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Abstract. Quality-of-service routing (QoSR) is to find an optimal path
that satisfies multiple constraints simultaneously. As an NPC problem,
it is a challenge for the next-generation networks. In this paper, we pro-
pose a novel heuristic SA MCOP to the general multi-constrained op-
timal path problem by extending simulated annealing into Dijkstra’s
algorithm. The heuristic first translates multiple QoS weights into a sin-
gle metric and then seeks to find a feasible path by simulated annealing.
Once a feasible path is found, it optimizes the cost without losing the
feasibility. Extensive simulations demonstrate that SA MCOP has the
following advantages: (1) High performance in both success ratio and
cost optimization. (2) High scalability regarding both network size and
the number (k) of QoS constraints. (3) Insensitivity to the distribution
of QoS constraints.

1 Introduction

Providing different quality-of-service (QoS) support for different applications in
the Internet is a challenging issue [1], in which QoS Routing (QoSR) is one
of the most pivotal problems [2] [3]. The main function of QoSR is to find an
optimal path that satisfies multiple constraints for QoS applications. For the
NP-completeness of QoSR problem [4] [5], many heuristics have been proposed.
However, these algorithms have some or all of the following limitations [2]: (1)
Most of the heuristics only focus on a branch of the QoSR problem. (2) High
computation complexity prevents their practical applications; (3) Low perfor-
mance sometimes leads to fail to find a feasible path even when one does exist.
(4) Some algorithms only work for a specific network.
Simulated annealing is a meta-heuristic method for combinational optimiza-

tion [6]. Based on an initial solution, it repeatedly iterates to a new solution. For
the Multi-Constrained Optimal Path (MCOP) problem, we extend simulated
annealing to take an end-to-end path as a solution in routing computation, and
propose a novel heuristic, SA MCOP (Simulated Annealing for MCOP), by ex-
tending simulated annealing [6] to Dijkstra’s algorithm.
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When a QoS connection request arrives at a router, the router uses our
SA MCOP to compute an optimal feasible end-to-end path (or the next hop)
based on the network state information it maintains. This algorithm uses a non-
linear energy function to translate multiple QoS constraints into a single metric.
It first computes a complete shortest path tree (SPT) with respect to the tradi-
tional cost as the initial solution for simulated annealing by Dijkstra’s algorithm.
If the path along the current SPT is not feasible, it marks all of the nodes in the
graph according to the current SPT. Then a new SPT is created in simulated
annealing mode by our improved Dijkstra’s algorithm with a nonzero probability
P (T ) to select a non-optimal path, where T is the temperature for simulated
annealing. If the path along the new SPT is not feasible yet, the algorithm then
marks each node again based on the current SPT and computes a new SPT
with a lower temperature T iteratively. When T decreases to T → 0, we have
limT→0 P (T ) = 0. If a path is feasible, the algorithm optimizes the cost at last.
Based on the theory about simulated annealing, SA MCOP guarantees to find a
feasible path when one exists. Extensive simulations also show that SA MCOP
performs well.
The rest of this paper is organized as follows. In Sect. 2 we analyze how

to translate multiple weights to a single metric and summarize the simulated
annealing. SA MCOP is proposed in Sect. 3, and extensive simulations show the
performance evaluation in Sect. 4. Finally, conclusions appear in Sect. 5.

2 Background information

2.1 Problem Formulation

A network is represented by a directed graph G(V, E). V is the node set and
an element v ∈ V is called a node representing a router. E is the set of edges
representing links, which connect the routers. An element eij ∈ E represents
an edge e = vi → vj of G. In QoSR, each link has a group of independent
weights (w0(e), w1(e), · · · , wk−1(e)) , which is also called QoS metric . For a path
p = v0 → v1 → · · · → vn and 0 ≤ l < k, the weight wl ∈ R+ satisfies the additive
property if wl(p) =

∑n
i=1 wl(vi−1 → vi).

Definition 1. Multi-Constrained Optimal Path (MCOP): For a given graph
G(V, E) with source node s, destination node t, and a constraint vector c =
(c0, c1, · · · , ck−1), when k ≥ 2, the path p from s to t is called a multi-constrained
optimal path, if (1) wl(p) ≤ cl for each 0 ≤ l ≤ k − 1 (we write w(p) ≤ c in
brief), and (2) cost(p) ≤ cost(p′) for any p′ satisfying w(p′) ≤ c.

Note that both w(e) and c are k-dimensional vectors. For a given QoS request
and its constraint c, QoSR seeks to find the path p with optimal cost based on
the network state information, where p satisfies w(p) ≤ c. Dijkstra proposed the
shortest path tree (SPT) algorithm, which has a low computation complexity [8].
However, QoSR problem is related to multiple weights simultaneously. Thus the
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problem is changed to an NPC one that the original Dijkstra’s algorithm cannot
solve in polynomial time. Therefore, one feasible method is to translate the
multiple weights into a single metric, as follows:

Definition 2. Energy Function: g(p) = maxk−1
l=0 {wl(p)/cl} is called the energy

function of path p, where c = (c0, c1, · · · , ck−1) is the constraint vector of a QoS
application.

2.2 Simulated Annealing

Research on statistical mechanics shows that in temperature T , the probability
for a molecule of substance to stay in the state r satisfies Boltzmann’s distribu-
tion:

Pr{Ê = E(r)} = 1
Z(T )

exp(−E(r)
kBT

) (1)

Ê is the stochastic variable representing the energy of a molecule. E(r) is
the energy of a molecule that stays in the state r. T is the temperature. kB is
Boltzmann’s constant and Z(T ) is the normalized factor.
Annealing is a physical process. After a metal body is heated, when it cools

down slowly, the molecules of the body stay in different states with different
probabilities, which satisfy Boltzmann’s distribution. Annealing usually requires
the following two conditions:
(1) The initial temperature is high enough so that the probabilities for

a molecule to stay in arbitrary states are approximately equal. If we have

T0 	 E(r)/kB (2)

then E(r)/kBT0 ≈ 0. As a result, Pr{Ê = E(r)} ≈ 1/Z(T0), i.e. the probabilities
are approximately equal.
(2) When it cools down to T = 0, all of the molecules will stay in the least-

energy state with the probability being one. If r∗ presents the least energy state,
when T → 0 , we have

Pr{Ê = E(r)} =
{
1, r = r∗ ;
0, others; (3)

The idea of simulated annealing was first proposed by Metropolis [9] and was
applied to combinational optimization successfully in 1983 [6]. In its basic form, it
first generates an initial solution as the current solution. It then selects another
solution in the neighborhood of the current solution and replaces the current
solution with the new one. The same process continues iteratively for many times.
Although the goal is to find an optimal solution, it selects a non-optimal solution
with a non-zero probability P (T ) to avoid being stuck in a local optimization.
When the temperature decreases, P (T ) also decreases. When T → 0 , it is
guaranteed to find an optimal solution since the probability P (T ) is zero to
select a non-optimal solution.
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3 MCOP Based on Simulated Annealing

3.1 The Idea of SA MCOP

The key issues to use metaheuristics in QoSR include (1) how to express a solu-
tion, and (2) how to iterate. We extend simulated annealing to take an end-to-end
path as a solution and use Dijkstra’s algorithm to guarantee that a new solution
is still an end-to-end path in iterations. When we compute the SPT by Dijk-
stra’s algorithm, we select with probability P (T ) a node that is not the current
optimal node. Therefore, our SA MCOP can overcome the local optimization
problem that all heuristics face.
For a given QoS request from s to t, node s first uses Dijkstra’s algorithm

to calculate the least-cost SPT rooted by s and marks each node in the net-
work. Then it uses an improved Dijkstra’s algorithm to compute new labels for
each node iteratively based on the old labels computed last time. With different
probabilities P (T ), it selects different links including non-optimal links, where
limT→0 P (T ) satisfies Eq. 3. After each iteration, the temperature T decreases.
When the algorithm iterates enough times, we guarantee T → 0 . In order to op-
timize the cost, when multiple feasible paths are found, the heuristic will choose
the path that has the least cost.

3.2 Pseudo-code Description

Fig. 1 shows the pseudo-code of the algorithm, where SA MCOP is the main
function. The input of SA MCOP includes a given graph with multiple QoS
weights, a QoS request from s to t and a constraint vector c = (c0, c1, · · · , ck−1).
In addition, we can configure the initial temperature (T0), the gradient (grad) for
cooling down the temperature and the iteration times (I). If the k-dimensional
weight d[t] of the forward least energy path from s to t satisfies the constraint c,
the algorithm returns the path successfully. Otherwise, it refuses the request.
Table 1 shows the notations used in the pseudo-code.

1. Function SA MCOP In function SA MCOP, we first use Dijkstra’s algo-
rithm to compute the least-cost SPT rooted by s (Line 2), where the initial
solution is the path along the SPT from s to t. We then compute the new SPT
by simulated annealing (SA Dijkstra) backwards and forwards iteratively, in-
cluding (1) computing the SPT rooted by t (Line 5); (2) computing the SPT
rooted by s (Line 8). After the complete SPT is computed each time by Dijk-
stra’s algorithm or SA Dijkstra, d[.] is updated to save the newly computed
weights from each node to the root of the new SPT. On the other hand,
SA Dijkstra computes a new SPT based on the d[.] updated last time (Line
1 in function SA Relax). In addition, after a new SPT is constructed, the
path along this SPT from s to t is checked to see whether it satisfies con-
straint c (Line 3, 6 and 9). Once it does (i.e. a feasible path is found), the
algorithm seeks a least-cost path by OPT Dijkstra. If it is not feasible, we
then change the temperature T for simulated annealing to construct a new
SPT by SA Dijkstra iteratively (Line 5, 7, 8 and 10).
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OPT Cheapest()
1. ret = INFINITY ;

2. minCost = INFINITY ;
3. FOR each node v in NB

4. IF r[v] + d[v] < c //feasibility
5. IF minCost > cost[v] //optimize cost

6. ret = v
7. IF ret = INFINITY RETURN no node

8. ELSE RETURN ret
OPT Relax(u, v)

1. IF r[u] + w(u, v) + d[v] < c
2. IF cost[u] + cost(u, v) < cost[v]

3. relax v to u’s child

SA AddNode(u)
1. NB = NB − u // remove u from NB
2. SPT = SPT + u // add u to SPT
3. FOR each node v in u’s neighbor

4. IF v is not in SPT
5. NB = NB + v // add u’s neighbor

SA Relax(u, v)
1. tmp = maxk−1

l=0 (rl[v] + wl(u, v) + dl[v])/cl

2. IF g[v] > tmp // relax v to be u’s child
3. g[v] = tmp

4. r[v] = r[u] + w(u, v)
5. cost[v] = cost[u] + cost(u, v)

6. Pr[v] = u

Fig. 1. Pseudo-code of the proposed heuristic

2. Function SA Cheapest This function presents the idea of simulated an-
nealing: a non-optimal node will be selected with a certain probability and
the probability decreases to zero when temperature T decreases enough. In
the first line of SA Cheapest, maxk−1

l=0 (rl[v] + dl[v])/cl is the energy of a path
defined by Def. 1. rl[v] is the forward weight, i.e. the l′th weight of the path
from the root of the current SPT to node v. dl[v] is the backward weight, i.e.
the l′th weight of the path from node v to the root of the old SPT calculated
last time. The backward weight is saved when the old SPT is computed last
time (Line 12-13 in function SA Dijkstra). SA Cheapest first selects the least
energy g∗ of the neighbors of the current SPT (Line 1). It then computes the
energy E(v) for simulated annealing (Line 2-3), which guarantees the least
energy to be 0. Then the normal factor Z(T ) in Eq. 1 is calculated (Line
4). Finally, a node u, which will be added to the partially created SPT, is
selected according to the probability distribution in Eq. 1 (Line 5-9).

3. Function SA AddNode
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Table 1. Notations in the pseudo-code of SA MCOP

Symbol Meanings Symbol Meanings

T0 initial temperature I maximum number of iterations
E(v) the energy of node v in formula (i) Pr[v] the precedent node of node v
grad gradient for decreasing tempera-

ture
c k-dimensional constraints of a QoS

request
OPT Dijkstra
(G,s)

proposed heuristic finding the
least-cost paths rooted by s

d[u] backward weights of the path along
the old SPT from its root to u

Dijkstra (G,s) standard Dijkstra’s algorithm for
SPT rooted by s

NB the set of the neighbors of the cur-
rent SPT

u an intermediate node g[u] the energy of node u
SA Dijkstra
(G,s,T)

proposed heuristic for SPT rooted
by s based on simulated annealing

r[u] forward weights of the path along
the current SPT from its root to u

Z the normal factor in formula (i) v a child node of node u
g∗ a locally minimal energy SPT a partially created SPT

Similar to the original Dijkstra’s algorithm, when node u is added to the
partially created SPT, we use this function to change the set NB, which is
the neighborhood of node u. This includes two parts: deleting node u from
NB (Line 1), and adding u’s neighbors that are not in the current SPT to
NB (Line 3-5).

4. Function SA RelaxWe relax node v via v’s parent u. The energy of v via u
is computed (Line 1). If this new energy of v is smaller than the old one (Line
2), node v will be relaxed to use the new energy (Line 3), the forward weight
(Line 4), the cost (Line 5) and the precedent node (Line 6).

5. Function OPT Cheapest
OPT Relax In order to guarantee the feasibility of newly found optimal path,
when OPT Dijkstra chooses the least-cost node and relaxes node, it has to
check the feasibility of the new node. Only when the new potential paths
satisfy the constraint, the node on such paths can be chose or relaxed. In
OPT Cheapest, when the feasibility is guaranteed (Line 4), least-cost node is
added to the optimal SPT (Line 5-6). It should be note that, the optimal SPT
may not be a complete one that connects all of the nodes in the graph. Instead,
we only consider feasible ones marked by above SA Dijkstra or Dijkstra (Line
7). If there is no more feasible node, OPT Dijkstra returns the current optimal
path as the least-cost one.

3.3 Complexity and Parameters

Since the computation complexity of an improved Dijkstra’s algorithm only
considering the cost is O(m + nlogn), the complexity of SA Dijkstra and
OPT Dijkstra is O(km + knlogn), respectively. As a result, including the it-
eration, the overall computation complexity of SA MCOP is O(Ik(m+nlogn)),
where I is the maximum number of iterations. Because the feasibility of a path
newly found is checked before the next iteration, when most of the QoS requests
are feasible, only some of them need to iterate for multiple times. Therefore,
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the above complexity is the worst-case one. In fact, the running time of our
SA MCOP is almost independent of the maximum number of iterations.
Simulated annealing requires a new solution selected randomly enough at the

beginning, i.e. initial temperature T0 should be high enough. Because the energy
E(v) is often much less than one in SA MCOP, it suffices to set T0 = 1 to satisfy
Eq. 2 . In addition, simulated annealing also requires that when the temperature
T → 0 , all of the molecules stay in the state with the least energy. Thus, in
order to decrease the temperature quickly, we select grad = 10 according to the
geometric proportion. In this way, after 2I times of iteration, the temperature
T (2I) = 10−2I � E(v) satisfies Eq. 3. The following simulations show that such
parameters perform well.

4 Performance Evaluation

We simulate purely random network graphs with N nodes [10] and generate k
weights for each link, where wl(e) ∈ uniform[1, 1000] for l = 0, 1, · · · , k − 1
and wl(e) has no correlation for different e or l. We simulate 10 graphs withN be-
ing 50, 100 and 200, respectively. In each graph, we select the source-destination
node pair (s, t) 100 times (a particular node may be selected more than once),
where we guarantee that the minimum hop is not less than three. Each source
node s uses SA MCOP to compute the least energy path for different numbers
of iterations respectively. For performance evaluation, we use the success ratio
(SR), which is defined as the ratio of the number of requests satisfied using
a heuristic algorithm and the total number of requests generated. We first get
SR of the 100 (s, t) pairs in one graph, and then calculate the average SR of 10
graphs with same number of nodes.

4.1 The Performance with Two Constraints

The evaluation depends heavily on the generated constraints of the requests, e.g.
the distribution of constraints. Therefore, based on the normalized weights in
the whole graph, for a given request pair (s, t), we use the method of weighted
ratio simulation to generate the constraints. First, we assume that each QoS
application concerns the weight wl to al degree. Then we use Dijkstra’s algorithm
to find the path p(s, t) that minimizes the linear energy

∑k−1
l=0 alwl(s, t). Finally,

we take the weights of the path p(s, t) as the QoS constraints of the pair , i.e.
c(s, t) = w(p(s, t)).
In the case of two dimensions, we let a1 ∈ [0, 1] and a0 = 1−a1 for simplicity.

Because different QoS applications concern a weight to different degrees, we use
the following three methods to generate a. (1) NORMAL: a ∈ normal(0.5, 0.16);
(2) UNIFORM: a ∈ uniform(0, 1); (3) AB NORMAL: a ∈ normal(0, 0.16)
and a ∈ [0, 0.5]. In order to guarantee that the difference between a1 and the
expectation are less than 0.5 with the probability of 99.7%, we set the standard
deviation to be 0.16 in NORMAL and AB NORMAL distributions.
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Fig. 2. Performance evaluation with two constraints

The relation between the maximum number of iterations and the performance
of our SA MCOP is shown in Fig. 2 against H MCOP. The x-axis is the method
to generate QoS constraints, and the y-axis is the success ratio (SR) representing
the performance of heuristic routing. With only a few iterations (e.g. I = 1),
SA MCOP does not perform well. The main reason is that T0 = 1 is much greater
than energy E(v) and the strong randomicity cannot guarantee an optimal path.
With more iteration times, the performance of SA MCOP increases rapidly and
reaches almost 100%. This shows that the simulated annealing can increase the
performance of QoSR greatly.
H MCOP has different performance with different QoS constraints. The rea-

son is that when it computes the SPT for the first time, it concerns the two
weights to the same degree. Therefore, when applications concern the two weights
to the same degree (normal distribution in Fig. 2), H MCOP performs well; oth-
erwise, it will degrade, especially in the ab normal distribution. On the contrary,
our SA MCOP performs well in all conditions, including different distributions
of QoS constraints and different network scales.

4.2 Performance with Multiple Constraints

In order to study the relation between the maximum number of iterations
and the performance of SA MCOP, we use the following method to gener-
ate the constraints for a given (s, t) pair. We first take the random num-
ber bl ∈ uniform(0, 1) for l = 0, 1, · · · , k and calculate al = bl/

∑k−1
l=0 bl. We

then construct the least energy path from s to t according to the energy func-
tion g′1(p) =

∑k−1
l=0 (alwl(p)) and take the weights of the path as the constraints

of the given (s, t), i.e. c(s, t) = w(pi) .
Fig. 3 shows the performance for multiple constraints, where the x-axis is the

number of constraints and the y-axis is SR. SA MCOP performs well for large k,
while H MCOP does not. Furthermore, our SA MCOP has good scalability on
the size of network with multiple constraints.
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Fig. 3. Performance evaluation with multiple constraints

4.3 Optimization of Traditional Cost

The rigorous constraints that we generate for a given (s, t) pair in the above
experiments restrict the number of feasible paths, even to only a single one. In
order to represent the performance of optimization, we use Dijkstra’s algorithm
to find the shortest path pl w.r.t. wl for each l = 0, 1, · · · , k − 1. Then we
take random cl+1 ∈ uniform(0.8wl+1(pl), 1.2wl+1(pl)) as one element of the
constraint vector c.
We compare four heuristics in this section: H MCP, H MCOP [7], SA MCP

and SA MCOP. H MCP is a variation of H MCOP by removing the optimization
parts from H MCOP [7]. SA MCP is a variation of our SA MCOP without
optimization (i.e. in line 3, 6 and 9 SA MCOP just returns the feasible path
along the current SPT rather than compute optimal path by OPT Dijkstra).
Furthermore, SA MCP computes the shortest path w.r.t. the hop number as
the initial solution instead of the one w.r.t. cost in SA MCOP. SR relies on
the number of iteration in SA MCP and SA MCOP. Because the comparison of
optimization is meaningful with same or close SR, we adjust iteration times to
keep a close SR. In our experiments, most iteration times are one or two.
Fig. 4 shows the average performance of cost optimization. The y-axis rep-

resents the percentage of the cost reduction by other heuristics compared with
H MCP. This figure demonstrates the four points: (1) SA MCOP performs bet-
ter than H MCOP for more reduction of cost. (2) SA MCOP is much better
than SA MCP, so the optimization parts in SA MCOP algorithm are neces-
sary and efficient. (3) When k = 1, the method generating constraint c0 ∈
uniform(0.8w0(p0), 1.2w0(p0)) is so strict that there are not many feasible paths
as candidates. Therefore, for the limitation of the generation method, this figure
does not show a high reduction with k = 1. If we omit the part with k = 1, we
will find that when k increases (i.e. more weights and constraints), for the short
of feasible paths, the reduction decreases. (4) The larger the network, the more
the reduction. The reason is that in larger networks, there may be more feasible
path, where the importance of optimization is exhibited better.
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Fig. 4. Performance evaluation with two constraints

5 Conclusion

For the NP-completeness of the multi-constrained optimal QoSR problem, there
is no efficient algorithm up to now. In the paper we summarize simulated an-
nealing and propose a novel heuristic SA MCOP to the general QoSR problem
based on simulated annealing. SA MCOP first takes the least-cost SPT as the
initial solution and marks all of the nodes in the network. It then computes
a new SPT and marks the nodes again in simulated annealing mode iteratively,
until the path along the new SPT is feasible or maximum iteration time is
reached. If a feasible path is found, the heuristic then starts to optimize the
cost, where the feasibility is still guaranteed. Extensive simulations show that
SA MCOP achieves high performance with respect to both success ratio and
cost optimization. It is also scalable in both network scale and constraint num-
ber k. Furthermore, it is insensitive to the distribution of QoS constraints. In
addition, although the worst-case computation complexity is O(Ik(m+nlogn)),
which is proportional to the maximum iteration time I, the practical running
time is almost independent of I.
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