
Optimal PNNI complex node representations for restrictive costs

Ilias Iliadis*

IBM Research, Zurich Research Laboratory, Communication Systems, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
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Abstract

The Private Network-to-Network Interface (PNNI) is a scalable hierarchical protocol that allows ATM switches to be aggregated into

clusters called peer groups. To provide good accuracy in choosing optimal paths in a PNNI network, the PNNI standard provides a way to

represent a peer group with a structure called the complex node representation. It allows the cost of traversing the peer group between any

ingress and egress to be advertised in a compact form. Complex node representations using a small number of links result in a

correspondingly short path computation time and therefore in good performance. It is, accordingly, desirable that the complex node

representation contains as few links as possible. In earlier work, a method was presented for constructing the set of the optimal complex node

representations in the restrictive and symmetric cost case, under the assumption of a restricted set of optimal paths and a corresponding

minimal path computation time. Here this method is extended to constructing the set of the optimal complex node representations appropriate

for deployment in a heterogeneous environment where no uniform policy is used to derive them. These representations are not confined by a

reduced optimal path constraint, and consequently use the absolute minimum possible number of links, resulting in a minimum path

computation time.
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1. Introduction

Private Network-to-Network Interface (PNNI) is a

hierarchical, dynamic link-state routing protocol defined

by the ATM Forum for use between private ATM switches

as well as between groups of private ATM switches [1]. It is

a scalable protocol that clusters network nodes into

manageable groups called peer groups. The details of a

peer group are abstracted into one logical node. This method

can be applied recursively so that PNNI can hierarchically

aggregate network-topology state information. The hier-

archical aggregation of network-topology state information

results in a reduction of the overall complexity, and, in

particular, in a reduction of the amount of memory and time

required to compute paths through the network. The PNNI

routing hierarchy is designed to reduce this overhead while

providing efficient routing.

To provide good accuracy in choosing optimal paths in a

PNNI network, the PNNI standard provides a way to

represent a peer group with a structure called the complex

node representation. The complex node representation

allows the cost of traversing the corresponding logical

node to be advertised, which represents the cost of

traversing the summarized peer group. An alternative

representation using a spanning tree structure was presented

in Refs. [2,3]. A method to generate a complex node

representation corresponding to a given peer group has been

specified in Ref. [4] for the case of symmetric and restrictive

costs, such as available bandwidth. Both this and the

spanning tree representation are exact representations in that

they capture the full details of the underlying peer group

topology. However, representations that are not necessarily

exact can be obtained based on the methods presented in

Refs. [5–9]. These works consider symmetric and restric-

tive as well as additive costs, such as delay, whereas the case

of asymmetric costs is treated in Ref. [10]. An approach for

determining the parameters of complex node represen-

tations satisfying various optimal objective functions is

presented in Ref. [11].

In order to facilitate the path selection algorithm and

minimize the path computation time, it is desirable that the

complex node representation contains as few links as

possible. Furthermore, for efficiency reasons and in order to
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reduce the topology update flooding in PNNI, complex node

representations are not computed every time a cost change

occurs, but only at the instants when significant changes

take place. The issue of how to generate optimal complex

node representations at these instants, in the case of

symmetric and restrictive costs, and under the assumption

of minimal path computation time was addressed in Ref. [4].

Each state parameter associated with a link was assumed to

be the same in both directions of the link. Restrictive costs

correspond to the case where the measure of interest is, for

example, the available bandwidth. The complex node

representations obtained were exact and optimal (in the

sense that they used the minimum number of links) within

the class of complex node representations for which the path

computation time is minimal. More specifically, the

complex node representations belonging to this class had

the property that a restricted set of two paths in the

representation (namely, either a one-hop path using an

exception bypass or a two-hop path obtained by the

concatenation of two spokes) always contained an optimal

path. Because an optimal path can be identified by

considering only these two paths, we shall refer to this

class of representations as restricted optimal path complex

node representations. Note that these representations were

developed for deployment in the context of a homogeneous

environment, where all representations belong to the same

class and all have the same properties.

Unlike in a homogeneous environment, in a hetero-

geneous environment every peer group is allowed to use its

own policy to determine the corresponding complex node

representation. In such an environment, therefore, there are

no means of knowing whether complex node represen-

tations belong to the above-mentioned class or not. By

assuming that they all belong to this class, the final outcome

may be a path that is locally optimal at some peer groups but

globally sub-optimal owing to the lack of a uniform policy

in deriving complex node representations. More specifi-

cally, for an arbitrary complex node representation, one of

the two paths described above may not necessarily be an

optimal one. Consequently, all possible paths should be

considered in order to identify the optimal one, which means

that the minimal path computation time property of the

restricted optimal path complex node representations can no

longer be exploited. As a result, when these representations

are used in a heterogeneous environment, the benefit of

minimizing the path computation time vanishes. As all paths

should be considered, again to facilitate the path selection

algorithm and minimize the path computation time, it is

desirable that the complex node representation obtained

contains as few links as possible, albeit without the

restriction on optimal paths imposed in Ref. [4]. Removing

this restriction, on the one hand, increases the set of paths

and, consequently, the path computation time compared

with the case of a homogeneous environment, whereas on

the other hand it potentially decreases the number of links

required by an exact optimal complex node representation

as the set of complex node representations increases.

Therefore, in the context of a heterogeneous environment,

this will result in a decreased path computation time

compared with the time required when the restricted optimal

path complex node representations are deployed.

This paper presents a method for constructing the set of

the optimal complex node representations, which are not

confined by a reduced path constraint, and consequently use

the absolute minimum possible number of links. Similarly

to the method developed in Ref. [4], the establishment of the

optimal substructure property of the optimal complex node

representations is central to the development of this method.

This implies that the optimal solution to the original

problem is derived from the optimal solutions of appro-

priately identified sub-problems. In Section 2, the basic

definitions of node representations in the context of PNNI

are given, and the notions related to the cost transition

matrix are briefly reviewed. In Section 3, the notion of the

group evolution process is reviewed, and the concept of the

spanning line representation is introduced. The basic

definitions associated with the complex node represen-

tations are given in Section 4, and the method for

constructing the set of the optimal complex representations

is derived in Section 5. Section 6 presents a numerical

example, whereas Section 7 contains the derivation of the

bounds on the number of links of the resulting set of optimal

complex node representations.

2. PNNI node representations

A key feature of the PNNI protocol is the ability to

cluster network nodes into manageable groups called peer

groups. This concept is illustrated schematically in Fig. 1.

The PNNI peer group shown is composed of six nodes.

Nodes 1–4 are called border nodes because they connect

the peer group to other peer groups.

ATM is a source routing technology. To enable source

route computation and to support end-to-end QoS (for

example the required bandwidth), the nodes must

maintain information about the network-topology. PNNI

thus defines a system for the creation and distribution of

topology data within a network so that each node can

maintain a topology database, which defines its view of

the network. This allows nodes to select paths for routing

calls through the network, and to perform alternative

routing in the case of link failure.

The topology data required for path selection and

routing may include not only details of the layout of

nodes and links but also QoS parameters as mentioned

above. For example, a call to be routed over the network

may require a certain bandwidth. In this case, knowledge

of the available bandwidth of links in the network is

required to determine if a call can be established

successfully. To allow such parameters to be taken into

account, costs can be associated with links and paths in
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the network. The cost of a link is expressed as an

arbitrary value determined as some function of the

parameter, e.g. available bandwidth about which knowl-

edge is required. Whatever be the particular function

employed, according to convention it is usual for the cost

to be defined such that the lower the cost the better the

link. In the case of bandwidth, for example, the cost C

of a link may be defined as the inverse of the (available)

bandwidth (i.e. C ¼ 1=bandwidth), or as the difference

C ¼ ðconstantÞ2 bandwidth; with the constant being

equal to the maximum bandwidth of all the links [4].

A path in the network, involving multiple links, can

be measured by a restrictive cost. According to the

definition of restrictive cost, the weakest link in a path

defines the restrictive cost of the path. Thus, when

convention is followed such that a higher cost corre-

sponds to a weaker link, the restrictive cost of a path

will be determined by the maximum of the costs of the

constituent links.

To allow such costs to be taken into account in the

path selection process, PNNI provides a way to represent

a peer group as a logical group node called complex

node representation. As discussed further below, a peer

group can be modeled by an orientated graph in which a

node of the peer group is referenced as a vertex of the

graph, and a link between nodes is referenced as an edge

between two vertices of the graph. As shown in Fig. 1, a

complex node representation consists of a number of

vertices corresponding to the border nodes of the peer

group, as well as a nucleus vertex. The nucleus is

connected to the border vertices through spokes, and

optionally, border vertices can be directly connected by

exception bypasses.

The complex node representation is derived using a

set of restrictive costs for the peer group which is usually

presented in the form of a cost matrix known as the

transition matrix for the peer group. The transition

matrix defines the restrictive costs of optimal (lowest-

cost) paths between all pairs of border nodes in the peer

group. Let MNðCÞ be the cost transition matrix

corresponding to a peer group containing N border

vertices b1;…; bN ;

MNðCÞ ¼

0 c1;2 · · · c1;N

c2;1 0

..

. ..
. . .

. ..
.

cN21;N

cN;1 · · · cN;N21 0

2
66666666664

3
77777777775

where ci;j denotes the cost of the optimal path between

the border vertices bi and bj: Owing to the cost

symmetry, this matrix is symmetric.

The complex node representation, derived on the basis of

the transition matrix, indicates the cost of traversing the peer

group, and therefore allows such costs to be taken into

account for path selection purposes. In particular, there may

be many possible complex node representations correspond-

ing to a given transition matrix and hence a given peer

group. In order to minimize the path computation time,

which is closely related to the connectivity of the complex

node representation, it is desirable that the complex node

representation is optimized as far as possible by minimizing

the number of its edges. Note that, because the number of

spokes is fixed and equal to the number of border nodes,

minimizing the number of edges is equivalent to minimizing

the number of exception bypasses. However, it is also

important to ensure that the resulting representation

accurately reflects the transition matrix.

3. Matrix properties

In this section we briefly review the notion of the group

evolution process introduced in Ref. [4]. This process is of

significant interest because as shown in Section 5, it is

closely coupled with the structure of the optimal complex

node representations. A detailed numerical example illus-

trating the group evolution process is presented in Section 6.

Furthermore, we briefly review the spanning tree represen-

tation [3] and then introduce the spanning line represen-

tation obtained from the group evolution process. As shown

Fig. 1. Peer group and complex node representation.
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in Section 5, these representations are used to derive the

optimal complex node representations.

3.1. Group evolution process

Let cminðcmaxÞ be the minimum (maximum) transition

cost corresponding to the transition matrix MNðCÞ: For-

mally,

cmin ¼ min
;ði;jÞ
i–j

{ci;j}; cmax ¼ max
;ði;jÞ
i–j

{ci;j}: ð1Þ

Also let F be the number of different entry costs contained

in matrix MNðCÞ in increasing order:

cmin ¼ C1 , C2 , · · · , Ck , · · · , CF ¼ cmax: ð2Þ

According to the group evolution process, the values of the

restrictive costs in the transition matrix are considered in the

order specified above. At the kth iteration, the set Gk of

groups Gð1Þ
k ;…;G

ðgkÞ
k corresponding to the cost Ck is

obtained. A typical such group GðmÞ
k ð1 # m # gkÞ is

characterized by the following properties:

;ðni; njÞ : ni [ GðmÞ
k ; nj [ GðmÞ

k it holds that ci;j # Ck; ð3Þ

and

;ðni; nj; npÞ : ni [ GðmÞ
k ; nj [ GðmÞ

k ; np � GðmÞ
k

it holds that ci;p ¼ cj;p . Ck: ð4Þ

The first, second and last iteration of the group evolution

process are schematically depicted in Fig. 2.

3.2. Spanning tree and spanning line representations

For a network consisting of N border nodes, any

representation connecting all of the N nodes uses at least

N 2 1 links. An accurate representation can be obtained

using a spanning tree consisting of N 2 1 links [3].

Obviously, this representation is optimal because it uses

the minimum possible number of links. In this section we

demonstrate that the group evolution process always allows

us to obtain an optimal representation using a spanning line.

Also note that a spanning line is a special degenerate case of

a spanning tree.

First, we consider the G1 set consisting of the groups

Gð1Þ
1 ;…;G

ðg1Þ
1 : The nodes contained in a typical such group

GðmÞ
1 ð1 # m # g1Þ are ordered (in any sequence) and

connected serially by links whose cost is equal to C1: This

formation constitutes a line connecting the intermediate

nodes to the two extreme nodes selected. Next, we consider

the G2 set consisting of the groups Gð1Þ
2 ;…;G

ðg2Þ
2 : The nodes

contained in a typical such group GðmÞ
2 ð1 # m # g2Þ are

ordered (in any sequence) and connected serially by links

whose cost is equal to C2: Nodes belonging to a G
ðjÞ
1 group

are considered as a single entity and are connected to their

neighboring nodes through the two extreme nodes. This

formation constitutes a spanning line connecting the nodes

considered. This procedure is applied repeatedly until all the

nodes are connected. Fig. 3 shows the spanning line

corresponding to the group evolution process depicted in

Fig. 2.

4. Complex node representation

Let RðMNðCÞÞ be a complex node representation

corresponding to the matrix MNðCÞ: Let ak denote the cost

of the spoke associated with the node nk; and bi;j the cost of

the bypass associated with the pair of nodes ðni; njÞ as shown

in Fig. 4. In order to reduce the path computation time in a

homogeneous environment, Iliadis [4] considered the class

of restricted optimal path complex node representations for

which it holds that the optimal path can be either the direct

exception bypass (if it exists), or the path through

Fig. 2. Group evolution. Fig. 3. Spanning line representation.
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the nucleus, i.e.

ci;j ¼
minðbi;j;maxðai; ajÞÞ if bi;j exists;

maxðai; ajÞ otherwise;

(
;i; jð1 # i – j

# NÞ:

In the present paper, the above restriction is removed. From

the definition of the transition matrix it follows that the cost

ci;j is the minimum of the costs of all possible paths

connecting nodes ni and nj: Therefore, in order to find the

cost ci;j; a search of all possible paths connecting nodes ni

and nj should be conducted. In particular, considering the

direct path through the exception bypass (if it exists), and

the path through the nucleus, yields

ci;j #
minðbi;j;maxðai; ajÞÞ if bi;j exists;

maxðai; ajÞ otherwise;

(
;i; jð1 # i

– j # NÞ: ð5Þ

Let BðRÞ denote the number of exception bypasses used by

the complex node representation R: Note that there may be

several complex node representations corresponding to a

given cost matrix. One complex node representation, for

example, could be the following:

Rmax : ai ¼ 1; ;ið1 # i # NÞ

and bi;j ¼ ci;j; ;i; jð1 # i – j # NÞ:

This representation uses exception bypasses for all pairs of

nodes. Consequently, the number of exception bypasses

used is the maximum possible and is equal to BðRmaxÞ ¼

NðN 2 1Þ=2: Another complex node representation with a

smaller number of exception bypasses is obtained by

making use of the spanning line representation. Exception

bypasses are used to connect only the neighboring nodes jk
and jkþ1 on the line:

Rs_line : ai ¼ 1; ;ið1 # i # NÞ

and bjk ;jkþ1
¼ cjk ;jkþ1

; ;kð1 # k # N 2 1Þ:

Consequently, the number of exception bypasses used is

equal to BðRs_lineÞ ¼ N 2 1: Our aim is to obtain

a representation with a reduced number of exception

bypasses.

As mentioned previously, the restricted optimal path

complex node representations have the property that a

restricted set of paths in the representation, specified a

priori, always contains an optimal path. The set of paths was

restricted to two paths, either a one-hop path using an

exception bypass or a two-hop path obtained by the

concatenation of two spokes. Removing this restriction on

optimal paths, it potentially decreases the number of

exception bypasses required by an exact optimal complex

node representation as the set of complex node represen-

tations increases. This issue is addressed in Section 5.

5. Optimal complex node representations

In this section we establish the optimal substructure

property of the optimal complex node representations,

expressed by Theorem 2, which is key to deriving the method

for obtaining them. We show that, as in the restricted case, in

the unrestricted case the optimal substructure nature of the

optimal complex node representations is also closely coupled

with the group evolution process.

Let SR be the set of all possible complex node

representations R associated with the cost matrix MNðCÞ:

Our aim is to find the set of complex node representations

Rmin that use the minimum possible number of exception

bypasses, as well as to determine this number denoted by

Bmin: Thus,

Bmin ¼ min
R[SR

{BðRÞ}; ð6Þ

and

BðRminÞ ¼ Bmin: ð7Þ

Clearly,

0 # Bmin # BðRs_lineÞ ¼ N 2 1 # BðRmaxÞ

¼
NðN 2 1Þ

2
: ð8Þ

Furthermore, given that the class considered in Ref. [4] is a

subset of the set of all possible complex node represen-

tations, the derived minimum number Brestricted
min in Ref. [4]

constitutes an upper bound on the minimum number Bmin:

First, the properties of an optimal complex representation

are identified by the following lemmas.

Lemma 1. In an optimal complex node representation Rmin;

for all pairs of nodes ðni; njÞ for which an exception bypass

exists, it holds that

ci;j ¼ bi;j and ci;j , maxðai; ajÞ: ð9Þ

Proof. See Appendix A. A

Fig. 4. Complex node representation.
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Remark 1. Note that in the optimal complex node

representations, if an exception bypass exists, then it

constitutes an optimal path between the corresponding

adjacent nodes.

Lemma 2. In an optimal complex node representation Rmin;

there exists node ni such that

ai # cmax ¼ CF : ð10Þ

Proof. See Appendix A. A

Next we will show that the structure of an optimal

complex node representation is closely coupled with the

group evolution process. Let us consider the kth iteration of

the process in which groups corresponding to the cost Ck are

formed. Let us focus on one typical group G belonging to

the set Gk; and let us assume that it contains the groups

S1;…; Sm;…; SQ; as shown in Fig. 5. We will demonstrate

that in order to obtain the optimal complex node

representation of G; knowledge of the optimal complex

node representations of the groups S1;…; Sm;…; SQ is

required.

Let us introduce the following definitions:

RminðGÞ an optimal complex node representation corre-

sponding to the nodes contained in G;

BminðGÞ the number of exception bypasses used in RminðGÞ;

lSml the number of nodes contained in the group Sm;

RminðSmÞ an optimal complex node representation corre-

sponding to the nodes contained in Sm;

BminðSmÞ the number of exception bypasses used in

RminðSmÞ:

Based on the properties (3) and (4) of the group evolution

process, the following two lemmas can be established:

Lemma 3. For every pair of nodes ðni; njÞ belonging to the

same group Sm; it holds that ci;j , Ck:

Lemma 4. For every pair of nodes ðni; njÞ belonging to two

different groups of G (that is ni [ Sm; nj [ Sf ; m – f ), it

holds that ci;j ¼ Ck:

Next we explore the structure of RminðGÞ with the

following theorems.

Theorem 1. There is no exception bypass between any pair

of nodes belonging to two different groups.

Proof. See Appendix A. A

Theorem 2. In RminðGÞ;

(a) There exist exactly Q 2 1 groups, denoted by

S1;…; Sm21; Smþ1;…; SQ; having the following proper-

ties. In each one of these groups, there exists at least

one node for which the cost of its spoke is equal to Ck;

whereas the cost of the spokes of the remaining nodes

of the group is at least Ck: Furthermore, the complex

node representation corresponding to the nodes of

group Sm is an optimal one.

(b) The nodes within each of the Q 2 1 groups are

connected by exception bypasses so as to form

spanning trees or spanning lines.

(c) It holds that

BminðGÞ ¼ min
1#j#Q

BminðSjÞ þ
XQ
i¼1
i–j

gðlSilÞ

8>><
>>:

9>>=
>>;; ð11Þ

where

gðxÞ W x 2 1; ð12Þ

and the group Sm is identified by the following relation:

BminðSmÞ þ
XQ
i¼1
i–m

gðlSilÞ ¼ BminðGÞ: ð13Þ

If more than one group satisfies Eq. (13), group Sm can

be either one of them.

(d) For every pair of nodes ðni; njÞ; there exists an optimal

path connecting them containing at most two spokes.

Proof. See Appendix A. A

Remark 2. The PNNI specification requires that a path

through a logical node be obtained from a concatenation of

any number of exception bypasses and at most two spokes in

the complex node representation [1]. From Theorem 2, part

(d), it follows that the optimal complex node representations

satisfy this requirement.

5.1. Method for generating the optimal complex node

representations

From Theorem 2 it follows that in order to obtain the

optimal set of complex node representations RminðGÞ;Fig. 5. Optimal complex node representation.
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knowledge of the quantities RminðSmÞ and BminðSmÞ corre-

sponding to each one of the groups S1;…; Sm;…; SQ

contained in the group G is required.

5.1.1. Algorithm for deriving the set of optimal complex

node representations RminðGÞ description

a. The minimum number of exception bypasses corre-

sponding to the optimal set of complex node

representations is given by

BminðGÞ ¼ min
1#j#Q

BminðSjÞ þ
XQ
i¼1
i–j

ðlSil2 1Þ

8>><
>>:

9>>=
>>;:

b. Let Sm be a group (there exists at least one such group)

that satisfies the following relation:

BminðSmÞ þ
XQ
i¼1
i–m

ðlSil2 1Þ ¼ BminðGÞ:

c. Set the cost of the spokes corresponding to the nodes

contained in the remaining Q 2 1 groups,

S1;…; Sm21; Smþ1;…; SQ; in a way such that, in each

one of these groups, there exists at least one node for

which the cost of its spoke is equal to Ck; whereas the

cost of the spokes of the remaining nodes of the group

is at least Ck:

d. Connect the nodes within each of the Q 2 1 groups by

exception bypasses so as to form spanning trees or

spanning lines.

e. Transfer the optimal complex representation of the

group Sm; comprised of spokes and bypasses, onto the

corresponding component of RminðGÞ:

The set of optimal complex node representations

corresponding to the cost matrix MNðCÞ is obtained as

follows. Starting at the lowest level, we follow the group

evolution process based on the sorted cost entries cmin ¼

C1 , C2 , · · · , CF ¼ cmax: In a typical step k; the node

groups Gð1Þ
k ;…;G

ðgkÞ
k related to the cost Ck are identified, and

the corresponding set of optimal complex node represen-

tations is constructed by applying the above algorithm. In

the final step, the optimal complex node representation

sought is obtained, corresponding to the last group that

contains all the nodes.

6. Numerical example

Let us consider the following cost matrix M7ðCÞ also

considered in Ref. [4].

In this case we have: cmin ¼ C1 ¼ 3; C2 ¼ 4; C3 ¼ 6;

C4 ¼ 7; and cmax ¼ C5 ¼ 8:

The group evolution process corresponding to this matrix

is schematically shown in Fig. 6. Fig. 7 depicts the Rs_line

complex node representation obtained by making use of the

spanning line representation as discussed in Section 4.

M7ðCÞ ¼

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

3

7

7

8

8

8

2
66666666666666664

3

0

7

7

8

8

8

7

7

0

4

8

8

8

7

7

4

0

8

8

8

8

8

8

8

0

4

6

8

8

8

8

4

0

6

8

8

8

8

6

6

0

3
77777777777777775

An optimal complex node representation is obtained in

the following steps by applying the method described in

Section 5.

Step 1:

C1 ¼ 3;

Gð1Þ
1 ¼ {n1; n2};

BminðG
ð1Þ
1 Þ ¼ 0;

RminðG
ð1Þ
1 Þ : ðx # 3Þ:

Step 2:

C2 ¼ 4;

Gð1Þ
2 ¼ {n3; n4};

Fig. 6. Numerical example (group evolution process).

Fig. 7. Rs_line complex node representation.

I. Iliadis / Computer Communications xx (2003) xxx–xxx 7

ARTICLE IN PRESS



BminðG
ð1Þ
2 Þ ¼ 0;

RminðG
ð1Þ
2 Þ : ðy # 4Þ:

Gð2Þ
2 ¼ {n5; n6};

BminðG
ð2Þ
2 Þ ¼ 0;

RminðG
ð2Þ
2 Þ : ðz # 4Þ:

Step 3:

C3 ¼ 6;

Gð1Þ
3 ¼ Gð2Þ

2 < {n7} ¼ {n5; n6; n7};

BminðG
ð1Þ
3 Þ ¼ min{BminðG

ð2Þ
2 Þ þ 0; 0 þ 1} ¼ 0;

RminðG
ð1Þ
3 Þ : ðz # 4Þ:

Step 4:

C4 ¼ 7;

Gð1Þ
4 ¼ Gð1Þ

1 < Gð1Þ
2 ¼ {n1; n2; n3; n4};

BminðG
ð1Þ
4 Þ ¼ min{BminðG

ð1Þ
1 Þ þ 1;BminðG

ð1Þ
2 Þ þ 1} ¼ 1;

RminðG
ð1Þ
4 Þ :

ðx # 3Þ

ðw $ 7Þ
:

Step 5:

C5 ¼ 8;

Gð1Þ
5 ¼ Gð1Þ

3 < Gð1Þ
4 ¼ {n1; n2; n3; n4; n5; n6; n7};

BminðG
ð1Þ
5 Þ ¼ min{BminðG

ð1Þ
3 Þ þ ð4 2 1Þ;BminðG

ð1Þ
4 Þ þ ð3 2 1Þ}

¼ min{0 þ 3; 1 þ 2} ¼ 3;

RminðG
ð1Þ
5 Þ :

ðx # 3Þ

ðw $ 7Þ

ðq $ 8Þ

ðs $ 8Þ

:

The obtained optimal complex node representation uses

three exception bypasses. Note that the representation

obtained actually represents a set of optimal complex

node representations because the n1; n3; n5; and n6 spokes

can assume a range of values. Note also that in step 4, the

exception bypass used to connect nodes n3 and n4 could

instead have been used to connect nodes n1 and n2; resulting

in another set of optimal complex node representations.

Remark 3. Comparing the optimal complex node represen-

tation obtained above with that obtained in Ref. [4] reveals

that the representation obtained in Ref. [4] uses an

additional exception bypass to connect nodes n5 and n7

because of the restriction imposed on optimal paths. As

expected, removing the restriction on optimal paths results

in an optimal complex node representation with fewer

exception bypasses (three instead of four). The exception

bypass between nodes n5 and n7 is no longer needed as the

optimal cost of 6 is derived from the path n5 ! n6 ! n7:

7. Bounds on the number of exception bypasses

In this section we derive the bounds on the number of

exception bypasses used by the optimal complex node

representations. We also determine the cost matrices that

result in optimal complex node representations with a

number of bypasses equal to these bounds.

In Section 6 we have shown how to construct an optimal

complex representation RminðMNðCÞÞ corresponding to the

cost matrix MNðCÞ using the least possible number of

exception bypasses denoted by BðRminðMNðCÞÞÞ: Let us now

consider all the possible cost matrices corresponding to N

border nodes and define:

aðNÞ W min
MN ðCÞ

{BðRminðMNðCÞÞÞ};

and bðNÞ W max
MN ðCÞ

{BðRminðMNðCÞÞÞ}:

ð14Þ

From Eq. (8) it follows that both of these quantities exist and

it holds that

0 # aðNÞ # BðRminðMNðCÞÞÞ # bðNÞ

# N 2 1; ;MNðCÞ: ð15Þ

A cost matrix MNðCÞ is called minimal if BðRminðMNðCÞÞÞ ¼

aðNÞ: Similarly, a cost matrix MNðCÞ is called maximal if

BðRminðMNðCÞÞÞ ¼ bðNÞ: Let {MNðCminÞ} and {MNðCmaxÞ}

denote the sets of the minimal and maximal cost matrices,

respectively.

7.1. Lower bound

Theorem 3. It holds that

aðNÞ ¼ 0; ;NðN $ 2Þ: ð16Þ

The group evolution process corresponding to the cost

matrix MNðCminÞ is shown in Fig. 8.
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Proof. The proof is identical to that given in Section VIII.A

of Ref. [4] and is therefore omitted. Also note that although

in Ref. [4] the function gðxÞ is differently defined, the proof

still holds because the equation gðxÞ ¼ 0 has the same root

x ¼ 1 in both cases. A

7.2. Upper bound

Let MNðCmaxÞ be a maximal cost matrix so that

BðRminðMNðCmaxÞÞÞ ¼ bðNÞ: In this section we determine

the value of bðNÞ; given by Theorem 7, and identify the

structure of the corresponding group evolution process. We

begin by defining the function

hðNÞ W gðNÞ2 bðNÞ; ;N: ð17Þ

Some basic properties of the functions hðNÞ and bðNÞ are

established in Appendix B.

Let us now consider the last iteration of the process in

which groups corresponding to the cost cmax are formed.

According to the group evolution process, the last group G

containing all the N nodes consists, in general, of Q groups

denoted by S1;…; SQ; as shown in Fig. 5. Let SQ represent the

group evolution set {S1;…; SQ}; with lSQl W
PQ

i¼1 lSil ¼ N;

assuming, without loss of generality, that

lS1l # lS2l # · · · # lSQl: ð18Þ

Let {MNðCðSQÞÞ} represent the set of cost matrices that

result in the above group evolution set. From Ref. [4] it

holds that

bðNÞ ¼ max
SQ

{bðNlSQÞ}; for lSQl ¼ N; ð19Þ

with

bðNlSQÞ W max
MN[{MN ðCðSQÞÞ}

{BminðMNÞ}: ð20Þ

A set SQp is a maximal group evolution set if and only if

bðNlSQp Þ ¼ bðNÞ: Also {MNðCmaxðSQÞÞ} denotes the subset

of {MNðCðSQÞÞ} containing the cost matrices MN for which

it holds that BminðMNÞ ¼ bðNlSQÞ: We proceed by establish-

ing the following theorems based upon which the result

sought is obtained. Their proof is given in Appendix B.

Theorem 4. For a group evolution set SQ with lS1l #
lS2l # · · · # lSQl; it holds that

bðNlSQÞ ¼ bðlSQlÞ þ
XQ21

i¼1

gðlSilÞ: ð21Þ

A cost matrix MN belongs to the set {MNðCmaxðSQÞÞ} if and

only if it satisfies the following conditions:

BminðSQðMNÞÞ ¼ bðlSQlÞ; ð22Þ

and

BminðSjðMNÞÞ $ bðlSQlÞ2 gðlSQlÞ þ gðlSjlÞ; ;j; 1 # j

# Q 2 1; ð23Þ

with SjðMNÞ denoting the cost matrix corresponding to the

nodes contained in group Sj:

Proof. Immediate from Remark 2 of Ref. [4] and Lemma 6

of Appendix B. A

Remark 4. Note that for lSjl , lSQl and by virtue of Eqs.

(14), (17) and (B6), Eq. (23) yields bðlSjlÞ $
BminðSjðMNÞÞ $ bðlSQlÞ2 gðlSQlÞ þ gðlSjlÞ:

Remark 5. Note that if a cost matrix MN ðMN [
{MNðCðSQÞÞ}Þ satisfies the following conditions

BminðSjðMNðCðSQÞÞÞÞ ¼ bðlSjlÞ; ;j; 1 # j # Q; by virtue of

Remark 4, it also satisfies the conditions (22) and (23) and it,

therefore, belongs to the set {MNðCmaxðSQÞÞ}:

Corollary 1. For a maximal group evolution set SQp with

lS1l # lS2l # · · · # lSQp l; it holds that

bðNÞ ¼ bðNlSQp Þ ¼ bðSQpÞ þ
XQp21

i¼1

gðlSilÞ: ð24Þ

Proof. Immediate from Eq. (21). A

Lemma 5. The sequence bðNÞ is increasing in N; i.e. bðN 2

1Þ # bðNÞ; ;N:

Proof. The proof is identical to the proof of Lemma 10 in

Ref. [4] and is therefore omitted. A

Next we establish the following theorems based upon

which the result sought is obtained.

Theorem 5. For a maximal group evolution set SQp ; it holds

that Qp # 3:

Proof. The proof is identical to the proof of Theorem 6 in

Ref. [4] and is therefore omitted. Note that this proof uses

Lemmas 11 and 12, both of which hold in our case. The

proof of Lemma 12 remains the same, whereas the proof of

Lemma 11 needs to be modified by considering the new

function gðxÞ and replacing the last term bðNÞ þ lS1llS2l
with the term bðNÞ þ 1: A

Fig. 8. Group evolution process corresponding to the cost matrix MN ðCmin).
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Theorem 6. There always exists a maximal group evolution

set SQp ; with Qp ¼ 2:

Proof. The proof is identical to the proof of Theorem 7 in

Ref. [4] and is therefore omitted. A

Theorem 7. It holds that

bðNÞ ¼ N 2 1 2 dlog2 Ne; with bðN 2 kÞ þ gðkÞ

¼

bðNÞ2 1; 1 # k , N 2 2blog2ðN21Þc
;

bðNÞ; N 2 2blog2ðN21Þc # k #
N

2

� �
:

8><
>: ð25Þ

Proof. The proof is given in Appendix B. A

The values of the function bðNÞ for N # 60 are listed in

Table 1.

Corollary 2. A set S2 with lS2l ¼ N and lS1l # lS2l is a

maximal group evolution set if and only if N 2 2blog2ðN21Þc #

lS1l # bN=2c:

Proof. Immediate from Eqs. (21), (24) and (25). A

Remark 6. In Ref. [4] it was shown that, in the case of

restricted optimal path complex node representations, the

upper bound on the number of exception bypasses grows

quadratically in the number of border nodes. Removing the

restriction on optimal paths results in an upper bound, which

grows linearly in the number of nodes. In the case of a

heterogeneous environment, this results in a decreased path

computation time compared with the time required when the

restricted optimal path complex node representations are

deployed.

Next we shall show that the group evolution process

shown in Fig. 9 corresponds to a maximal cost matrix MN [
{MNðCmaxÞ}: According to Corollary 2, the choice lS1l ¼
bN=2c and lS2l ¼ dN=2e corresponds to a maximal group

evolution set. According to Remark 5, for the cost matrix

MN to be maximal it suffices the cost matrices correspond-

ing to the two groups S1 and S2 to also be maximal. This is

ensured by the nested form of the group evolution process

owing to the repeated application of this choice.

The proof of the following theorems is given in

Appendix B.

Theorem 8. The equation bðNÞ ¼ bðN þ 1Þ is satisfied if

and only if N ¼ 2k; k ¼ 0; 1;…:

Theorem 9. A maximal group evolution set S3 exists if and

only if N lies in the range 2k þ 1 # N # 3·2k21; k ¼

1; 2;…:

Corollary 3. By using the optimal complex node represen-

tation instead of the Rs_line representation, the savings in

terms of the number of exception bypasses used is between

dlog2 Ne=ðN 2 1Þ and 100%.

Proof. Immediate from Eqs. (15), (16) and (25). A

Corollary 4. As N increases, the number of exception

bypasses required is negligible compared to the maximum

possible, i.e.

lim
N!1

bðNÞ

NðN 2 1Þ=2
¼ 0:

Proof. Immediate from Eq. (25). A

Table 1

Upper bound values bðNÞ

N bðnÞ N bðnÞ N bðnÞ N bðnÞ N bðnÞ N bðnÞ

1 0 11 6 21 15 31 25 41 34 51 44

2 0 12 7 22 16 32 26 42 35 52 45

3 0 13 8 23 17 33 26 43 36 53 46

4 1 14 9 24 18 34 27 44 37 54 47

5 1 15 10 25 19 35 28 45 38 55 48

6 2 16 11 26 20 36 29 46 39 56 49

7 3 17 11 27 21 37 30 47 40 57 50

8 4 18 12 28 22 38 31 48 41 58 51

9 4 19 13 29 23 39 32 49 42 59 52

10 5 20 14 30 24 40 33 50 43 60 53

Fig. 9. A maximal group evolution set corresponding to the cost matrix

MN ðCmax) with N ¼ 2k :
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8. Conclusions

The complex node representation is an important topic in

the context of the PNNI protocol. It allows the cost of

traversing the peer group to be advertised in a compact

form. Complex node representations using a small number

of links result in a reduced amount of path computation time

and in improved performance. In this paper, we considered

the case of an efficient deployment of complex node

representations in a heterogeneous environment. The

method for constructing the set of the optimal complex

node representations for restrictive and symmetric costs was

presented. This method yields representations that use the

minimum possible number of links and, as it turns out, result

in significant savings compared with the previously

developed restricted optimal path complex node represen-

tations. The derivations of optimal complex node represen-

tations in the cases of asymmetric and additive costs are

topics for further investigation.

Appendix A. Properties of the optimal complex node

representations

Proof of Lemma 1. For the purpose of contradiction,

suppose that ci;j , bi;j: This implies that the optimal path

from ni to nj does not include bypass bi;j and, therefore, this

bypass can be deleted without affecting the cost. This,

however, results in another representation with fewer

bypasses, contradicting the assumption that Rmin is optimal.

Consequently, ci;j $ bi;j and from Eq. (5) it follows that

ci;j ¼ bi;j: Suppose now that maxðai; ajÞ ¼ ci;j: This also

leads to contradiction because it implies that the bypass bi;j

can be deleted without affecting the cost. Consequently,

maxðai; ajÞ . ci;j ¼ bi;j and this completes the proof of

Lemma 1. A

Proof of Lemma 2. Suppose on the contrary that ak . cmax

for all nodes nk: Obviously, there exists bypass with bi;j ¼

cmax; for otherwise ci;j – cmax ;ðni; njÞ: Note that reducing

the cost of both spokes from ai and aj to cmax does not affect

the cost between any pair of nodes and it therefore results in

another optimal representation. Furthermore, maxðai; ajÞ ¼

cmax; contradicting Eq. (9). A

Proof of Theorem 1. Suppose on the contrary that there

exists exception bypass bi;j connecting nodes ni and nj

with ni [ Sm; nj [ Sf ; m – f : From Eq. (9) and

Lemma 4, it follows that Ck ¼ ci;j , maxðai; ajÞ: Let us

assume, without loss of generality, that ai . Ck: Note

that reducing the cost of this spoke from ai to Ck; and, in

the case where aj . Ck; the cost of the spoke nj from aj

to Ck; does not affect the cost between any pair of nodes

and it therefore results in another optimal representation.

Furthermore, it holds that maxðai; ajÞ ¼ Ck ¼ ci;j contra-

dicting Eq. (9). A

Proof of Theorem 2. (a) First we shall show that there can

be at most one group that contains nodes for which the cost

of spokes is less than Ck: Suppose on the contrary that there

exist two groups Sm and Sf and nodes ni ðni [ SmÞ and nj

ðnj [ Sf Þ; such that the cost of the spokes associated with

these nodes is less than Ck; i.e. ai , Ck and aj , Ck: It now

follows that ci;j # maxðai; ajÞ , Ck; which contradicts

Lemma 4. We have shown that there exist at least Q 2 1

groups, denoted by S1;…; Sm21; Smþ1;…; SQ; for which the

cost of the spokes of the nodes contained in these groups is

at least Ck: For the purpose of contradiction, suppose that

there exists among them group Sf with the costs of all the

spokes corresponding to its nodes being greater than Ck; and

let us consider node nj belonging to this group and node ni

belonging to a different group. From Theorem 1, it follows

that all paths connecting nj to ni go over the nucleus and,

therefore, contain a spoke whose cost exceeds Ck: This

implies that ci;j . Ck; contradicting Lemma 4. Conse-

quently, in each of the Q 2 1 groups, there exists at least one

node for which the cost of its spoke is equal to Ck:

Next, we shall show that the complex node representation

corresponding to the group Sm is optimal. Suppose on the

contrary that the complex node representation correspond-

ing to the group Sm is not optimal. Let us replace the

component of RminðGÞ corresponding to the group Sm with

the complex node representation RminðSmÞ: From Eq. (10)

and Lemma 3 it follows that there exists spoke whose value

is less than Ck: Therefore, the resulting new representation

is a valid complex representation of group G with fewer

exception bypasses than RminðGÞ: This contradicts the

assumption of optimality of RminðGÞ: Because in represen-

tation RminðSmÞ there exists spoke whose value is less than

Ck; the number of groups referred to above is exactly Q 2 1:

(b) Let us consider the group Sf ; f – m: From part (a) it

follows that the values of its spokes are at least Ck; whereas

from Lemma 3, it follows that ci;j , Ck: Consequently, the

optimal paths connecting the nodes of the group Sf do not

include any spokes but only exception bypasses. The most

efficient structures to connect these nodes are those

discussed in Section 3.2. Consequently, the total number

of exception bypasses corresponding to the group Sf is

gðlSf lÞ ¼ lSf l2 1:

(c) From parts (a) and (b) it follows that the total number of

exception bypasses used in RminðGÞ is equal to

BminðSmÞ þ
XQ
f¼1
f–m

gðlSf lÞ:

Note that there are Q possible values for m: As the optimal

complex representation must use one of these values for m;

we only need to check them all to find the best one.

(d) Assuming that this proposition holds for each optimal

complex node representation corresponding to each of the

groups S1;…; SQ contained in the group G; we shall

show that it also holds for the optimal complex node
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representation RminðGÞ: The following cases are considered:

Case (1)

ni [ Sm; and nj [ Sm: From part (a) it follows that the

complex node representation corresponding to the nodes of

group Sm is an optimal one. This, according to the above-

mentioned assumption, implies that the proposition holds.

Case (2)

ni [ Sf ; and nj [ Sf ; f – m: From part (b) it follows that

there exists optimal path obtained from a concatenation of

only exception bypasses. Consequently, the proposition

holds.

Case (3)

ni [ Sq; and nj [ Sf ; q – f : From parts (a) and (b) it follows

that an optimal path connecting nodes ni and nj exists

obtained from a concatenation of exception bypasses, and

two spokes corresponding to the groups Sq and Sf ;

respectively, whose cost is equal to Ck: Consequently, the

proposition holds.

A

Appendix B. Upper bound on the number of exception
bypasses

Lemma 6. The sequence hðNÞ is increasing in N;

hðN 2 1Þ # hðNÞ; ;N: ðB1Þ

Proof. Let us consider a cost matrix MNðCmaxÞ such that

BðRminðMNðCmaxÞÞÞ ¼ bðNÞ; and let cmax denote the corre-

sponding maximum cost entry. Let MN21ðCÞ be the cost

matrix associated with the first N 2 1 nodes, and let

RminðMN21ðCÞÞ be the corresponding optimal complex

node representation. From definition (14) it follows that

BðRminðMN21ðCÞÞÞ # bðN 2 1Þ: ðB2Þ

A complex node representation (not necessarily optimal)

RðMNðCmaxÞÞ of the original cost matrix MNðCmaxÞ is now

constructed based on the RminðMN21ðCÞÞ using the following

procedure. Firstly, we set aN equal to 1: Considering

the group evolution process, suppose that node nN appears

for the first time at the kth iteration, implying,

according to the properties of the group evolution process,

that cN;j $ Ck ;j; j – N: Also let ni be a node such that

cN;i ¼ Ck: We now introduce an exception bypass

between nodes nN and ni with cost bN;i ¼ cN;i ¼ Ck:

Clearly, for this representation it holds that cN;j $ Ck ;j;

1 # j # N 2 1:

This is an accurate representation because

(a) For all nodes nj for which it holds that cN;j ¼ Ck; based

on the properties of the group evolution process it

follows that ci;j # Ck: Therefore, the optimal path

ni V
P

nj of the RminðMN21ðCmaxÞÞ has cost not exceeding

Ck: Furthermore, the cost cN;j based on RðMNðCÞÞ is

also equal to Ck due to the path nN ! ni V
P

nj:

(b) For the remainder of the nodes nj it holds that cN;j .

Ck; and from Eq. (4), it follows that cN;j ¼ ci;j: Note

that the optimal path ni V
P

nj of the RminðMN21ðCmaxÞÞ

has cost equal to ci;j: Furthermore, the cost cN;j based

on RðMNðCÞÞ is also equal to ci;j due to the path nN !

ni V
P

nj:

The total number of exception bypasses used by this

representation is given by

BðRðMNðCmaxÞÞÞ ¼ BðRminðMN21ðCÞÞÞ þ 1: ðB3Þ

From the definitions given by Eqs. (6) and (7) it holds that

BðRðMNðCmaxÞÞÞ $ BðRminðMNðCmaxÞÞÞ ¼ bðNÞ: ðB4Þ

Combining Eqs. (B2)–(B4) and using Eq. (12) gives

bðNÞ # bðN 2 1Þ þ 1 ¼ bðN 2 1Þ þ gðNÞ2 gðN 2 1Þ

which by virtue of Eq. (17) yields the result and this

completes the proof of Lemma 6. A

Proof of Theorem 7. We shall prove the theorem using

mathematical induction. For N ¼ 1; 2 the theorem holds

because bð1Þ ¼ bð2Þ ¼ 0: Suppose that Eq. (25) holds for all

N # L; so that

bðNÞ ¼ N 2 1 2 dlog2 Ne; ;N # L: ðB5Þ

We shall prove that Eq. (B5) is also true for L þ 1: To that

end, it suffices to show that

bðLþ1Þ¼L2 dlog2ðLþ1Þe; with bðLþ12kÞþgðkÞ

¼

bðLþ1Þ21; 1# k,Lþ122blog2 Lc
;

bðLþ1Þ; Lþ122blog2 Lc
# k#

Lþ1

2

� �
:

8><
>:

ðB6Þ

Using Theorem 6 and Eq. (24), Eq. (19) yields

bðNÞ¼max
S2

{bðNlS2Þ}¼with lS1l# lS2l;lS1lþ lS2l¼N; ;N;

or

bðNÞ¼ max
1#k#bN=2c

{bðN2kÞþgðkÞ}; ;N:

In particular, for N ¼Lþ1; and using Eqs. (12) and (B5) the

above yields

bðLþ1Þ¼ max

1#k#
Lþ1

2

j k{L212 dlog2ðLþ12kÞe}: ðB7Þ

It can be shown that the following relations hold

dlog2ðLþ1Þe¼ blog2 Lcþ1; ;L$1;

and2m21 ,
Lþ1

2

� �
#2m #L,2mþ1

; with m

¼ blog2 Lc;;L$2:

ðB8Þ
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Hence,

1 # k , L þ 1 2 2m , 2m , L þ 1 2 k # L

) dlog2ðL þ 1 2 kÞe ¼ blog2 Lcþ 1;

and L þ 1 2 2m
# k ,

L þ 1

2

� �
,

L þ 1

2

� �

, L þ 1 2 k # 2m ) dlog2ðL þ 1 2 kÞe ¼ blog2 Lc:

ðB9Þ

Consequently,

L 2 1 2 dlog2ðL þ 1 2 kÞe

¼

L 2 2 2 blog2 Lc; 1 # k , L þ 1 2 2blog2 Lc
;

L 2 1 2 blog2 Lc; L þ 1 2 2blog2 Lc # k #
L þ 1

2

� �
:

8><
>:

ðB10Þ

The above yields Eq. (B6), given that using Eqs. (B7) and

(B8) we get

bðL þ 1Þ ¼ L 2 1 2 blog2 Lc ¼ L 2 ð1 þ blog2 LcÞ

¼ L 2 dlog2ðL þ 1Þe:

A

Proof of Theorem 8. It holds that

bðNÞ ¼ bðN þ 1Þ , N 2 1 2 dlog2 Ne ¼ N 2 dlog2ðN þ 1Þe

, dlog2ðN þ 1Þe ¼ dlog2 Neþ 1:

By making use of Eq. (B8), the above is written

bðNÞ ¼ bðN þ 1Þ , blog2 Nc ¼ dlog2 Ne , log2 N ¼ k , N

¼ 2k
; k ¼ 0; 1;…

A

Proof of Theorem 9. Let the last group G of the group

evolution process contain N nodes and consist of three

groups, i.e. S3 ¼ {S1; S2; S3} with lS1l # lS2l # lS3l:
According to Lemma 12 of Ref. [4], the set S3 is a maximal

group evolution set if and only if the sets S0
2 and S00

2 are

maximal. Applying Corollary 2 to the sets S0
2 and S00

2 yields

N 2 2blog2ðN21Þc # lS0
1l ¼ lS1l # bN=2c; and N 2 lS1l2

2blog2ðN2lS1l21Þc # lS00
1l ¼ lS2l # bðN 2 lS1lÞ=2c; respectively.

From the above it follows that N 2 2blog2ðN21Þc # lS1l #
bN=3c: Note that for any value of lS1l chosen within the

specified range, the choice lS2l ¼ bðN 2 lS1lÞ=2c and lS3l ¼
dðN 2 lS1lÞ=2e results in a maximal group evolution set.

Consequently, a maximal group evolution set exists if and

only if

1 # N 2 2blog2ðN21Þc #
N

3

� �
, 1 # N 2 2blog2ðN21Þc #

N

3

, 2blog2ðN21Þc þ 1 # N # 3·2blog2ðN21Þc21
:
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