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Abstract

We consider the problem of computing traffic engineered paths for requests having bandwidth and delay require-

ments, when these requests arrive in the network independent of one another. Providing bandwidth guarantees to

applications has been important in networks offering service differentiation. With the increase in the number of real-

time applications in the Internet, provision of delay guarantees is also receiving much attention. This necessitates the

development of sophisticated path selection algorithms which deviate from the shortest-path routing philosophy in

traditional IP networks. While these algorithms perform well from the perspective of satisfying application require-

ments, they often do not take into account long term effects on the network state. One of the major concerns of a service

provider is to run the network at maximum utilization while reducing network costs and preventing congestion in the

network. For this reason, providers are looking at traffic engineering (TE) to automate path selection procedures and to

maintain network loading at an optimal level. In this paper we propose two TE path selection algorithms that consider

the application’s delay–bandwidth requirements as well as the TE constraints on the network. We compare the pro-

posed algorithms to existing path computation solutions and present results that show that by considering these ad-

ditional constraints, improvement is achieved in terms of reduction in request blocking probability, reduction in

network costs and load distribution.
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1. Introduction

The exponential growth of the Internet has led
to the increasing importance of network manage-
ment and control functions. It is evident today

that adding more bandwidth to networks is not
the solution to all congestion problems. At the
same time, more and more providers are showing
interest in making revenues from offering differ-
entiation of services in their networks. This re-
quirement has increased the importance of gaining
control over networks via automated traffic engi-
neering (TE). The most common TE objectives are
to reduce congestion, improve network utilization,
satisfy diversified requirements and thus lead to an
increase of revenue.
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One of the most important applications of
MPLS networks will be in TE [2]. MPLS traffic
engineering (MPLS-TE) enables a MPLS back-
bone to expand upon TE capabilities by routing
flows across the network based on the resources
the flow requires and those currently available.
Since the essence of TE is mapping traffic flows
onto a physical topology, it implies that at the
heart of MPLS-TE resides the problem of path
computation.

The Internet Protocol (IP), and the architecture
of the Internet itself, is based on the simple con-
cept of best-effort service and makes no guarantees
about when data will arrive, or how much it can
deliver. Though the simplicity and scalability of IP
has made it highly popular, it does not provide a
wide range of services. This has not been a prob-
lem in the past with most of the applications being
of types Web, email and file transfer. However, as
more and more applications connect to the Inter-
net, the nature of service required by them is be-
coming increasingly varied. Applications now
require more predictability from the networks and
in turn are potential sources of revenue to network
service providers. Thus, in order to increase reve-
nue earnings, the providers need to traffic engineer
their networks to help them run at maximum uti-
lization. For this reason a number of QoS and TE
mechanisms have evolved over the years to satisfy
the variety of needs of applications as well as that
of service providers.

QoS based path computation has assumed a lot
of importance over the last couple of years. In the
simplest terms, to offer QoS means to provide
consistent, predictable data delivery service. Cus-
tomers or users of a network may need several
types of QoS guarantees from the network and
they specify these requirements in the form of
service level agreements (SLA). QoS path compu-
tation then translates to finding paths through the
network such that these requirements are satisfied.
While previous path computation algorithms were
mainly hop-by-hop distributed algorithms opti-
mizing static metrics (e.g., link cost, length, etc.),
the new generation of path algorithms is moving
towards source routing schemes that also take into
account dynamic metrics. A few examples of these
dynamic metrics are available bandwidth on links,

link reliability, link load, jitter, packet loss, etc. In
addition, due to the varied QoS requirements
of today’s applications, path computation algo-
rithms may need to work with multiple QoS met-
rics. Path computation based on a single QoS
metric is studied in [1,6,13,16]. Bandwidth is the
most common QoS metric considered in these al-
gorithms. A more difficult task is to solve the prob-
lem of computing paths when multiple constraints
need to be satisfied. Path computation based on
multiple QoS constraints has been studied in [4,9,
10,17,18]. In this case, applications express their
service requirements not only in terms of the band-
width required, but also in terms of maximum
delay tolerated, delay variation, reliability, etc.
Among the multiple QoS metrics, the principal
ones are bandwidth and delay. Most applications
express their requirements either in terms of the
minimum/average bandwidth required or in terms
of the minimum bandwidth and the maximum
acceptable end-to-end delay. We refer to the above
problems as the bandwidth constrained and the
delay–bandwidth constrained path computation
problems, respectively.

QoS schemes essentially provide differentiation
of services. They also provide different degrada-
tion of performance for different traffic when
traffic load is heavy. Under low-load conditions
however best-effort schemes work just as well.
Thus the question arises as to whether we can
maintain the network always in a state of opti-
mized load and avoid congestion. This is the mo-
tivation for TE. TE helps in maintaining networks
in a well-balanced state. This in turn makes it
easier to satisfy the QoS requirements of flows
routed across it. Thus TE in ISP networks, and
providing quality of service guarantees to cus-
tomers that use the network, are closely related to
each other. Some of the common TE objectives are
to reduce the blocking probability in a network,
reduce congestion on links, reduce network costs,
etc. These objectives translate into new restrictions
on the path selected and TE path computation
algorithms should satisfy these objectives in order
to maintain consistently high network utilization.
For example, if the QoS metrics considered are
delay and bandwidth and the TE objective in a
provider’s network is to minimize network costs,
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then the problem translates to finding the mini-
mum cost delay–bandwidth constrained path. We
denote the QoS requirements specified by appli-
cations by the general term Q-metrics. Without
loss of generality, we call the problem of finding
paths that satisfy the Q-metric constraints and as
well maintain the additional TE objectives, the
TE-Q-metrics constrained path computation prob-
lem. If the application specified Q-metrics include
only bandwidth, then we call it the TE-bandwidth
constrained problem. Otherwise, if the applica-
tion specified Q-metrics are delay and bandwidth
then we call it the TE-delay–bandwidth constrained
problem.

In this paper, we present two TE path compu-
tation heuristics, which solve the TE-bandwidth
(TE-B) and the TE-delay–bandwidth (TE-DB)
constrained problems respectively. Both these al-
gorithms attempt to maintain the three TE objec-
tives of (1) increasing network revenue, (2) limiting
network costs and (3) distributing network load.
We compare the performance of these two algo-
rithms with other existing competitive algorithms
that use the same application specified constraints.
We show that by considering the additional TE
constraints, both algorithms achieve considerable
performance benefits and provide more complete
TE solutions. The rest of the paper is organized as
follows. Section 2 introduces concepts in TE based
path computation and presents the proposed path
computation algorithms. Section 3 reports simu-
lation results and performance analysis of the
proposed algorithms and Section 4 concludes the
paper.

2. TE-Q-metrics constrained path computation

Routing models can be broadly classified as
online routing (i.e., requests arrive one by one and
future requests are not known) or offline routing
(i.e., all demands are known a priori and requests
can be routed accordingly). There also exists an
intermediate model in which (some statistical
knowledge about the requests may be available,
e.g., the average arrival rate for a node pair. The
advantage of offline routing, is that pre-provi-
sioning of resources can be done so that the maxi-

mum number of requests can be routed. However,
with the advent of services that permit dynamic
and frequent requests for capacity change, online
routing of requests has assumed a great impor-
tance.

Online routing algorithms need to be pretty
fast since they compute route(s) for every request
arrival in the system. The time complexity of
a routing algorithm is often determined by the
nature and the number of path metrics consid-
ered. Commonly path metrics can be divided into
three classes: additive, multiplicative and concave.
Bandwidth is an example of a concave metric,
whereas delay, cost, etc. are additive metrics. More
background on path metrics can be found in
[19]. Problems dealing with one or more concave
metrics and one additive/multiplicative problem
can be solved in polynomial time. However, the
problem of computing optimal routes subject to
constraints of two or more additive and/or multi-
plicative metrics is known as the multiple con-
strained path selection (MCP) [14]. The MCP
decision problem is known to be NP-complete [7].
Related to MCP, but with a slightly different ob-
jective is the restricted shortest-path (RSP) prob-
lem. In RSP, the path is required to satisfy one
constraint while being optimal with respect to
another parameter. Any solution to RSP applies to
the MCP problem. RSP is also known to be NP-
complete [14]. The difference between the MCP
and the RSP problem is that MCP does not opti-
mize the values of any parameter. Instead, it
searches for a feasible path that satisfies both
constraints.

In this paper, we assume requests arrive online
and no assumption is made about future requests.
We assume that all applications specify their ser-
vice requirements in terms of two QoS metrics:
bandwidth and delay. Two forms of QoS requests
are considered entering the network:

1. (A, B, Bw) where A: source node, B: destination
node and Bw: minimum bandwidth the applica-
tion requires.

2. (A, B, Bw, D) where A: source node, B: destina-
tion node, Bw: minimum bandwidth the appli-
cation requires and D: maximum end-to-end
delay the application can tolerate.
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We assume that the requested bandwidth units are
reserved along path PA–B by some TE signaling
mechanism like RSVP or CR-LDP [3,11] and are
available for the application. We also assume that
the available QoS information is accurate.

2.1. TE objectives

The TE objectives considered in this paper are
to minimize blocking of future requests (and
thereby earn more revenue), minimize the overall
cost of paths and distribute the loading on paths.
We now take a closer look at these TE objectives.

2.1.1. Reducing blocking of requests
Reducing the blocking probability of requests

in a network is a crucial TE objective. In [13], the
authors present the intuition that the blocking
probability of requests can be reduced, if the total
available flow in the network is maximized. The
assumption is that the set of transmitting source–
destination (src–dest) node pairs is known. The
total amount of available flow between a src–dest
pair is known as the maximum flow (max-fiow) [5]
between the pair of nodes. Associated with each
max-flow is a set of minimum cut links (min-cut)
[5]. The max-flow of a particular src–dest pair
decreases whenever the capacity of any of the links
in its min-cut for that pair decreases infinitesi-
mally. When a request R is routed over a path P
between a particular src–dest pair s–d, the max-
flow between s–d always decreases. However the
request may also go over links that belong to the
min-cut set of other src–dest pairs. Thus routing
this request R over P may also decrease the max-
flow between other src–dest pairs. The approach
attempts to route R over a path, which maximizes
the available flow between other src–dest pairs.
The problem is NP-hard and the authors propose
a heuristic algorithm that gives reasonably good
solutions. For every request of Bw units of band-
width between a pair of src–dest nodes s–d, the
heuristic algorithm assigns a weight to each link
in the network. This weight, which we call the
max-flow reduction weight, is proportional to the
amount of flow it will reduce between all other
src–dest pairs, if the flow of Bw units is routed
across it. The larger amount of flow that a link

reduces, the higher its assigned weight is. A
shortest-path algorithm based on the new weights
then returns the minimum flow-blocking path. In
this paper, we achieve the TE objective of reducing
the number of blocked requests by adopting the
above approach of routing requests along the least
flow-blocking paths. If f ði; jÞ denotes the max-flow
reduction weight of a link lði; jÞ, and P is a path,
then we define the max-flow reduction weight of
path P as

path flow reductionðP Þ ¼
X

f ði; jÞ; 8lði; jÞ 2 P :

Note that if the bandwidth demands in the re-
quests are much smaller compared to the capacity
of the links in the network, the max-flow values
and the min-cut links do not change much. In that
respect max-flow and min-cut are quasi-static
metrics in such a network.

2.1.2. Minimizing network cost
In this paper, we assume that network usage

costs are solely dependent on the cost of the paths
being used. Thus, the TE objective of minimizing
network costs directly translates to the problem
of minimizing the path cost. Path cost is a static
metric and is expressed as the sum of its component
link costs. If uði; jÞ denotes link cost for link lði; jÞ
and P is a path, then we define cost of P as

path costðP Þ ¼
X

uði; jÞ; 8lði; jÞ 2 P :

Static TE metrics help in maintaining network
stability under high-load conditions. Path cost is
often directly related to path length. Motivation
for using the static path length as a TE constraint
is derived from the findings reported in [16] that
show that algorithms that optimize path length
perform better under high-load conditions than
algorithms that do not.

2.1.3. Distributing network load
The TE objective of distribution of network

load is a difficult objective to meet since it does not
directly translate to optimizing a path metric.
However, we note that distribution of network
load is a dynamic function and hence depends on
some dynamic path metric [16] shows that bal-
ancing network load by using a dynamic link
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metric works well, especially under low-load con-
ditions.

2.1.3.1. Path criticality. We now define a TE
metric, path criticality, which we propose to use
for load distribution. The idea behind our metric
is that if there exists highly loaded links in a net-
work then these links should be avoided during
selection of paths for requests. These heavily
loaded links are called critical links. All critical
links in a path contribute towards the criticality of
the path.

We can rely on existing TE infrastructure to
provide the loading information on links. The
basic assumption is that most networks run link
state Interior Gateway Protocols (IGP) for routing
purposes. [12] suggests simple extensions to IGPs
by which dynamic TE information like reserved
link bandwidth can be periodically fed-back to the
source nodes. This information is used for identi-
fication of heavily loaded links. We define link
loading of a link lði; jÞ as
link loadðlÞ ¼ ðReserved Bw on l=Total reservable

Bw on lÞ � 100:

A critical link is now defined as a link which has its
load running above a threshold percentage U.
Criticality of link l is defined as

link criticalðlÞ ¼ 0; if link loadðlÞ 6U ;

¼ f ðlink loadðlÞÞ; otherwise;

where f: monotonically increasing function of
link loadðlÞ.

A critical path is one which has critical com-
ponent links. The more heavily a path is loaded,
the more critical it is. Also the higher the number
of critical component links on a path, the more
critical it is. From these ideas, we now define
criticality of a path P as

path criticalðP Þ ¼
X

link criticalðlÞ; 8l 2 P :

Intuitively, thus to distribute path loading one
would select the least critical paths. Criticality is
an additive metric.

Consider the example network in Fig. 1. The
numbers beside the links represent the loading on
the corresponding links. Let the threshold U be

fixed at 28. The dark lines then represent the
critical links. By our definition, the three paths
ranked in ascending order of path criticality are
A–B–D–E, A–D–E and A–C–D–E. Note that by
definition, path criticality differs from path load.
Path load is a concave metric and is defined as the
maximum link load on its component links. In this
sense, criticality is a more fine-tuned metric as
compared to load since it depends on the loading
on all component links. The difference between the
two metrics can be seen in Fig. 1, where all the
three paths have the same path load but differ in
path criticality. We later show through our ex-
periments that the overall distribution of load at-
tained by using the path criticality metric is much
better than using the path load metric.

2.2. TE-Q-metrics problem statement

We now formally define our TE-Q-metrics
constrained path computation problem. Given a
directed network G of N nodes and L links, each
link l 2 L has a pre-assigned non-negative link
delay parameter dðlÞ and a non-negative link cost
parameter cðlÞ. The constraints placed on a path
P, are derived from the application specified Q-
metrics. In this paper, the Q-metrics considered are
the minimum bandwidth requirement (Bw) and the
maximum end-to-end delay (D) between a given
source s and destination d. Let us denote the
available bandwidth and the delay on path P as
bandwidth(P) and delay(P) respectively. Addi-
tionally, the path has to satisfy the modified TE
objectives of minimizing flow reduction, minimiz-
ing cost and minimizing path criticality in the
network. Thus, for any path P, the problem
statement can be written as

Fig. 1. Example network showing critical links.
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(a) minimize path_flow_reduction(P),
(b) minimize path_cost(P),
(c) minimize path_critical(P),

subject to the constraints:

1. delayðPÞ6D,
2. bandwidthðPÞPBw.

The above formulation of the TE-Q-metric con-
strained problem has multiple objective functions
and constraints, of which only one of them (i.e.,
bandwidth) is a concave path metric and the other
four, are additive metrics. Thus, it is a variation of
the RSP problem and is NP-complete. We now
attempt to investigate suitable heuristics that find
good solutions to the above problem.

2.3. Single QoS constraint

When application’s QoS requirements are
specified only in terms of bandwidth, the TE-Q-
metric problem reduces to the TE-B constrained
problem. Before we present our heuristic to solve
this problem, we discuss some existing QoS path
computation algorithms that take into account the
bandwidth constraint. We also highlight some of
the reasons why these existing solutions fail to
qualify as an overall TE solution.

The minimum interference routing algorithm
(MIRA) [13] heuristic was proposed to find a path
between a pair of nodes that blocks the smallest
available max-flow between all other src–dest
nodes. MIRA’s basic intuition is to avoid routing
requests on links that reduce the max-flow between
other src–dest pairs. The interested reader is ref-
erenced to [13] for details. Note that none of the
static constraints (e.g., path length, path cost) is
considered in MIRA. While at low to moderate
network load this might be acceptable, longer
paths selected at high-load conditions may cause
instability by occupying more resources in an al-
ready overloaded network. In addition, with this
type of algorithm, the path lengths can become
long enough to make the path practically unus-
able. MIRA also does not take into account the
current load condition on the paths. In an n-node
network with m links and integral link capacities in

range [1;U ], the time complexity of the algorithm
is Oðnmþ n2 logUÞ [13] and its space complexity is
OðnÞ.

The widest shortest (WID-SHORT) path algo-
rithm [16] makes use of the possible existence of
more than one shortest path in the network. If
several such shortest paths exist, then the widest
one (i.e., one with the maximum available band-
width) is selected. The effectiveness of this algo-
rithm depends on the presence of multiple shortest
paths in the network. If there is always only a
single shortest path, then its performance becomes
identical to that of any minimum distance routing
algorithm. From the TE perspective, WID-
SHORT considers the path cost and path load
but does not take into account the blocking of
future requests. The time complexity is Oðn log nÞ
and its space complexity is OðnÞ. A similar algo-
rithm, the shortest-widest path selects the shortest
path among paths with equal amount of available
bandwidth. However [16] shows that at high-load
conditions the performance of the shortest-widest
path algorithm deteriorates severely.

Least-critical-K-shortest (LCKS) path algo-
rithm is proposed in this paper as an improvement
to the WID-SHORT algorithm. Since the occur-
rence of multiple shortest paths may be rare in
many networks, we propose to find the k-shortest
paths between a pair of nodes. LCKS uses the
proposed path criticality metric to distribute
loading, rather than the path load metric. From
the set of k candidate paths, it selects the least
critical path. The time complexity of the algorithm
is Oðn log nþ kÞ and space complexity is OðknÞ. All
the algorithms described above perform well either
in terms of reducing blocking or in terms of re-
ducing path cost/load. The objective is to look for
a more complete solution that succeeds in main-
taining all TE objectives. We propose the TE-B
constrained algorithm as a complete solution to
the TE path computation problem.

2.3.1. TE-bandwidth constrained path computation
This section presents our path computation

heuristic, the TE-B constrained algorithm. TE-B
uses the quasi-static, static and dynamic TE met-
rics of max-flow reduction, path cost and path
load respectively, in addition to the application
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specified QoS constraint of bandwidth. Let the
minimum bandwidth requirement of the applica-
tion be Bw units. We assume the bandwidth de-
mands are much smaller compared to the capacity
of the network. The set of constraints and objec-
tive functions for the system are same as presented
in Section 2.2, with only the delay constraint re-
moved. As mentioned before, this is a version of
the RSP problem. [9] suggests that the MCP
problem is easier to solve than the RSP problem.
Thus, in order to simplify the problem, we trans-
form some of the objective functions into con-
straints. By our assumption, cost and max-flow are
static and quasi-static metrics respectively. Since
static optimization metrics can be transformed
into constraints, we introduce a new path cost
constraint (C) and a new max-flow reduction
constraint (F). Since path criticality is a dynamic
metric we retain the minimization criterion on it.
Thus, we re-write the problem statement as

(a) minimize path_critical(P), subject to con-
straints:

1. bandwidthðP ÞPBw,
2. path flow reductionðP Þ6 F ,
3. path costðP Þ6C.

The next step is to define the constraints C and
F, which could either be statically specified by an

administrator or selected dynamically. In our de-
sign, they are defined as dynamic constraints, with
C being the cost of the path with least max-flow
reduction weight, and F being the max-flow re-
duction weight of the least cost path. This serves as
loose upper bounds and the aim is to find paths
whose cost and max-flow reduction weight metrics
are far from the bounds C and F respectively. We
now try to design a heuristic which give near-
optimal solutions to the above problem. We use
the definitions shown in Fig. 2 for our algorithm.

We propose a heuristic, TE-B (shown in Fig.
3a), that firsts finds a candidate set of paths that
satisfy constraints 1–3 simultaneously. From this
set, it then selects the least critical path. To satisfy
constraint 1, links that have less than Bw units of
residual bandwidth are removed. We now need to
find a candidate set of paths that satisfy both
constraints 2 and 3 simultaneously. Ref. [15] de-
scribes the A*Prune algorithm for finding k
shortest-paths subject to multiple constraints.
However the worst case running complexity can
become exponential. Ref. [17] describes a heuristic
for solving the MCP problem by finding a candi-
date set of k paths whose metrics are far from the
constraint bounds. We adopt this approach for
solving the TE-B constrained problem. The steps
for computing the set CA;B and the candidate path
set A are the most computationally expensive steps
in the algorithm and governs the time complexity

Fig. 2. Definitions and terminology.
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of the TE-B algorithm. In an n-node network
with m links and integral link capacities in range
[1;U ], the fastest known max-flow algorithm has
a running time of Oðminðn2=3;m1=2Þm logðn2=mÞ
logUÞ [8]. A set of paths subject to two simulta-
neous constraints can be computed in time
Oðkn logðknÞ þ k32mÞ [17]. The space complexity of
the algorithm is OðknÞ. On an average, to compute
a TE-B route takes 0.15–0.2 ms on a Sun SPARC
UltraWorkstation (n ¼ 18,m ¼ 62, k ¼ 4),whereas
normal Dijkstra-based routing takes about 0.05–
0.09 ms.

The performance of the algorithm also depends
on the appropriate definition of the constraints C
and F. The quality of a solution may deteriorate in
case the bounds are too loose. A tighter bound
improves the probability of the algorithm finding
the optimal solution. We can use an iterative
method detailed in [9] that starts with the loose
upper bound and progressively searches for a
tighter cost bound. When this method is run as a
pre-cursor to the algorithm, the search space re-
duces resulting in better quality solutions.

2.4. Multiple QoS constraints

When application’s QoS requirements are
specified in terms of bandwidth and delay, the TE-
Q-metric problem reduces to the TE-DB con-
strained problem. Before we present our solution
to this problem we discuss some existing QoS path
computation algorithms that take into account
the multiple constraints of delay and bandwidth.
We also highlight some of the reasons why these

existing solutions fail to qualify as an overall TE
solution.

Minimum delay (MIN-DELAY) algorithm [18]
is a bandwidth–delay based routing algorithm that
prunes links that do not satisfy the bandwidth
requirement, and then finds the shortest path w.r.t.
delay in the reduced graph. In an n-node network
with m links, time complexity of MIN-DELAY
is the same as that of Dijkstra’s algorithm, i.e.,
Oðn log nÞ and its space complexity is OðnÞ. This
algorithm considers none of the TE constraints.

Tunable accurate multiple constrained routing
algorithm (TAMCRA) [17] is an efficient multiple
QoS routing algorithm, for solving the MCP al-
gorithm with K constraints. Using a non-linear
weight function, it finds a candidate set of k paths
whose metrics are far from the constraint bounds.
In an n-node network with m links, time com-
plexity of TAMCRA is Oðkn logðknÞ þ k3KmÞ [17]
where K is the number of constraints and k is the
size of the candidate set. Space requirement of
TAMCRA is OðknÞ. This algorithm does not
consider the TE constraints of reducing blocking
of requests or that of distributing load.

2.4.1. TE-delay–bandwidth constrained path com-
putation

This section presents our path computation
heuristic, the TE-DB constrained algorithm. It is
very similar to TE-B constrained problem formu-
lation, except that we now have an additional de-
lay constraint. We use the same set of definitions
as in Fig. 2. Let the minimum bandwidth re-
quirement of the application be Bw units and the

Fig. 3. (a) TE-B and (b) TE-DB.
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maximum acceptable delay be D units. As ex-
plained in Section 2.3.1, let C and F represent the
cost and the max-flow reduction constraints re-
spectively. The problem statement becomes:

(a) minimize path_critical(P), subject to con-
straints:

1. bandwidthðP ÞPBw,
2. delayðP Þ6D,
3. path flow reductionðP Þ6 F ,
4. path costðP Þ6C.

We propose a heuristic TE-DB (shown in Fig.
3b) to solve the above problem. The algorithm is
similar to the algorithm described in Section 2.3.1
except that we now have constraints 2–4 that we
need to satisfy simultaneously. As before, the al-
gorithm works by first pruning off links which
have less than Bw units of residual bandwidth. It
then runs the k-shortest-path algorithm on the
reduced graph to find a candidate set of paths
that satisfy constraints 2–4. From among the
candidate set the algorithm selects the least criti-
cal path. As before, max-flow computations take
Oðminðn2=3;m1=2Þm logðn2=mÞ logUÞ, and comput-
ing a set of paths subject to three simultaneous
constraints takes Oðkn logðknÞ þ k33mÞ. TE-DB’s
space complexity is OðknÞ. On an average, to
compute a TE-DB route takes 0.2–0.25 ms on a
Sun SPARC Ultra Workstation (n ¼ 18, m ¼ 62,
k ¼ 4).

3. Performance studies

We evaluate the performance of TE-B and TE-
DB with other algorithms that consider similar
QoS constraints. We compare TE-B with WID-
SHORT, MIRA and LCKS. We also compare the
performance of TE-DB with that of MIN-DELAY
and TAMCRA. Performance comparison is done
on the basis of stochastic simulations, where con-
nection requests randomly arrive in the network.
Each algorithm attempts to route these connec-
tions and the network performance (in terms of
metrics discussed in Section 3.3) is measured.

3.1. Simulation model

The network model used for our experiments is
shown in Fig. 4. It represents a typical ISP net-
work and is based on the ATT backbone network
with a few additional links. The dark shaded nodes
represent the gateway nodes, which serve as entry
and exit points for the network traffic. The re-
maining nodes are the backbone nodes, which
carry transit traffic only. Link capacities are either
moderate (OC3 links) or high (OC12 links). All
links are symmetric and link weights are assigned
randomly. The link delays, also assigned ran-
domly, are of the order of a few milliseconds. In
reality, link delays and weights vary largely from
one provider’s network to another. However, there
exists a range of acceptable values for these

Fig. 4. ISP network.
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parameters that are used in most studies (e.g.,
link delays for OC3 links are usually in the range
of 10–100 ms). In the absence of real values, we
simulate the link parameters by generating them
randomly from the acceptable range of values.
Experiments are repeated several times to average
out the effect of randomness. In order to corrob-
orate the results, experiments are also performed
on random networks consisting of 10–40 nodes
with average node degrees varying in the range of
4–6. Similar results are obtained for these random
networks and hence are not shown. The parameter
k determines the size of the candidate set of paths.
The more candidate paths we have, better quality
solutions we can attain. However the complexity
of the algorithm also increases with k. Ref. [17]
suggests 4–6 as a possible range of k values. We
use k ¼ 4 for all our experiments.

3.2. Request generation

Requests are generated by an offline utility and
are of the form (Src, Dest, Bw, D, Hold-Time).
The bandwidth requirement of requests varies
uniformly between 1 and 200 kbits/s. The delay
requirement varies uniformly between 50 and 100
ms. We assume that requests arriving in the system
can either have a finite lifetime, i.e., the flows are
torn down after certain holding time, or they can
have infinite lifetime, i.e., flows are never torn
down. Finite flows arrive in the system according
to a Poisson process and the holding time is ex-
ponentially distributed.

The request generation follows two models,
uniform and non-uniform. For each network, S
represents the set of possible src–dest pairs be-
tween which there is traffic flow. We assume that
this set S is known a priori. In the uniform model,
requests are uniformly distributed between all src–
dest pairs in S. This model represents networks
where there is an equal proportion of traffic
flowing between all end-points. In the non-uni-
form model, src–dest pairs could be categorized as
hot or cold pairs, where hot pairs receive the ma-
jority of the routing requests. This model repre-
sents networks where a heavy portion of traffic
flows between some (hot) end-points, while there is
relatively less flow of traffic between other (cold)

end-points. The ratio of traffic distribution be-
tween a hot pair and a cold pair and the ratio of
number of hot pairs to number of cold pairs are
important parameters in this model. We consider
three scenarios for the non-uniform model: (a) hot
and cold pairs are evenly distributed, (b) hot pairs
are very high in number compared to cold pairs
and (c) hot pairs are very low in number compared
to cold pairs. The traffic distribution ratio between
hot and cold pairs is fixed at 9:1.

3.3. Performance metrics

The evaluation of all algorithms is done from a
TE perspective with the purpose of analyzing how
these algorithms compare with each other in terms
of blocking requests, reducing network costs and
distributing network load. We define the following
parameters:

• Available max-flow: Request blocking can be
closely related to the available max-flow be-
tween src–dest pairs. More available max-flow
between ingress–egress pairs indicates that more
requests can be routed between them in the fu-
ture, while less available max-flow indicates po-
tential increase in blocked requests. Thus, we
define the max-flow factor metric as

Max-flow factor ¼ Current available

max-flow between all

src–dest pairs=Initial

available max-flow

between all src–dest pairs:

• Reducing network cost: In order to minimize
network costs the path costs should be mini-
mized. In our experiments, the path length so-
lely determines path cost. An algorithm that
on the average returns less costly paths will be
more successful in lowering network costs than
algorithms, which select more expensive paths.

• Distributing load: To measure the distribution of
load characteristics of an algorithm we examine
the loading on paths. The maximum link load
on the component links of a path measures path
load. An algorithm, which on the average selects
paths with a lower path loading, will be more
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successful in distributing network load than al-
gorithms, which select highly loaded paths.

3.4. Results

We now present results of comparisons of the
path computation algorithms. Figs. 5–10 show the
performance of the algorithms with respect to
parameters discussed in Section 3.3. Results are

shown for the network in Fig. 4. Hot and cold
pairs of src–dest nodes are randomly selected and
requests are generated for the uniform and the
three non-uniform scenarios (a)–(c) (discussed in
Section 3.2). Each algorithm tries to route these
requests through the network. If a route is found,
resources are reserved along it and are held as
long as the request is active. Resources are freed
once a request’s holding time expires. A request is

Fig. 5. Max-flow reduction in uniform/non-uniform models (1 QoS constraint).

Fig. 6. Path length increase in uniform/non-uniform models (1 QoS constraint).
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blocked if no route can be found for it. Experi-
ments are repeated with different src–dest pairs
and different request sets and the results report the
average values of the measured metrics over all the
experiments. We refer to the region below 8k re-
quests as low load, the region of 8k–14k as me-
dium load and the region of 14k–20k requests and
upwards as high load.

Figs. 5–7 present the results of experiments
when only one QoS constraint, i.e., bandwidth,
needs to be satisfied. All requests have infinite
lifetime. The algorithms compared are MIRA,

LCKS, WID-SHORT and TE-B. Results are
shown for the uniform model and one or more
representative scenarios of the non-uniform model.
Fig. 5(I) and (II) shows the reduction in max-flow
factor of the four algorithms. We see that MIRA
and TE-B do consistently better than the WID-
SHORT and LCKS methods (by about 10–16%).
The performance of TE-B is almost always as
good as that of MIRA. At low-load conditions
MIRA does a little better, but with increasing
loads TE-B achieves performance comparable to
MIRA.

Fig. 7. Average path load in uniform/non-uniform models (1 QoS constraint).
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Fig. 6(I) and (II) shows the average length
of paths returned by the four algorithms. Since
the widest-shortest-path approach gives maxi-
mum priority to finding shortest path(s), WID-
SHORT succeeds in having the lowest path costs
under low-load conditions. LCKS paths are
slightly longer under the same condition because
it relaxes the shortest-path constraint and in-
stead finds a set of k-shortest paths. MIRA re-

turns the longest paths. At low-load conditions,
both LCKS and WID-SHORT outperform TE-B
and MIRA. However as the load increases on
the network, TE-B returns lower cost paths than
LCKS, while achieving performance close to
that of WID-SHORT. At high-load conditions,
on average, TE-B attains about 10–15% lower
cost paths than the LCKS and MIRA algo-
rithms.

Fig. 8. Max-flow reduction in uniform/non-uniform models (2 QoS constraints).

Fig. 9. Path length increase in uniform/non-uniform models (2 QoS constraints).
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Fig. 7(I)–(III) shows the average path load for
the four algorithms. We note that the total net-
work load being the same for all algorithms,
LCKS paths have the least average load. TE-B
comes a close second and has lower path loading
than either WID-SHORT or MIRA. The perfor-
mance gains of TE-B in terms of reduction in load
is about 10–20% when compared to MIRA or
WID-SHORT. However, in scenario (c) of the
non-uniform model, we observe that since the
majority of traffic is concentrated between few hot
pairs, most of the paths between them run at very

high loads. In this case, since there are not many
non-critical paths to off-load the traffic, load dis-
tributing does not help much in lowering the av-
erage load on paths. Thus the benefit of using a
load distributing mechanism like LCKS or TE-B is
much more pronounced in the uniform model and
scenarios (a) and (b) of the non-uniform model.
Note that though WID-SHORT and LCKS are
similar algorithms, the latter achieves about 40%
more reduction in average path load by using the
proposed criticality metric. Thus, TE-B has an
overall superior performance compared to the

Fig. 10. Average path load in uniform/non-uniform models (2 QoS constraints).
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competitive algorithms in terms of reducing
blocking, reducing network costs and distributing
network load.

Figs. 8–10 present the results of experiments
when both QoS constraints of bandwidth and de-
lay have to be satisfied. The algorithms compared
are MIN-DELAY, TAMCRA and TE-DB. Re-
sults are shown for the uniform model and one or
more representative scenarios of the non-uniform
model. All requests have infinite lifetime. Fig. 8 (I)
and (II) shows the reduction in max-flow factor
obtained from the three algorithms. We note that
even as more requests are admitted into the sys-
tem, TE-DB succeeds in maintaining the maxi-
mum available flow between transmitting src–dest
pairs in the network. We note that on an average
TE-DB out-performs MIN-DELAY and TAM-
CRA by about 15–20%.

Fig. 9(I)–(II) shows the increase in length of
paths returned by the three algorithms, with in-
creasing network load. We assume that the length
of the paths serves as an adequate measure of their
cost. We note that TAMCRA paths are the short-
est at low-load conditions. However as the load
increases, TE-DB path costs closely catch up with
that of TAMCRA paths, and at highest load con-
ditions TE-DB succeeds in maintaining the least
network costs. MIN-DELAY paths are always
about 40–50% more expensive than either TAM-
CRA or TE-DB paths.

Fig. 10(I)–(III) shows the average load on paths
returned by the three algorithms. On average, the
TE-DB paths have the least load under all load
conditions. TE-DB attains a significant reduction
in average path load, when compared to MIN-
DELAY. This reduction is 60–70% at low load,
30–40% at medium load and 10–20% at high load.
TE-DB paths consistently attains 5–15% lower
path load than TAMCRA paths. The total net-
work load being the same for all three algorithms,
we show that TE-DB is uniformly more effective
in terms of distribution of network load. However,
this improvement is reduced in scenario (c) of the
non-uniform model. This can be attributed to the
fact that in this model majority of the requests are
distributed between very few hot pairs. Thus all
paths between the hot pairs are congested and there
are none non-critical paths to off-load the traffic.

We now investigate a more dynamic environ-
ment, where flows are setup and torn down fre-
quently. This environment is closer to real life
scenarios, where an application requests network
resources only for a limited amount of time. In this
experiment, 30% of the flows are assumed to be
infinitely long and the rest of them have a mean
holding time of 250 s. Results are shown only for
the uniform case. Figs. 11 and 12 show that as
before, TE-B and TE-DB maintain a high amount
of available flow in the network.

Fig. 11. Max-flow reduction in uniform model (1 QoS con-

straint).

Fig. 12. Max-flow reduction uniform model (2 QoS con-

straints).
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In the next experiment we show that the in-
creased available flow translates to better perfor-
mance. We load the network with finite-duration
requests and observe the number of requests re-
jected by each of the algorithms. The blocking
probability is measured as the ratio of the rejected
requests to the total requests in the system. We
conduct 10 trials and the results are shown in Figs.
13 and 14. We observe that the TE algorithms
attain lower blocking probabilities, which corrob-
orates the intuition that more requests can be

admitted by maintaining a higher amount of
available flow in the network.

4. Conclusion

In this paper, we propose two TE path compu-
tation algorithms, TE-B and TE-DB. The former is
used when applications specify their QoS require-
ments only in terms of bandwidth, while the latter
is used when both bandwidth and delay require-
ments are specified. Both these algorithms try to
maintain the three TE objectives of (1) increasing
network revenue, (2) limiting network costs, and
(3) distributing network load. We compare the
performance of these two algorithms with other
existing competitive algorithms that use the same
application specified constraints. We show that by
considering the additional TE constraints, both
TE-B and TE-DB achieve considerable perfor-
mance enhancements. The other existing algo-
rithms while performing well with respect to some
metric, suffer from poor performance with respect
to other metrics. However, for the TE algorithms
our results show that their performance is always
either the most favorable or very close to the most
favorable solution with respect to all the measured
metrics. We believe that the TE algorithms can be
suitably deployed in provider networks since they
succeed in maintaining high amount of available
flow between network end-points, reducing net-
work costs and distributing network load. TE-B
and TE-DB, thus, qualify as superior TE path
computation algorithms.
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