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Abstract�Finding a path in a network based on multiple con-
straints (the MCP problem) is often referred to as QoS routing.
QoS routing with constraints on multiple additive metrics has
been proven to be NP-complete. This proof has dramatically
inßuenced the research community, resulting into the common
belief that exact QoS routing is intractable in practice. Hence,
many heuristics for this problem were proposed, while hardly any
exact algorithms. However, to our best knowledge, no one has
ever examined which �worst-cases� cause NP-complete behavior.
In fact, the MCP problem is not strong NP-complete, suggesting
that in practice an exact QoS algorithm may work in polynomial
time, making guaranteed QoS routing possible. The goal of
this paper is to provide some properties and simulation results
that indicate that NP-complete behavior hinges on a speciÞc
correlation structure between the link weights, which will be
hardly ever encountered in practice.

I. INTRODUCTION

There is an increasing demand for using real-time mul-
timedia applications over the Internet. In order for these
applications to work properly, Quality of Service (QoS) mea-
sures like bandwidth, delay, jitter and reliability, need to be
controlled. Currently, the Internet cannot guarantee that the
QoS requirements of applications will be satisÞed. This has
triggered the research community to (en masse) investigate the
QoS problem, resulting in proposals for QoS-based frame-
works (e.g. IntServ, DiffServ, constraint-based MPLS), QoS
routing protocols (e.g. Q-OSPF, PNNI) and many QoS routing
algorithms (mostly heuristics, see [13]).

Routing in general consists of two entities, namely the rout-
ing protocol and the routing algorithm. The routing protocol
has the task of capturing the state of the network and its
available network resources and disseminating this information
throughout the network. The routing algorithm uses this infor-
mation to compute shortest paths. Best-effort routing performs
these tasks based on a single measure like hopcount or
delay. QoS routing, however, must take into account multiple
QoS requirements. Creating efÞcient QoS routing protocols
is still an open issue that needs to be investigated further. In
this paper, we assume that the network-state information is
temporarily static, and that it has been distributed throughout
the network and is accurately maintained at each node using
QoS routing protocols. Once a node acquires the network-
state information, it performs the second task in QoS routing,
namely computing paths given multiple QoS constraints, also
known as the multi-constrained path (MCP) problem. In this
paper, we evaluate the complexity of exactly solving the MCP
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problem. Before giving the formal deÞnition of the MCP
problem, let us Þrst describe the notation that is used.

Let G(N,E) denote a network topology, where N is the
set of nodes and E is the set of links. With a slight abuse
of notation, we also use N and E to denote the number of
nodes and the number of links, respectively. The number of
QoS measures is denoted by m. Each link is characterized
by a m-dimensional link weight vector, consisting of m non-
negative QoS weights (wi(u, v), i = 1, ...,m, (u, v) ∈ E)
as components. The QoS measure of a path can either be
additive, multiplicative or min/max. In the case of additive
measures (e.g. delay, jitter), the path weight of that measure
equals the sum of the QoS weights of the links deÞning
the path. Multiplicative measures (e.g. packet loss) can be
transformed into additive weights by using the logarithm.
Min(max) QoS measures of a path (e.g. available bandwidth
and policy ßags) refer to the minimum(maximum) of the QoS
weights along the path. The QoS constraints of an application
are expressed in the m-dimensional vector ~L. Constraints on
min(max) QoS measures can easily be treated by omitting all
links (and possibly disconnected nodes) which do not satisfy
the requested QoS constraint. We call this topology Þltering.
In contrast, constraints on additive QoS measures cause more
difÞculties. Without loss of generality, we assume all QoS
measures to be additive.

DeÞnition 1: Multi-Constrained Path (MCP) problem. Con-
sider a network G(N,E). Each link (u, v) ∈ E is speciÞed
by a link weight vector with as components m additive QoS
weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li,
i = 1, ...,m, the problem is to Þnd a path P from a source
node s to a destination node d such that

wi(P )
def
=

X
(u,v)∈P

wi(u, v) ≤ Li for i = 1, ...,m

There may be multiple different paths in the graph G(N,E)
that satisfy the constraints. Such paths are said to be feasible.
According to DeÞnition 1, any of these paths is a solution
to the MCP problem. However, often it might be desirable to
retrieve the optimal path, according to some criteria, within
the constraints. This more difÞcult problem is known as the
Multi-Constrained Optimal Path (MCOP) problem.

The rest of this paper is organized as follows. Section II
presents an overview of related work. Section III will analyze
the worst-case NP complexity of the MCP problem. The NP-
completeness of the MCP problem strongly depends on the
size of the link weights and the level of correlation between
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those link weights. Section IV will analyze, mathematically
and simulative, the impact of correlation on the complexity of
solving the MCP problem. Section V will analyze the impact
of the constraint values on the complexity. Finally, in Section
VI, we will present our conclusions.

II. RELATED WORK

The MCP problem is a NP-complete problem. Garey and
Johnson [6] were the Þrst to list the MCP problem with
m = 2 as being NP-complete, but they did not provide a proof.
Wang and Crowcroft have provided this proof for m ≥ 2
in [23] and [24], which basically consisted of reducing the
MCP problem for m = 2 to an instance of the partition
problem, a well-known NP-complete problem [6]. The effect
of this proof has been tremendous, because it suggests that
the MCP problem is intractable, in which case only heuristics
can be used. Many simulations performed in [4], [5], [12],
[20], [22] suggest that QoS routing may not be intractable
in practice. There are certain NP-complete problems, such as
partition, which are considered by many practitioners to be
tractable. The reason for this is that, although no algorithms
for solving them in time bounded by a polynomial in the
length (e.g. N,E) are known, there exist algorithms which
solve those problems in time bounded by a polynomial in
the input length (e.g. value of constraints) and the magnitude
of the largest number (e.g. largest QoS weight) in the given
problem instance [7]. Such algorithms are called pseudo-
polynomial time algorithms. NP-complete problems for which
no exact pseudo-polynomial time algorithm exists, are called
NP-complete in the strong sense. In the case of the partition
problem, the NP-completeness strongly depends on the fact
that arbitrarily large numbers are allowed. If any upper bound
were imposed on these numbers in advance, even a bound
which is a polynomial function of the input length, there would
exist a polynomial time algorithm for solving this (restricted)
problem [7].

David Pisinger [19] has evaluated Knapsack problems,
which are NP-complete problems (proved via reduction to the
partition problem), and found that in practice these problems
are tractable. For many more NP-complete problems, typical
cases are easy to solve. A study of the phenomenon that
typical cases are �easy�, was performed by Cheeseman et
al. [2], who introduced the concept of phase transitions in
NP-complete problems. According to Cheeseman et al., NP-
complete problems which are very under-constrained are sol-
uble and it is usually easy to Þnd one of the many solutions.
NP-complete problems which are very over-constrained are
insoluble. In the phase transition in between, problems are
�critically constrained� and it is typically very hard to deter-
mine if they are soluble or insoluble [8]. Cheeseman et al. have
conjectured that all NP-complete problems have at least one
order parameter and that the hard to solve problems are around
a critical value of this order parameter (phase transition).
Although this conjecture does not hold for all NP-complete
problems, there seems to be a connection between complexity
and phase transitions. The lack of a phase transition seems
to have signiÞcant computational implications: such problems

are either computationally tractable, or well-predicted by a
single, trivial algorithm [10]. Note that the existence of a
phase transition may also occur in problems that are not NP-
complete. Monasson et al. [17], report an analytic solution
and experimental investigation of the phase transition in K-
satisÞability (the Þrst problem shown to be NP-complete).
Gent and Walsh [8] show that phase transitions occur in the
partition problem.

Levin [14] advocated a different study of NP-complete prob-
lems by introducing the concept of average case complexity.
He indicated that some NP-complete problems are �easy on
average�, while other (average case NP-complete) problems
may not be.

There exists also some work in the literature revealing
important properties of the MCP problem. We will mention
three of those properties, that all strengthen our belief that
in practice exact QoS routing is possible. First of all, the
MCP problem is not strong NP-complete, because there exist
pseudo-polynomial algorithms that exactly solve this problem
(e.g., see [11], [15]). Secondly, if all, but one, measures take
bounded integer values, then the MCP problem is solvable in
polynomial time [3]. Finally, if some speciÞc dependencies
exist between QoS measures, exact QoS routing can be per-
formed in polynomial time [16]. The goal of our work is
to provide some more properties that suggest that exact QoS
routing, in practice, is tractable.

III. WORST-CASE COMPLEXITY ANALYSIS

In this section we will analyze the worst-case complexity of
the MCP problem for m = 2. First, we will rewrite the proof
that the MCP problem for m = 2 is NP-complete [23], [24],
and refer to it as the NP-proof:

Proof: Given a chain topology with n+1 nodes and 2n
links, each with a two-component weight vector ~w as depicted
in Figure 1 and a set of numbers ai ∈ A, 0 ≤ ai ≤ S,
for i = 1, ..., n, where S =

Pn
i=1 ai. The constraints are

chosen as follows: L1 = nS − S
2 , and L2 = S

2 . To solve the

 

i i+1 

S 
0 

S-ai 
ai 

Fig. 1. The assignment of link weights to the links between nodes i and
i+ 1.

MCP problem, we need to Þnd a path from node 1 to node
n + 1, that obeys the constraints. Since, for all link weight
vectors, the sum of the components equals S, we have that
w1(P ) +w2(P ) = nS. Accordingly, a solution satisfying the
constraints is only found if w1(P ) = nS− S

2 and w2(P ) = S
2 .

The problem has now become an instance of the well-known
NP-complete partition problem [6] and can only be solved by
Þnding the set A0 ⊆ A, for which

P
ai∈A0 ai =

S
2 . A feasible
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path exists if the set A0 exists, in which case it is retrieved
by choosing the lower link if ai ∈ A0 and the upper link if
ai /∈ A0.

�Realistic� networks often have a chain-like topology hid-
den in them to assure robustness/reliability (back-up paths).
This is an important phenomenon, because it means that, in
practice, networks have the potential to induce NP-complete
behavior. The class of polynomial solvable graphs, i.e. the
class of graphs in which the number of paths between two
nodes increases as a polynomial function of N , is most
likely very small (e.g. tree-, circle- and star-topologies). For-
tunately, the underlying graph alone is not sufÞcient to lead
to NP-complete behavior, we also need a speciÞc link weight
structure. Indeed, if all the components of the link weight
vectors are the same, then irrespective of the underlying graph,
the MCP problem becomes polynomially solvable. We will
proceed by deÞning the link weight structure that leads to
NP-complete behavior in the chain topology. We will use the
chain topology as depicted in Figure 2 to aid in the search
for a class of graphs, for which all paths from source s to
destination d are non-dominated.

DeÞnition 2: Dominance. Let ~a and ~b be two different path
vectors, each consisting of m components. ~a dominates ~b
if ai ≤ bi, for i = 1, ...,m, with at least one inequality.
We will denote �~a dominates ~b� by �~a

d≤ ~b�. A vector ~a is
called non-dominated if there does not exist a vector ~b that
dominates ~a. If ~a = ~b, we only consider one of these vectors
to be non-dominated, because the other does not provide extra
information for QoS routing.

In general, there are two important properties that can re-
duce the search-space when solving the MCP problem without
loosing exactness, namely non-dominance and the constraints
themselves. If a sub-path P from source s to node i exceeds
one or more constraints, it can never become a feasible path1,
because the path weight vector from i to destination node
d consists of non-negative weights. Similar, if for two paths
P1, P2 from s to i holds that P1

d≤ P2, then all weights of
P1 are smaller (or equal) than those of P2 and hence we can
omit P2 from our search-space and continue with P1 [5].

Without loss of generality, we assume that the link weights
are chosen such that ai > ci and bi < di, for i = 1, ...N
(ci > ai and di < bi would also have been possible). It can
be veriÞed that if ai ≥ ci and bi ≥ di or ci ≥ ai and di ≥ bi
were allowed, this would lead to dominance.
Property 1: If, in a chain topology, there holds that(

ai − ci >
Pi−1
j=0 (aj − cj)

bi − di <
Pi−1
j=0 (bj − dj)

(1)

for i = 1, ...N − 1, where a0 = b0 = c0 = d0 = 0, then all
2N−1 paths from node 1 to node N are non-dominated.

1This must also hold for the lower bound estimation of the end-to-end path
weight vector ~w(P ) +~b, where ~b denotes a lower bounds vector consisting
of the one-dimensional shortest path weights from i to d.

 

i i+1 

ci 
di 

ai 
bi 

Fig. 2. Chain topology with two QoS weights per link.

Proof: We will give a proof by induction.
i = 1 : There are two paths from node 1 to node 2, namely

P1(1→ 2) =

µ
a1
b1

¶
and P2(1→ 2) =

µ
c1
d1

¶
. According

to formula (1): a1 > c1 and b1 < d1, which shows that both
paths from node 1 to node 2 are non-dominated.
The inductive step is to assume the correctness of formula (1)
for a certain i. It remains to prove that it also holds for i+1:
There are 2i−1 paths from node 1 to i. From i there are two
possible links to i+1, resulting in a total of 2i paths from
node 1 to node i+1. 2i−1 paths will follow the upper link
from i to i+1, while the remaining 2i−1 paths will follow the
lower link. Since all paths at i are non-dominated (inductive
assumption), the paths following the upper link are also non-
dominated, because the same vector is added to each of the
path vectors. The same property applies to the paths that follow
the lower link. It remains to show that if (1) holds, then the
paths following the upper link and the paths following the
lower link do not dominate each other.
If (1) is obeyed, then all paths following the upper link possess
a Þrst path weight larger than the Þrst weights of the paths
following the lower link. Similar, the paths following the lower
link have a second weight, which is larger than the second
weights of the paths following the upper link. Hence the paths
following different links are non-dominated.

Corollary 1: Property 1 is a sufÞcient but also necessary
condition for all paths in the chain topology to be non-
dominated.

Proof: We need to show that if formula (1) does not hold,
then at least one path from node 1 to node i+1 is dominated.
If (1) does not hold, we have( Pi−1

j=0 cj + ai ≤
Pi−1
j=0 aj + ciPi−1

j=0 dj + bi ≥
Pi−1
j=0 bj + di

(2)

or ( Pi−1
j=0 cj + ai >

Pi−1
j=0 aj + ciPi−1

j=0 dj + bi ≥
Pi−1
j=0 bj + di

(3)

or ( Pi−1
j=0 cj + ai ≤

Pi−1
j=0 aj + ciPi−1

j=0 dj + bi <
Pi−1
j=0 bj + di

(4)

We have written these formulas in a slightly different form to
illustrate that they correspond to two paths, namely the path
that followed all the lower links up to node i and took the
upper link from node i to node i + 1 and the path that took
all the upper links towards node i and the lower link from
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node i to node i + 1. Formula (2), without the equalities, is
exactly the same as (1), but a is called c and b is called d. If
the equality sign applies, then the path that followed all the
lower links up to node i and took the upper link from node i
to node i + 1 is the same as the path that took all the upper
links towards node i and the lower link from node i to node
i + 1. According to DeÞnition 1 one of these two paths is
dominated. When formula (3) applies, the path that followed
all the lower links up to node i and took the upper link from
node i to node i+1 is dominated by (or dominates in the case
of formula (4)) the path that took all the upper links towards
node i and the lower link from node i to node i+ 1.

At the beginning of this section we have mentioned that
there are two important properties to reduce the search-space,
namely non-dominance and the values of the constraints. If
the constraint-values are chosen very large, then it will be
easy to Þnd a path subject to these constraints. On the other
hand, if the constraint values are very strict, there may not be
a path available that can obey these constraints. For the chain
topology, besides formula (1), the constraints must lie in the
range: ( PN−1

j=0 cj ≤ L1 ≤
PN−1
j=0 ajPN−1

j=0 dj ≥ L2 ≥
PN−1
j=0 bj

for NP-complete behavior to occur (i.e. then the MCP problem
reduces to the partition problem as illustrated in the NP-proof).
Since ci < ai, the shortest path for measure 1 from node 1 to
node N , equals

PN−1
j=0 cj . If L1 <

PN−1
j=0 cj , then no feasible

path exists. If L1 >
PN−1
j=0 aj , then all possible (loop-free)

paths can obey this constraint. The same reasoning applies to
L2 and is motivated in section V. The fact that the partition
problem is NP-complete, is because the values involved in
an instance of the partition problem may be arbitrarily large.
The same phenomenon is observed in formula (1), where the
difference between ai and ci (and correspondingly di and bi)
must grow exponentially:

ai+1 − ci+1 >
iX

j=0

(aj − cj) = (ai − ci) +
i−1X
j=0

(aj − cj)

> 2
i−1X
j=0

(aj − cj) > ... > 2i−1(a1 − c1)

If ai in the NP-proof are not chosen according to formula
(1), but if they take bounded integer values, then the problem
becomes polynomially solvable.

A second important phenomenon that we observe from for-
mula (1) is that the link weights display a negative correlation.
If the link weights would have had a positive correlation, then
if ai > ci most likely also bi > di, leading to dominance. In
Section IV we will further evaluate the impact of correlation
on the complexity of QoS routing.

Corollary 2: If there are more than two links (all with two
weights) between two nodes in the chain topology, formula
(1) should hold for all possible pairs of links, in order for all
paths from node 1 to node N to be non-dominated.

 

a 

b 

c 

x1 
f(x1) 

x2 
f(x2) 

x3 
f(x3) 

Fig. 3. Example topology to illustrate that not all functions can be mapped.

Links in the chain topology can be seen as sub-paths. In
practice we do not expect links/sub-paths to obey formula (1).
If formula (1) is not obeyed, corollary 2 suggests that when
there are many sub-paths to a node, the probability that all
these paths are non-dominated decreases.

IV. THE IMPACT OF LINK-CORRELATION ON COMPLEXITY

Section III indicated that correlation is necessary for NP-
completeness. In this section we will discuss link-correlation
by giving some properties and presenting simulation results.

A. Theory
Ma and Steenkiste [16] have shown that when speciÞc

dependencies (correlation) exists between QoS measures due
to Weighted Fair Queueing scheduling, QoS routing can be
performed in polynomial time. However, it is a misconception
that if all QoS measures are a function of a common measure,
then by just minimizing this common measure, we will have
minimized all measures. We will illustrate that this is not
always the case and provide some conditions for when this
statement holds. We will denote by f(.) a convex function, by
ϕ(.) a concave function, by ψ(.) a linear function and by g(.)
a monotone increasing function.

Consider Figure 3. If f(x) is a convex function, then the
shortest path based on x is not necessarily the shortest path
for f(x). For example, suppose that f(x) = ex and x1 = 2,
x2 = 2, x3 = 3. Then the shortest path from a to c is a− c
for x, but a− b− c for f(x).

If ϕ(x) is a concave function, then the shortest path based
on x is not necessarily the shortest path for ϕ(x), e.g. ϕ(x) =
log(x) and x1 = 1.2, x2 = 1.2, x3 = 2.2. Then the shortest
path from a to c is a− c for x, but a− b− c for ϕ(x).

In case of a linear function ψ(x), then the shortest path
based on x will also be the shortest path for ψ(x).

Property 2: If all the components of a link weight vector
are the same, the MCP problem is solvable in polynomial time
with a standard one-dimensional shortest path algorithm.

Property 3: If wi(u, v) = wi(u0, v0), for i = 1, ...,m, for
all (u, v), (u0, v0) ∈ E, then the MCP problem is solvable in
polynomial time

Property 2 can be seen as an extreme case of positive link
correlation: the m link weights on a link are correlated with
coefÞcient ρ = 1. Property 3 can be seen as an extreme case
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of positive path correlation: the i-th weights of all links are
correlated to each other with coefÞcient ρ = 1. In practice
we expect both positive link and path correlation to occur
simultaneously.

In this section we consider graphs, for which all link weights
are a function of a common link weight. Each link i has a

weight vector ~w =

 f1(xi)
...

fm(xi)

, where xi is the common link

parameter (links may have different xi and different fj). In the
sequel we will refer to this graph as Gw. We also introduce
the graph Gx, which is identical in structure to Gw, but for
which the links only have weight xi.

Let Px be the shortest path from source s to destination d
in Gx, then

w(Px) =
X
i∈Px

xi ≤ w(P ) =
X
i∈P

xi

where P is any other path ( 6= Px) from s to d in Gx. Let
ϕ(x) be a concave function, then

ϕ(
1

h

hX
i=1

xi) ≥ 1

h

hX
i=1

ϕ(xi)

where h is the hopcount of a path P .

Property 4: If the weight vector of a link, ~w = ϕ1(xi)
...

ϕm(xi)

 with ϕj(xi) concave functions, is a function of

a single parameter xi and if P is the shortest path from s to
d in Gx with length X =

Ph
i=1 xi and hopcount h, then P

in Gw satisÞes the constraint vector ~L if

X ≤ hϕ−1j
µ
Lj
h

¶
, 1 ≤ j ≤ m (5)

Proof: The constraints are obeyed if
P
i∈P ϕj(xi) ≤ Lj .

Since ϕj are concave functions:
hX
i=1

ϕj(xi) ≤ hϕj
Ã
1

h

hX
i=1

xi

!
≤ Lj

or,

ϕj

Ã
1

h

hX
i=1

xi

!
≤ Lj
h

Hence,

X =
hX
i=1

xi ≤ hϕ−1j
µ
Lj
h

¶

Note that although P is the shortest path in Gx, this does
not mean that P is also the shortest path in Gw (there may
be another path P 0 for which

P
i∈P 0 ϕ(xi) <

P
i∈P ϕ(xi)).

Equation (5) is a sufÞcient, but not a necessary condition,
because there may be a path that does not obey (5) but still
satisÞes the constraints.

Property 5: If the weight vector of a link, ~w = f1(xi)
...

fm(xi)

 with fj(x) convex functions, is a function of

a single parameter xi and if P is the shortest path from s to
d in Gx with length X =

Ph
i=1 xi and hopcount h, then P

(and therefore all paths) violates the constraints in Gw if

X > hf−1j

µ
Lj
h

¶
(6)

for at least one j.

Proof: On the convexity,

hfj

Ã
1

h

hX
i=1

xi

!
= hfj

µ
X

h

¶
≤

hX
i=1

fj(xi)

The j-th constraint is violated if
Ph
i=1 fj(xi) > Lj , which is

the case if hfj
¡
X
h

¢
> Lj , which is equivalent to (6).

Property 6: If the weight vector of a link ~w =

 g1(xi)
...

gm(xi)


with gj(xi) monotone increasing and P is the shortest mini-
mum hop path from s to d in Gx and xi ≤ x0i, where x0i is the
i-th ordered common link weight of an other path P 0 from s
to d in Gx, then P is also the shortest path in Gw.

Proof: The property is a corollary from Theorem 107
from [9]: Suppose that the sets (a) and (a0) are arranged in de-
scending order of magnitude. Then a necessary and sufÞcient
condition that g (a01)+...+g (a0n) ≤ g (a1)+...+g (an) should
be true for all continuous and increasing g is that a0v ≤ av
(v = 1, 2, ..., n).

B. Simulation results
The number of distinct paths in a graph is upper bounded by

the minimum cut, which is N−1 in a full mesh. In that same
full mesh the number of different loop-free paths between two
nodes equals be(N − 2)!c. Consequently, in the worst-case,
be(N − 2)!c−(N−1) paths are correlated (because they share
one or multiple links with other paths). If many paths share
links, as in dense graphs, they will have similar weight vectors,
which increases the probability that paths will be dominated.
In sparse graphs, paths will share fewer links, resulting in a
smaller level of path correlation.

In this section we will evaluate the complexity of QoS
routing through simulations. We will present the simulation
results for the class of random graphs and the chain topology.
The class of random graphs is of the type Gp(N) [1], where
p is the expected link-density (p = 0.2). The m = 2
components of the link weight vector are correlated uniformly
distributed random variables with correlation coefÞcient2 ρ
[18]. All simulations consisted of generating 105 different
graphs and in each graph a path has been computed satisfying

2We have checked that the correlation coefÞcient ρ0 of the generated
random variables equals the desired ρ.
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Fig. 4. Expected queue-size for the class Gp(N), with uniformly distributed
correlated link weights, as a function of the number of nodes N and the
correlation coefÞcient ρ.
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Fig. 5. Variance in queue-size for the class Gp(N), with uniformly
distributed correlated link weights, as a function of the number of nodes
N and the correlation coefÞcient ρ.

the constraints via the SAMCRA algorithm [20]. SAMCRA
does not only exactly solve the MCP problem, but also exactly
solves the MCOP problem by Þnding the optimal path within
the constraints. Since the MCOP problem is more difÞcult
than the MCP problem, the simulation results presented here
should be interpreted as an upper bound. We have simulated a
worst-case scenario by choosing the constraints so large that
all paths can satisfy the constraints. Therefore, SAMCRA must
search in the largest search-space possible (all non-dominated
paths between the source and destination), for the optimal path.
If SAMCRA was only solving the MCP problem, choosing
such large constraints would make the MCP problem �easy�,
because then any path is a solution to the MCP problem.
During all simulations, we kept track of the minimum queue-
size (kmin) needed to Þnd a feasible path. This queue-size
can grow as a factorial in the worst-case and presents our
measure for NP-completeness in QoS routing. If TAMCRA
[5], the polynomial-time predecessor of SAMCRA, had used
this particular kmin under the same conditions, it would have
found the same optimal path as SAMCRA did. If a smaller
queue-size had been used, TAMCRA would not have found
the optimal path.

As illustrated in Figures 4-6, the results for the random
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Fig. 6. The maximum observed queue-size in the class Gp(N), with
uniformly distributed correlated link weights, as a function of the number
of nodes N and the correlation coefÞcient ρ.

graphs, do not display NP-complete behavior. We can see
that a positive correlation leads to a slightly higher E[kmin]
than with a negative correlation. This peculiar phenomenon
has only been observed in the class of random graphs, with
uniformly distributed correlated link weights. If we use expo-
nentially distributed correlated link weights, the Þrst weight
has a higher probability of being small, than with an uniform
distribution. With an uniform distribution, each value for the
Þrst weight is equi-probable. Therefore, with exponentially
distributed correlated link weights, there is a higher proba-
bility that the link weight vectors are similar. For uniformly
distributed link weights there is a larger variability, leading to
a somewhat worse performance than in the exponential case.
However, in all cases the expected queue-size is close to one,
leading to a complexity similar to that of Dijkstra�s algorithm.
The reason is most likely the randomness of the underlying
graph, where the probability that a chain-like sub-graph occurs
is very low. One of the measures for the �computational
hardness� of a class of topologies is the average hopcount
of an arbitrary path in that topology. The average hopcount
(for m = 1) scales as O(logN) in a random graph, while
as O(

√
N) in a two-dimensional lattice and O(N) in the

chain topology. These simulation results therefore suggest that,
irrespective of the link weight structure, QoS routing in the
class of random graphs (and according to [21] also Waxman
graphs) is possible in polynomial time.

We have also evaluated the performance of SAMCRA in
the chain topologies. The results are plotted in Figures 7 and
8.

Our simulation results3 indicate that there is hardly any NP-
behavior for the entire range of ρ, except for extreme negative
values. We doubt that in practice link weights will display
such a negative correlation, suggesting that exact QoS routing
in practice, irrespective of the underlying topology, is possible
in polynomial time.

3Recall that the simulation results reßect the complexity of the much more
difÞcult MCOP problem.

1430



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

rho

E[
km

in
]

Fig. 7. The expected queue-size in the chain topology, with correlated
uniformly distributed link weights forN = 50, as a function of the correlation
coefÞcient ρ.
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Fig. 8. The expected queue-size in the chain topology, with correlated
uniformly distributed link weights for ρ = −1.

V. THE IMPACT OF CONSTRAINTS ON COMPLEXITY

In this section we analyze the inßuence of the constraints
on the complexity of the MCP problem. For this purpose, we
will initiate an evaluation of the phase transition [2] in the
MCP problem.

Property 7: Let Ps−d;i denote the path from source s to
destination d for which wi(Ps−d;i) ≤ wi(P ∗), ∀P ∗. Then, the
MCP problem is only NP-complete when the constraints lie
in the �NP-complete� range

wi(Ps−d;i) < Li < max
j=1,...,m

(wi(Ps−d;j)) , i = 1, ...,m (7)

Proof: We consider the two cases for which the con-
straints lie outside the range (7). If for any link measure i
holds that Li ≤ wi(Ps−d;i), then a feasible path Ps−d can
only be present, when Li = wi(Ps−d;i), for i = 1, ...,m. This
path Ps−d can be found in polynomial time. Since wi(Ps−d;i)
is the smallest attainable weight that a path can have for
measure i, no feasible path can exist when Li < wi(Ps−d;i).
If Li ≥ maxj=1,...,m (wi(Ps−d;j)), for i = 1, ...,m, then all
m one-dimensional shortest paths Ps−d;i, (for i = 1, ...,m)
obey the constraints.

Since Ps−d;i can be found in polynomial time (e.g., via Di-
jkstra�s algorithm), the MCP problem is solvable in polynomial

time if the constraints do not obey (7).

Corollary 3: The MCOP problem can only be NP-complete
when Li > wi(Ps−d;i), for i = 1, ...,m.

When the link weights are positively correlated, the NP-
complete range (7) will be smaller than when the link weights
are negatively correlated. This is illustrated in Figure 9 for
m = 2.
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Fig. 9. The constraints range (bold square) for (a) positive correlation and (b)
negative correlation. The dots in the Þgure denote paths in the two-dimensional
space (m = 2).

The work presented in section II suggests that there is a
connection between worst-case complexity and phase tran-
sitions. Using the terminology of Gent and Walsh [8], if
problems are very under-constrained, then it is usually easy
to Þnd one of the many solutions. When problems are very
over-constrained, it is usually easy to determine that they
are insoluble. In the phase transition in between, problems
are �critically constrained� and it is typically very hard to
determine if they are soluble or insoluble. Applied to the
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MCP problem, we can distinct a phase transition based on
the values of the constraints. If these values are smaller than
the NP-complete range (7), the probability of Þnding a path
obeying these constraints is zero. Moreover, it can be veriÞed
in polynomial time, that there exists no path in the graph that
obeys the constraints (property 7). On the other hand, if the
values of the constraints are very large (under-constrained),
such that they exceed the NP-complete range (7), then a path
satisfying these large constraints can be found in polynomial
time. A phase transition is therefore expected to occur if the
constraints obey the NP-complete range (7). For small values
of Li = wi (Ps−d,i) + ² (with ² > 0) in the NP-complete
range (7), the MCP problem may still be insoluble, however
the effort (complexity) needed to verify that indeed no feasible
path is present in the graph has increased. In contrast to the
case where the constraints Li < wi (Ps−d,i), only computing
the m Dijkstra paths is not sufÞcient for determining that the
problem is insoluble. The SAMCRA algorithm (or another
exact MCP routing algorithm) must be invoked and will
eventually observe that no path can obey the constraints. The
larger the constraints are, the longer it will take SAMCRA
to determine that no feasible path exists. Hence, increasing
the constraints until a feasible path exists augments the com-
plexity of its solution. On the other hand, when decreasing
the constraints starting from the upper boundary of the NP-
complete range (7), Þrst many paths will obey these constraints
Li = maxj(wi (Ps−d,j)) − ² leading to a high probability
that a feasible path will be found fast. If the values of the
constraints decrease, the probability of Þnding a feasible path
fast will also decrease. It is therefore expected that a phase
transition occurs if there are only a few (if any) feasible
paths present. In this case MCP ≈ MCOP. The steepness of
the phase transition depends on the NP-complete range (7),
which is heavily inßuenced by the correlation coefÞcient ρ
as illustrated in Figure 9. As discussed in the section IV, the
correlation coefÞcient also impacts the level of complexity,
which decreases if ρ increases. To be able to observe a phase
transition, we must choose a conÞguration that induces NP-
complete behavior: it should contain a chain structure and
the link weights should have a negative correlation. We have
chosen to simulate on the two-dimensional lattice in Figure
10 with N = 49 nodes and correlated uniformly distributed
link weights in the range [0,1]. Figure 10 also illustrates the
presence of a chain topology in bold lines.

A worst-case scenario is obtained if the source node is
positioned in the upper left corner and the destination node in
the lower right corner, causing the largest minimum hopcount.
For each constraint L1 and L2, 100 different values were
chosen in the NP-complete range (7) as discussed above,
leading to a total of 104 iterations. Figure 11 displays the
maximum queue-size4 k used by SAMCRA, for N = 49 and
ρ = −1. The corresponding contour plot is given in Figure
12.

Different constraints can lead to different m-dimensional

4k is different from the previously used kmin, since k denotes the maximum
queue-size in SAMCRA whereas kmin is the queue-size that TAMCRA would
have needed to attain the same solution as SAMCRA. We have used this larger
value here, because kmin = 0 if there is no path present.

 

Fig. 10. Two-dimensional lattice with 49 nodes.
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Fig. 11. The queue-size in a two-dimensional lattice, with correlated
uniformly distributed link weights, N = 49, ρ = −1, and 104 different
constraint vectors.

shortest paths. For instance, if L1 is small (e.g. 5.0 in Figure
11) and L2 large (e.g. 7.0 in Figure 11), then a path P obeying
these constraints must also have a small weight w1(P ) ≤ L1
and the second weight may be large as long as w2(P ) ≤ L2.
Since L1 is slightly larger than the weight w1(Ps−d;1) of the
shortest Dijkstra path for measure 1, the path P may closely
approximate Ps−d;1 which may be easy to Þnd as indicated
by small k values in Figure 11. Similarly, if L1 is large (e.g.
9.0 in Figure 11) and L2 small (e.g. 3.0 in Figure 11), then
a path P obeying these constraints may closely approximate
the Dijkstra shortest path for measure 2 Ps−d;2 which may
also be easy to Þnd (as veriÞed in Figure 11). We observe
from Figure 11 that the complexity is largest when L1 = 6.94
and L2 = 5.06. These values are situated near the center of
the rectangle (Figure 9) spanned by the NP-complete range
(7) at L∗1 = 7.09 and L∗2 = 4.91. These observations seem
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Fig. 12. Contour plot of the queue-size in a two-dimensional lattice, with
correlated uniformly distributed link weights, N = 49, ρ = −1 and 104
different constraint vectors.

to suggest that the complexity is largest when the constraints
closely approximate the weights of them-dimensional shortest
path P , for which || ~w(P )~L∗

||∞ is minimum and where ~L∗ equals
the center of the NP-complete range (7).

The sharp edge/line in Figure 12, constituted by the different
shortest paths, can be attributed to the extreme negative
correlation (ρ = −1) as explained in Figure 9b. Since the
link weights are chosen in the range [0,1], we have that for
ρ = −1, w1(u, v) = 1 − w2(u, v), ∀(u, v) ∈ E. Hence the
path weights of any path P obey w1(P ) = h−w2(P ), where
wi(P ) =

P
(u,v)∈P wi(u, v) and h equals the hopcount of

path P . If we again look at Figure 12, we may observe that
the linear line, once continued, intersects both axes L1 and
L2 at 12, which is precisely the minimum hopcount of the
two-dimensional lattice with 49 nodes (as illustrated in Figure
10). Moreover, since w1(P ) = h − w2(P ), we know that
when L1 + L2 < h, then no feasible path exists. This means
that for the class of two-dimensional lattices with correlated
(ρ = −1) uniformly distributed link weights, the constraints
must obey L1+L2 ≥ h, for a feasible path to be possible. This
condition for the constraints can be checked in polynomial
time and it is therefore possible to obtain a much steeper
phase transition than observed in Figures 11 and 12. Finally,
we have also simulated with independent uniformly distributed
link weights (ρ = 0) in the range [0,1]. As discussed in section
IV, the complexity of solving the MCP and MCOP problems
is smaller than with a negative correlation. To observe a phase
transition, we had to simulate with graphs larger than N = 49.
Figure 13 gives the contour plot for N = 400 and ρ = 0. The
complexity is largest for L1 = 12.58 and L2 = 15.11.

VI. CONCLUSIONS

In this paper we have evaluated the complexity of Quality of
Service (QoS) routing. Finding a path based on multiple QoS
constraints is proven to be a NP-complete problem. However,
this Multi-Constrained Path (MCP) selection problem is not
NP-complete in the strong sense, meaning that a pseudo-
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Fig. 13. Contour plot of the queue-size in a two-dimensional lattice, with
uniformly distributed link weights, N = 400, ρ = 0 and 104 different
constraint vectors.

polynomial algorithm can exactly solve the problem. The NP-
completeness of the MCP problem hinges on four factors,
namely 1) the underlying topology, 2) link weights that can
grow arbitrarily large, 3) negative correlation among the link
weights and 4) the values of the constraints. If the values
of the constraints are very large then there is a very high
probability of �easily� Þnding a path within the constraints.
On the contrary, if the values of the constraints are very
small, there is a very high probability that there is no path
within the constraints. This indicates that there will be a phase
transition if the constraints are around the weights of the m-
dimensional shortest path in the network. In this case, it is
expected to be difÞcult to establish whether a feasible path
exists. If the four above mentioned factors are all necessary
to induce NP-complete behavior, they will allow network and
service providers to properly dimension their network and to
avoid NP-complete behavior. Moreover, if the theory of phase
transition holds for the MCP problem, then we know that
QoS requirements close to the m-dimensional shortest path
will, if admitted, provide the highest possible level of QoS,
but also the highest computational cost. Such information is
invaluable for pricing and billing mechanisms and admission
control algorithms. Finally, a proper understanding and use
of the four factors, will allow for efÞcient QoS routing at
controlled computational costs.

Future study will focus on a more thorough evaluation and
understanding of the expected NP-complete behavior at phase
transitions. We will evaluate more distributions than solely the
uniform distribution for generating link weights and use more
topology generators (e.g., topologies generated using power
laws that resemble the graph of the Internet). We also plan to
analyze the inßuence of path correlation on the complexity of
MCP.
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