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Abstract

Given a communication network modeled as a directed 

graph with a delay parameter associated with each link, 
we consider the problem of determining the most 

probable delay constrained path from a source node to a 

destination node. Assuming that the link delays are 
random variables with continuous and differentiable 

probability density function and using the central limit 

theorem this problem can be formulated as a path 
problem which involves simultaneously optimizing two 

additive path parameters. Two cases arise. When there is 

one path with mean delay less than the delay bound, we 
present an exact pseudo polynomial algorithm, a fully 

polynomial time -approximation algorithm and a 

strongly polynomial heuristic algorithm. In the unlikely 
case when this assumption is violated, the problem is 

shown to be NP-hard and no constant factor 
approximation algorithm exists if P  NP. We also study 

the path protection problem under inaccurate state 

information.  

1. Introduction 

The constrained shortest path (CSP) problem is to 

identify a minimum cost path from a source node to a 

destination node whose delay is within a specified bound. 

This problem has attracted considerable attention from the 

telecommunications community. This is a result of a great 

deal of emphasis on the need to design communication 

protocols that deliver certain performance guarantees. 

This need, in turn, is the result of an explosive growth in 

high bandwidth real time applications that require 

stringent QoS guarantees. The CSP problem is known to 

be NP-hard. As a result, research efforts have focused on 

designing efficient heuristic and approximation 

algorithms for this problem. Works in [1] - [7] and the 

references therein contain most of the results reported to 

date on the CSP problem.  

The above results for the CSP problem have been 

developed assuming that the exact state of the network is 

known. However, in practice this is not the case. For 

several reasons [8], [9], full knowledge of the network 

state is not available. The existence of inaccuracy in state 

information has led researchers to study the routing 

problem with uncertain parameters [8] - [10]. The 

objective in these papers is to identify a path that is most 

likely to satisfy the delay requirement. This problem is 

referred to as the MP-DCP problem. In their pioneering 

works [8] and [10], the authors studied several aspects of 

this problem and related computational issues. In their 

study, they also highlighted the role of the CSP problem 

and other combinatorial optimization problems in the 

study of the MP-DCP problem. For the simplicity, unlike 

the CSP algorithm considering link cost and link delay 

together on deterministic networks, only one link metric, 

say delay, is considered in this paper. However, our 

algorithms can be easily extended to handle multiple 

constrains.  

The MP-DCP is known to be NP-hard [8]. To simplify 

this problem, Korkmaz and Krunz [9] use the central limit 

theorem and make mild assumptions on the probability 

distribution of link delays which lead to a formulation that 

requires determining an optimal path with respect to a 

metric involving mean path delay and path variance. They 

considered two cases, one of which requires minimization 

of both the mean path delay and path variance and the 

other requires minimization of mean path delay and 

maximization of path variance. Using Lagrangian 

relaxation techniques (as in [3], [5], [6], [7]), they 

developed heuristic approaches. Intensive numerical 

simulations given in [9] show that this formulation 
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produces high quality solutions. 

In this paper we develop approximation algorithms for 

the MP-DCP problem using the formulation developed in 

[9]. In the following, we formally define the MP-DCP 

problem and its formulation. 

MP-DCP Problem: Consider a network represented 

by a graph G(V, E), with n = |V|, m = |E|. Given a 

maximum delay requirement D for a flow between a 

given source node s and a destination node t s, and 

probability density function (pdf) pl(d) for all l = (i, j)

E, such that pl(d) is the probability that the link l will 

introduce a delay at most d units, i.e., dl < d. Let d(i, j) be 

the random variable(RV) associated with the delay of the 

link (i, j). For a path p, define 

d(p) = 
pji

jid
),(

),( and D(p) = Pr[d(p) D]. 

The MP-DCP problem is to find an s-t path popt such 

that for any s-t path p, D(popt) D(p).

To simplify this problem and following Korkmaz and 

Krunz [9], we assume that d(i, j)’s are nonnegative RV’s

with mean µ(i, j) > 0 and variance 2(i, j) > 0 and that for 

all links (i, j)  E, d(i, j)’s are mutually independent. 

Without loss of generality, we assume µ(i, j)’s and 2(i,

j)’s are integers (this is because all numbers are 

represented by finite digits in computers and other digital 

devices). Furthermore, we assume that the pdf of d(i, j) is 

continuous and differentiable on some interval (a, b). 

Under this assumption and using the central limit 

theorem, the path delay is approximately normally 

distributed. Without loss of generality, we assume each s-

t path is long enough (Note: The sum of as small as three 

RVs tends to a normal distribution [9]) that d(p) is a 

normally distributed RV with mean µ(p) > 0 and variance 
2(p) > 0 computed as follows. 

   µ(p) =
pji

ji
),(

),(  and 2(p) =
pji

ji
),(

2 ),(

With the above assumption,  

       D(p) (
)(

)(

p

pD
),

where (x) = (1/2 )1/2
x

y dye 2/2

Since (x) is an increasing function, we can reduce the 

MP-DCP problem as identifying the path p that 

maximizes 

             D(p) = (D – µ(p))/ (p),

where (p) 2/1

),(

2 )),((
pji

ji .

We call µ(p) and 2(p) as the mean delay and delay 

variance of path p. The difficulty with this problem arises 

from the nonseperable square root (  ) function. As in [9], 

we distinguish two cases: 

Case 1: There exists a path with mean delay less than 

or equal to the specified delay bound D.

Case 2: The mean delay of each path is greater than D.

Obviously, in Case 1(resp. Case 2), D(popt)  0 and 

µ(popt) D (resp. D(popt) < 0, µ(popt) > D).  

The rest of the paper is organized as follows. In 

sections 2 - 4 we consider Case 1. In section 2 we present 

a pseudo polynomial time exact algorithm for the MP-

DCP problem. In section 3 a fully polynomial time -

approximation algorithm is presented. This is followed by 

a strongly polynomial time heuristic algorithm and the 

numerical simulation results for the heuristic algorithm 

presented in section 4. In section 5 we study the problem 

for Case 2. Section 6 discusses the application of these 

results in provisioning two disjoint paths under inaccurate 

information and its value in designing path protection 

schemes. Section 7 concludes with a summary of our 

contributions. 

2. An exact algorithm: case 1 

In the next three sections, we first assume that there 

always exists some path p such that µ(p) D. We will 

also study the MP-DCP problem without invoking this 

assumption in section 5. In fact, if this assumption does 

not hold, the value of D may not be a realistic delay 

bound because in this case, p, D(p) < (0) = 0.5, i.e., 

any path p meets the delay bound with probability less 

than 0.5.  

Since (p) is  nonadditive , Procedure exact-mp-dcp   

enumerates all the possible values of 2(p) that lie in [1, 

U] with U = min{ 2(p*) | p* P}, where P = {p* | µ(p*)

= min (µ(p) | p is an s-t path)}. 

For the sake of completeness we also present next the 

main algorithm for computing argmin{µ(p)| 2(p) Ti} in 

Procedure exact-mp-dcp. When we compute argmin{µ(p)

| 2(p) Ti} for the first time, we call the Algorithm CSP

adopted from the exact algorithm in [2] for the 

constrained shortest path problem with two metrics on 

Procedure exact-mp-dcp 

 1       T0 U

 2        i  0 

 3        opt  - 

 4        while (Ti > 0) 

              /* see next paragraph for special care */ 

 5           p*  argmin{µ(p) | 2(p) Ti}

 6           opt  max{ opt, (D – µ(p*)) / (p*)}

 7            i i + 1 

 8            Ti
2(p*) – 1 

 9        end while 

10       return opt and the corresponding path p*

 end procedure            
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deterministic networks. This is a simple dynamic 

programming algorithm with time complexity O(m T). 

We only need to call the Algorithm CSP once and then we 

can directly use the table fl(d) (defined in the Algorithm 

CSP below) created by its first invocation. With the table, 

for a given Ti and p* = arg min{µ(p) | 2(p) Ti}, it can be 

seen that µ(p*) = ft(Ti) and 2(p*) = T* where T* is the 

least value such that ft(T*) = ft(Ti). In fact, the value of 
2(p*) can be computed in constant time using extra data 

structures.

We keep the formulation of exact-mp-dcp as above to 

make the algorithm conceptually simple.  

Theorem 1: Procedure exact-mp-dcp finds an optimal 

solution in O(U m) steps if for all links (i, j), 2(i, j) 0.

Proof: The computation of argmin{µ(p) | 2(p) T} for 

the first time is done by the constrained shortest path 

algorithm which takes O(T m) steps if there are no 0 delay 

variance links.  

Obviously, the computation time of Algorithm CSP

dominates all the other computations and so the 

complexity of the whole algorithm is O(U m).

Let popt be one of the optimal solutions with the least 

delay variance and p* be the path such that U = 2(p*). 

We first show that U = 2(p*) (popt). By the definition 

of popt and p*,

    (D – µ(popt)) / (popt)  (D – µ(p*)) / (p*) and  

     D µ(popt) µ(p*). 

If D – µ(popt) > 0, we have (p*) / (popt)  (D – µ(p*)) / 

(D – µ(popt))  1 or (p*) (popt).

If D – µ(popt) = 0, then D(p*) = D(popt) = 0 and D = 

µ(popt) = µ(p*). Hence (p*) (popt) because popt is the 

optimal path with the least delay variance and p* is one of 

the optimal paths.

We next show that Procedure exact-mp-dcp will find 

one of the optimal solutions at termination. Suppose in 

iteration i, pi = argmin{µ(p)| 2(p) Ti}. To prove the 

correctness of the algorithm, it suffices to show that if 
2(popt) Ti and pi is not optimal, then 2(popt) < 2(pi) = 

Ti+1 + 1. Then we can see that the algorithm has 

enumerated all possible value of 2(popt) at termination. 

If this were not true, then Ti
2(popt)

2(pi).

Obviously, D µ(popt) µ(pi) by the definition of pi and 
2(popt) Ti. We obtain  

          (D – µ(popt)) / (popt)  (D – µ(pi)) / (pi).

Since pi is not optimal by the assumption, this is the 

desired contradiction.                                                        

In the next section, based on exact-mp-dcp, we shall 

design a fully polynomial time approximation algorithm. 

3. A fully polynomial time approximation 

algorithm: case 1 

To design a fully polynomial time approximation 

algorithm, we use scaling and rounding described in [4]. 

Without loss of generality, assume U >> n and  < 1. 

Lemma 1: Let G(N, E, µ, , D) denote a network with 

two metrics µ and  on the link set E. Let G (N, E, µ, ', )

be the network transformed from G such that  

(i, j) E, ' 2(i, j) = 2(i, j) / upper  + 1, 

where  (= O(n)) is some integer (to be discussed later) 

and lower < upper U.

Let popt be the optimal solution to the MP-DCP 

problem on G and p  be any path such that  

           (D - µ(p )) / '(p )  (D - µ(popt)) / '(popt).

If lower 2(popt) upper, then 

)(

)(
)

)(
1(

)(

)( 2/1

opt

optopt

p

pDpL

lower

upper

p

pD
,

where L(p) is the number of links of path p.

Proof:We have 

     2(i, j)(  /upper) ' 2(i, j) 2(i, j)(  /upper) + 1. 

 So 

)(')/(

)(

)(')/(

)(

)(

)(

2/1

2/1

opt

opt

pupper

pD

pupper

pD

p

pD

)(

)(
)

)(
1(

)(

)(
)

)(

)(
1(

2/1

2/1

2

opt

optopt

opt

optopt

opt

p

pDpL

lower

upper

p

pDpL

p

upper

.            

We next present an approximation algorithm 

Procedure approx-mp-dcp for the MP-DCP problem. In 

each iteration of approx-mp-dcp, the algorithm computes 

a path whose objective is no less than the optimum values 

among all the paths whose delay variance lies between 

given values of lower and upper. This is achieved by 

calling approx-max-mp-dcp(lower, upper, , opt) which 

applies Procedure exact-mp-dcp on an appropriately 

scaled network.  

Let fj(d) be the minimum mean delay among  

     all 1- j paths with delay variance d.

/* T is the delay variance upper bound*/

Algorithm CSP (T):   

 /*1 is the source node, n is the target node*/

  f1(d) = 0,  d = 0, …, T,

  fj(0) = , j = 2, …, n,

  fj(d) = min {fj(d -1), 

                     
djkk ),(| 2

min {fk(d – 2(k, j)) + µ(k, j)}}

                                     , j = 2…, n, d = 1…, T
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Lemma 2: If popt is the optimal solution to the MP-

DCP problem and lower 2(popt) upper, where lower = 

upper / 2, = 2 n / , approx-max-mp-dcp finds a solution 

p  such that D(p ) D(popt)/(1 + )1/2 in time O(m n / )).

Proof: The complexity is easy to show (See Theorem 

1).  

We next prove the first part of this lemma. 

Observe that for any path p in G with lower 2(p)

upper,  / 2 ' 2(p) + n, where ' is the metric defined 

in the line 1 of algorithm approx-max-mp-dcp.

Let p  = argmax{(D – µ(p)) / ' (p) |  / 2 ' 2(p) +

n }. We have 

     (D – µ(p )) / (p )  (D – µ(p )) / (p ) and, 

     (D – µ(p )) / '(p )  (D – µ(popt)) / '(popt)

This first inequality holds because p  is among all the 

paths delivered by the CSP algorithm invoked in line 4 of 

approx-max-mp-dcp and at termination, p  must have 

been compared with p  (p  is the winner at termination) in 

updating opt (line 5 in Procedure approx-max-mp-dcp). 

By the first inequality and Lemma 1, we obtain 

       D(p ) = (D - µ(p ))/ (p )  (D - µ(p ))/ (p )

           (1 + L(popt) upper/( lower))-1/2 (D - µ(popt))/ (popt)

           (1 + )-1/2(D - µ(popt))/ (popt) = D(popt)/(1 +  )1/2.

Theorem 2: Procedure approx-mp-dcp finds in time 

O((m n / ) log U)  a path p* such that D(p*) D(popt) (1 

+ )-1/2, where popt is the optimal path for the MP-DCP 

problem. 

Proof: Obviously, the procedure terminates in O(log U)

iterations of Procedure approx-max-mp-dcp. Next, we 

can see that approx-mp-dcp must have searched the 

interval containing the optimal path before termination as 

shown in Lemma 2 and thus the theorem is proven.         

Notice that with proper value of , our algorithm can be 

seen as fully polynomial -approximation algorithm 

defined in [2], [4]. An interesting question is whether we 

can adopt the techniques in [2], [4] to derive a strongly 

polynomial algorithm (the time complexity does not 

depend on U). Unfortunately, (due to the nonseparable 

nature of objective function), optimality conditions for the 

MP-DCP problem are not known. So, we are not able to 

design the test or -test procedures which are critical for 

the methods in [2], [4].  

4. A strongly polynomial heuristic algorithm: 

case 1 

In this section, using parametric search we design a 

strongly polynomial heuristic algorithm for the MP-DCP 

problem. The solution obtained by this heuristic can be 

used to achieve considerable speed up of the Procedure

approx-mp-dcp presented in the previous sections. 

We notice that the objective function of the MP-DCP 

problem is close to the form of fractional optimization 

problems that can be solved by Newton method or 

parametric search [11], [12]. For the MP-DCP problem, 

the only difficulty is the nonadditive nature of (p). In 

order to remove this barrier, we change the objective 

function and consider the following modified problem. 

H-MP-DCP:  Max H D(p) = (D - µ(p)) / 2(p),  

where (p) 2/1

),(

2 )),((
pji

ji .

Let pH be the optimal path to the H-MP-DCP problem. 

Assume H D(pH) = OPT. In parametric search, for any 

given , we need an oracle test to determine whether OPT

is greater or less than  [11], [12]. Even though the value 

of OPT is unknown, this can still be achieved by applying 

Dijkstra’s algorithm on the weights µ(i, j) + 2(i, j) for 

all links (i, j)  E. Let p  denote the shortest path with 

respect to W (i, j) = µ(i, j) + 2(i, j). For the sake of 

brevity, we present our heuristic algorithm h-mp-dcp(G, s,

t) using Bellman-Ford-Moore shortest path algorithm 

instead of Dijkstra’s algorithm. For node u, define N(u) = 

{v | (u, v) E}. Each node v of the network is associated 

with a pair Mv = (xv, yv), where xv and yv keep track of the 

mean delay and delay variance of some s-v path during 

the execution of the h-mp-dcp algorithm. M is initialized 

as Ms = (0, 0) and Mv = ( , ) for v s. The algorithm 

computes the path pH without knowing OPT. By the 

assumption that there always exists a path such that µ(p)

D, it can be seen that OPT  0.

Procedure approx-mp-dcp
 1       2 n / , upper U, lower U / 2

2 opt  -

3 while lower  1 

4     p* approx-max-mp-dcp(lower, upper, , opt }

 5       opt  max{ opt, (D – µ(p*)) / (p*)}

 6       upper lower - 1

 7       lower upper / 2 

8 end while

9     return opt and the corresponding path 

   end procedure     

Procedure approx-max-mp-dcp(lower, upper, , opt)

 1 2(i, j) = 2(i, j) / upper  + 1 for all link (i, j)

 2  L = (lower / upper) ,  + n

 3  while ( L)

        /* Using CSP Algorithm on ' */

 4     p  argmin{µ(p) | ' 2 (p) }

        /* Using (p ) not '(p ) */ 

 5     opt max{ opt, (D – µ(p )) / (p )}  

 6     ' 2(p ) – 1 

 7   end while 

 8   return opt and the corresponding path 

end procedure

Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04) 

0-7695-2233-5/04 $20.00 © 2004 IEEE



In h-mp-dcp, extra steps are required to implement the 

following oracle test with unknown OPT.

xv + OPT yv xu + OPT yu + µ(u, v) + OPT 2(u, v).          

If xv = , yv = , then the inequality holds. Assume xv

and yv are finite (non-negative) values. Then it suffices to 

evaluate the following Boolean expression.  

    xu + µ(u, v)-xv)+OPT(yu + 2 (u, v)-yv) = p + q OPT  0,  

where p = xu + µ(u, v) – xv and q = (yu + 2(u, v) - yv).     

We then only need to determine the sign of p + q OPT

(> 0, < 0 and = 0). If p · q  0, the sign of p + q OPT is the 

same as that of p or q recalling that OPT  0. In this case 

implementing the oracle test is obvious.  

Consider p · q < 0, i.e., - p / q > 0. Let  = - p / q and let 

p  = Dijkstra(s, t, W ), where Dijkstra(s, t, W ) computes 

the minimal s-t path with respect to W . Now three cases 

arise.

1. µ(p ) + 2(p ) < D: This implies that  

           < (D – µ(p )) / 2(p ) OPT.

2. µ(p ) + 2(p ) = D: This implies that  

          µ(p ) + 2(p ) = D µ(pH) + 2(pH).  

Thus (D – µ(p )) / 2(p ) =  (D – µ(pH)) / 2(pH) = 

OPT which implies = OPT.

3. µ(p ) + 2(p ) > D: Then µ(pH) + 2(pH) > D and 

           > (D – µ(pH)) / 2(pH) = OPT.

With the path p , we can easily decide the sign of p + q

OPT by the above three cases. 

Theorem 3: (a). The time complexity of algorithm h-

mp-dcp is O(m n (m + n log n)). If h-mp-dcp is based on 

Dijkstra’s algorithm, then the complexity of h-mp-dcp is

O((m + n log n)2).  

(b)  Let popt be the optimal solution to the MP-DCP

problem (the original problem). Then 

   (i)      D(pH)  ( (popt) / (pH))-1/2
D(popt), and               

   (ii)    µ(popt) µ(pH), (popt) (pH).                          

If pH does not meet the requirements of the 

applications, we may need a second phase to close or 

reduce the gap between the heuristic solution and the 

optimal solution by applying the approximation algorithm 

with proper approximation factor or the exact algorithm if 

necessary. On the other hand, the solution obtained by the 

heuristic algorithm can be used to reduce the 

computational time of the approximation and exact 

algorithms. According to (b) in Theorem 3 we know that 
2(pH) 2(popt) U. So the Procedure approx-mp-dcp

(resp. Procedure exact-mp-dcp) can terminate safely once 

upper < 2(pH) (resp. Ti < 2(pH)). Note that using h-mp-

dcp as an initial pruning step does not affect the 

polynomial time complexity of these algorithms. The 

number of invocations of Dijkstra’s algorithm in the 

parametric search can also be greatly reduced using 

techniques described in [12].  

We present in Table 1 numerical simulation results for 

this heuristic. The experiments are carried out on two 

different classes of graphs: regular graph [13], and 

Waxman’s random graph [14]. In these classes of graphs, 

for each link (i, j), µ(i, j) is randomly independently 

generated integers uniformly distributed in [1, 20] and 
2(i, j) is randomly independently generated integers 

uniformly distributed in [1, 200]. The value of D is 115% 

of µ(p*) where p* is the s-t path with minimum mean 

delay. (Now, MP-DCP problem can be seen to be defined 

on a deterministic network with two independent metrics: 

mean delay µ and delay variance 2). It can be seen that 

the optimal values and the approximate values of D(p)

are very close.    

Table 1. Numeric simulation results on two 
classes of graph topologies 

| V | OPT (OPT) H-OPT (H-OPT) 
Error 

(%)

1000 0.835 0.7981 0.826 0.7956 0.313 

1500 1.043 0.8515 1.036 0.8499 0.188 

2000 1.209 0.8867 1.196 0.8842 0.282 

2500 1.341 0.9100 1.327 0.9077 0.253 

3000 1.456 0.9273 1.437 0.9246 0.291 

(a) Regular graph (out degree = 6) 

|V | OPT (OPT) H-OPT (H-OPT) 
Error 

(%)

1000 0.643 0.7399 0.628 0.7350 0.662 

1500 0.526 0.7006 0.515 0.6967 0.557 

2000 0.505 0.6932 0.492 0.6886 0.664 

2500 0.418 0.6620 0.413 0.6602 0.274 

3000 0.459 0.6769 0.459 0.6769 0.000 

(b) Waxman’s random graph 

|V|, OPT, (OPT), H-OPT and (H-OPT) denote the 
number of nodes of the network, the optimal D(p),
the optimal D(p), the solution for D(p) obtained by 
Algorithm h-mp-dcp and the corresponding D(p).

The Error column is computed as
                100 (  (OPT) –  (H-OPT)) /  (OPT).  

Algorithm h-mp-dcp(G, s, t)

1    Mv = (xv, yv) = ( , ) for all nodes 

2    Ms = (0, 0) 

3    for i  1 to n – 1 do 

4      for each node u in the network 

5        for each v such that v N(u)

           /*oracle test*/  

6         [ if (xv + OPT yv

                 xu + OPT yu + µ(u,v) + OPT 2(u,v) ) ] 

                     Mv  (xu + µ(u, v), yu + 2(u, v))
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5. MP-DCP Problem: Case 2 

In this section we consider the MP-DCP problem in the 

case when p, µ(p) > D.

Theorem 4:  If p, µ(p) > D, the MP-DCP problem is 

NP-hard. 

Proof: Let us consider an instance of the longest path 

problem on graph G(V, E). It is known that finding the 

longest simple path in terms of the number of links is NP-

hard and it can also be seen that finding the longest 

simple path from a given node s to a node t is also NP-

hard [15].  

To prove the NP hardness of MP-DCP problem in Case 

2, it suffices to show that the longest path problem is a 

subclass of the MP-DCP problem. 

Define an MP-DCP problem instance on G with given 

bound D = 1 as follows: 

Let 2(i, j) = 1 for each link (i, j) E (now 2(p) is 

equal to the number of hops of path p). 

Let M = n / ((1 + 1/n)1/2 - 1) = O(n2)

Assign the µ(i, j) on each link (i, j) E as follows: 

                   
otherwise,1

,1
),(

tjM
ji

We next show that the optimal path for the above MP-

DCP problem is the longest s-t path in G.

Let popt and pl denote the optimal MP-DCP s-t path and 

a longest s-t path, respectively. 

We obtain 

             (1 - µ(pl)) / (pl)  (1 - µ (popt)) / (popt)           

Assume that 2(popt) < 2(pl) (< n).

Then we have the following contradiction.  

   1 + 1 / n < 2(pl)/
2(popt)  ((µ(pl) – 1)/(µ(popt) – 1))2

        < ((n + M)/M)2 = 1 + 1 / n.                                    

Theorem 5: No pseudo polynomial exact algorithm or 

fully polynomial constant factor approximation algorithm 

can be obtained for Case 2 of the MP-DCP problem 

unless P = NP. 

Proof: According to Theorem 4, the longest path 

problem is a subclass of the MP-DCP problem with D = 1 

(Case 2) and thus a pseudo polynomial exact algorithm 

for this problem, which involves only numbers bounded 

by polynomial function of n, is also applicable to the 

longest path problem. This would then contradict the fact 

that there is no pseudo polynomial algorithm for the 

longest path problem unless P = NP.  

If there exists a fully polynomial constant factor 

approximation algorithm for the MP-DCP problem for 

Case 2, then let  < 1 be the approximation factor, and let 

p  and pl be the approximate solution to MP-DCP problem 

and the longest s-t path, respectively. By the definition of 

approximation factor for maximum problem, we have  

               | ( D(popt) - D(p ) | / D(popt)

Hence

               D(p )  (1 – ) D(popt)

So, (1 - u(p )) / (p )  (1 - )(1 - u(pl)) / (pl). 

Hence 2(pl) / 
2(p )  ((1 - ) (u(pl) – 1) / (u(p ) – 1))2

                               (1 - )2 (1 + 1 / n)  2 (1 - )2.      

So, p  is a constant factor approximate solution to the 

longest path problem. This leads to the contradiction of 

the fact that no constant factor polynomial time 

approximation algorithm exists for the longest path 

problem [15].                                                                     

The barrier to extend the heuristic algorithm of section 

4 is that the optimum value OPT may be negative under 

the assumption that p, µ(p) > D. Dijkstra’s algorithm is 

not applicable due to the likely presence of negative link 

weights. So we need to use the Bellman-Ford-Moore 

algorithm. Even this algorithm will fail if there is a 

directed circuit of negative weight in the network. 

6. Path protection under inaccurate state 

information 

Path protection requires selection of a pair of disjoint 

paths such that the individual delays of the two paths or 

the total delay of the two paths is bounded by some 

specified value [16]. In this section, we only consider the 

latter case. In this scenario, from a pair of paths, we 

usually choose the quicker path (with smaller delay) as 

the primal path and use the slower path as the backup 

path. We use upper case letter, e.g. P, to denote a pair of 

disjoint paths and use P(1) and P(2) to denote the two 

individual paths in P. With accurate state information, 

Suurballe and Tarjan [17] proposed an efficient algorithm 

requiring only O(m + n log n) time for computing a 

shortest pair of link disjoint s-t paths (We can use link 

splitting to get node disjoint paths). Most recently, Orda 

and Sprintson [16] presented approximation algorithms 

for computing a delay constrained shortest pair of disjoint 

paths and provided several insightful results. In this 

section, we shall consider extension of our algorithms 

developed in the previous sections to the path protection 

problem under inaccurate state information.  

Suurballe and Tarjan’s algorithm is given next for the 

sake of completeness.  
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When the state information is inaccurate, we need to 

generalize the MP-DCP problem to the Most Probable 

Delay Constrained Pair of Disjoint Paths (MP-DCPDP) 

problem defined below.

MP-DCPDP Problem: Given a maximum total delay 

requirement D for a pair of disjoint paths and source s and 

destination t s, the MP-DCPDP problem is to find a pair 

of disjoint s-t paths P* such that for any pair of disjoint s-

t paths P, D(P*) D(P), where D(P) = (D – µ(P)) / (P)

and µ(P) = µ(P(1)) + µ(P(2)), 2(P) = 2(P(1)) + 2(P(2)).  

In the following, to simplify the writing, cost and delay 

of a path in the context of the MP-DCPDP problem, refer, 

respectively, to mean delay (µ) and mean variance ( 2) of 

the path or pair of paths, i.e., we call µ(p) (resp. µ(P)) and 
2(p) (resp. 2(P)) as the cost and delay of path p (resp. a 

pair of paths P), respectively. 

In this section, we only consider the case that there 

exists a disjoint pair of paths P such that µ(P) D

(corresponding to Case 1 for the single path version). 

Notice that the MP-DCPDP problem defined here only 

consider the total cost and total delay of the two disjoint 

paths. We don’t consider the individual delay of the 

disjoint paths as in [18], [19] since this problem is much 

more intractable.  

We first consider the heuristic Algorithm h-mp-dcp

presented in section 4 for extension to the MP-DCPDP 

problem. Define  

  D(P) = (D – µ(P)) / 2(P) and  

      OPT = max{H D(P) | P is a pair of disjoint s-t paths}.  

As in the single path case, if OPT is unknown, we can 

still compute the path using the same algorithm as if OPT

were known, but we need an oracle test to decide the 

relationship (<, =, >) between OPT and any given value 

in computing the two shortest paths in the Algorithm 

shortest-link-disjoint-path. The oracle test procedure is 

based on Algorithm shortest-link-disjoint-path on the link 

weight µ(i, j) + 2(i, j) for all links (i, j) E. The oracle 

test procedure works in exactly the same way as in the 

single path version.  

Since we are not aware of any pseudo-polynomial 

algorithm for the delay constrained shortest pair of 

disjoint paths problem (which requires identifying a 

shortest pair of disjoint paths with the total delay of the 

two paths bounded by a specified value) we do not 

attempt to extend our algorithms of sections 2 and 3 for 

the MP-DCPDP problem on general networks. 

6.1. Algorithms on DAG 

Even on DAG determining a delay constrained shortest 

pair of disjoint paths is NP-hard, since adding a link with 

zero cost and delay from source node s to destination 

node t reduces the CSP problem on DAG to delay 

constrained shortest pair of disjoint paths on DAG. The 

key issue in designing exact and approximation 

algorithms on DAG is first to find a pseudo polynomial 

algorithm for the Constrained Shortest Pair of Node 

Disjoint Paths (CSPNDP-DAG) problem which requires 

identifying a shortest pair of node disjoint paths with the 

total delay of the two paths bounded by a specified value. 

Link disjoint path algorithm can be designed similarly. 

We can then derive exact and approximation algorithms 

for the MP-DCPDP-DAG problem by replacing the CSP 

algorithm with the CSPNDP-DAG algorithm in the 

algorithms of sections 2 and 3. 

Our exact algorithm for the CSPNDP-DAG problem is 

the extension of the methods first proposed by Perl and 

Shiloach [19] and enhanced by Li, et al. [18] and Eppstein 

[20]. It consists of two phases. The first phase is the DAG 

transformation. 

6.2. DAG transformation  

Given a DAG G = (V, E), we construct a larger DAG 

G* = (V*, E*), such that there is a one to one 

correspondence between a pair of node disjoint paths in G

and a single path in G*. Assuming that the nodes of G are 

labeled 1, 2 …, n = |V| in topological order such that if (u,

v)  E, then u < v. Without loss of generality, assume (s,

t) E (we can introduce a dummy node between link (s,

t) if the assumption is violated). The construction of G* is 

as follows: 

V* = {(u, v) | u, v V and  

             u v unless u = v = s or u = v = t}

E* = {((u, v), (u, w)) | (v, w) E and  

             v u}  {((v, u), (w, u)) | (v, w) E and v u}

Following the argument in [18] and [19] with straight 

forward extension, it can be seen that there are two node 

Algorithm shortest-link-disjoint-path(s, t)

Step 1) Compute a shortest path tree from node s to all 

the other nodes. Let di represent the shortest 

path length from node s to node i.

Step 2) Replace the length of all links l = (i, j) with  

               w(l) – dj + di, where w(l) is the original link 

weight.

Step 3) Let p1 be a shortest s-t path. Reverse the 

directions of all the links on p1 without 

changing the newly computed weights. 

 Step 4) Compute the shortest s-t path in the transformed 

network.

 Step 5) Let p2 be the shortest s-t path obtained in step 4. 

Discard every link in one path whose reversal 

appears in the other and group the remaining 

links into two paths. 
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disjoint s-t paths in G with total cost C and total delay T if 

and only if there exists a directed path from (s, s) to (t, t)

in G* with cost C and delay T. On the other hand, the 

corresponding node disjoint pair of paths in G can be 

constructed from the (s, s)-(t, t) path in G* [18]-[20].   

Now, the CSPNDP-DAG problem is equivalent to 

finding the minimal cost path from (s, s) to (t, t) with 

delay bounded by a specified quantity T. It can be seen 

that |V*| = O(n2) and |E*| = O(mn). Then we can apply the 

second phase to complete the algorithm. The second 

phase is just to apply the CSP algorithms given in section 

2 on G* to compute the constrained shortest path with 

delay bounded by T.

Theorem 6: CSPNDP-DAG problem is solvable in 

O(Tmn) steps.                                                                    

The -approximation algorithm for the CSPNDP-DAG 

problem can be derived as in section 3.  

7. Summary 

We have studied the stochastic shortest path problem 

aimed at identifying the most probable delay constrained 

path (MP-DCP problem). Our work is based on the 

formulation given in [9]. The work in [9] focused on 

developing heuristic approaches using the Lagrangian 

relaxation or line search techniques. In contrast, our focus 

has been on developing polynomial time -approximation 

and heuristic algorithms. For the case (Case 1) when there 

is a path whose mean delay is less than or equal to the 

specified delay bound D, we have presented an exact 

algorithm of pseudo polynomial time complexity, a fully 

polynomial time -approximation algorithm and a 

strongly polynomial time heuristic algorithm. In the 

unlikely case (Case 2) when every path violates this 

assumption we have shown that the problem is NP-hard. 

We have also shown that for this case no pseudo 

polynomial time exact algorithm or fully polynomial time 

constant factor approximation algorithm is possible unless 

P = NP. The difficulty in this case arises because we need 

to find a path minimizing one path metric and maximizing 

another path metric simultaneously. See [9].  

We have considered application of our results to the 

path protection problem under inaccurate state 

information. For this problem we have shown how to 

develop a strongly polynomial time heuristic algorithm. 

We have also shown for this problem how to develop 

exact and -approximation algorithms for DAGs.  
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