Figure 6.  SR with fixed ε  

40

50

60

70

80

90

100

10 15 20 25 30 35 40
Number of Nodes

SR

Mixed, 1 EPS=0
EPS=0.5 LINK, EPS=0.5

 
Figure 7.  The effect of ε  
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Figure 8.  Single mixed metric function in a two constraint case for 

5.0=ε  
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Figure 9.  Single mixed metric in a two constraint case for 0=ε  
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