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Abstract—Precomputation-based methods have recently been
proposed as an instrument to facilitate scalability, improve
response time, and reduce computation load on network elements.
The key idea is to effectively reduce the time needed to handle an
event by performing a certain amount of computations inadvance,
i.e., prior to the event’s arrival. Such computations are performed
as background processes, thus enabling to promptly provide a
solution upon a request, through a simple, fast procedure.

In this paper, we investigate precomputation methods in the con-
text of Quality-of-Service (QoS) routing. Precomputation is highly
desirable for QoS routing schemes due to the high computation
complexity of selecting QoS paths on the one hand, and the need to
promptly provide a satisfactory path upon a request on the other
hand. We consider two major settings of QoS routing. The first
is the case where the QoS constraint is of the “bottleneck” type,
e.g., a bandwidth requirement, and network optimization is sought
through hop minimization. The second is the more general setting
of “additive” QoS constraints (e.g., delay) and general link costs.

This paper mainly focuses on the first setting. First, we show
that, by exploiting the typical hierarchical structure of large-scale
networks, one can achieve a substantial improvement in terms
of computational complexity. Next, we consider networks with
topology aggregation. We indicate that precomputation is a
necessary element for any QoS routing scheme and establish a
precomputation scheme appropriate for such settings. Finally,
we consider the case of additive QoS constraints (e.g., delay) and
general link costs. As the routing problem becomes -hard, we
focus on -optimal approximations and derive a precomputation
scheme that offers a major improvement over the standard
approach.

Index Terms—Hierarchical networks, precomputation, Quality
of Service (QoS), routing, topology aggregation.

I. INTRODUCTION

I N RECENT years, we have witnessed considerable accom-
plishments in the design, development, and deployment of

broadband communication networks. Network capabilities, in
particular those of the Internet, grow at a remarkable rate. At
the same time, a phenomenal growth in data traffic and a wide
range of new requirements of emerging applications call for new
mechanisms for the control and management of communication
networks. This poses some major challenges. Not only are many
problems intrinsically difficult, but there are also additional con-
straints, such as limitations on the computational capabilities
of network elements. In addition, any such control and man-
agement mechanism must scale well with network growth and
provide fast response to internal (e.g., link failure) and external
(e.g., connection request) events.
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Precomputation-based methods have recently been proposed
as an instrument for facilitating scalability, improving response
time, and reducing the computational load on network elements.
The key idea is to effectively reduce the time needed to handle
an event by performing a certain amount of computationsin
advance, i.e., prior to the event’s arrival. Such advance com-
putations are performed as background processes, i.e., when
a network element is idle or underutilized, thus, resulting in
better utilization of the computational capabilities of network
elements. In addition, when the rate of external events is
high, a considerable reduction in overall computational load is
achieved.

Precomputation is performed by means of a two-phase pro-
cedure, which we refer to as aprecomputation scheme. The first
phase is executed in advance and its purpose is to precompute
solutionsa priori for a wide set of possible event parameters.
The computations performed at this phase are then summarized
in a database for later usage. The second phase is activated when
an event arrives and its purpose is to promptly provide an ade-
quate solution for the event’s parameters. The second phase ei-
ther selects one of the solutions precomputed at the first phase,
or, if necessary, performs a few additional computations. For
instance, when handling connection requests with delay con-
straints, the first phase may precompute paths for a wide range
of possible delay constraints, while the second phase just needs
to select a suitable path from the precomputed database, i.e., one
that satisfies the particular delay constraints of the connection.
The execution time of the second phase has an immediate impact
on network performance, hence, it is highly desirable to keep its
computational complexity as low as possible. In the above ex-
ample, the less time consumed in finding the proper path, the
less time is consumed in establishing the new connection.

We conclude that precomputation is a highly desirable
scheme and, at times, a necessary component for the efficient
control and management of broadband networks. We proceed
to discuss its major benefits in some more detail.

Enhancing scalability. As networks grow in size, ap-
propriate control mechanisms must scale well with network
growth. The two major strategies for achieving scalability are
limiting the amount of link state information, and reducing
the computational load of network elements. Precomputation
methods constitute a useful tool for both strategies. Indeed, in
many typical settings, where the rate of event arrivals is high,
precomputation allows reduction of the overall computational
load. Furthermore, as will be discussed below, precomputation
methods are necessary for handlingtopology aggregation, a
major technique for obtaining scalability.

Improving fault tolerance. A failure of a network element
(e.g., link or node) must be handled properly, for example, by
rerouting the existing connections to alternative routes. Failures
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are handled much faster if some computations are performed in
advance. For instance, an alternative path can be precomputed
for each possible link failure.

Improving performance in bursty conditions. Under
bursty conditions, a new connection request might arrive
before the handling of a previous request has been completed.
Computations performed prior to the burst reduce the time
needed for handling a request.

Improving load balancing. In a precomputation scheme, a
number of potential requests are processed through the same
procedure. This facilitates distribution of available resources
among different requests in an efficient manner. For example,
consider a setting in which packets are sent along shortest (or
almost-shortest) paths, determined by the source node. For such
a setting, a precomputation scheme would identify a number
of shortest and near-shortest paths in advance and supply dif-
ferent paths to different connection requests, effectively facili-
tating load balancing.

In fact, several existing network mechanisms employ some
form of precomputation. As a straightforward example, consider
standard IP routing, where each packet is forwarded by a router
according to itsprecomputedrouting table.

As will be demonstrated, many of the algorithmic tools that
are often proposed as building blocks for network control and
management were not designed with precomputation in mind,
and better results can be obtained when such a scheme is consid-
ered. The problem of how to efficiently precompute a set of solu-
tions for a wide range of parameters effectively opens a new area
of research. We note that the running time of the precomputation
scheme is important due to the following reasons. First, the time
available for precomputation is limited because the network el-
ement has other off-line tasks. A second limitation arises from
the need to invoke the precomputation scheme upon changes in
the link state, because such changes may invalidate the precom-
puted solutions.

In this paper, we focus on the precomputation perspective of
Quality-of-Service (QoS) routing. QoS routing is, undoubtedly,
one of the major building blocks for supporting QoS and, hence,
a necessary component of future communication networks. In-
deed, it has been the subject of several recent studies and pro-
posals (see, e.g., [6], [7], [9], [11], [16], [19], [21], [24], [25],
[27], [28], and references therein).

QoS routing is, in general, a complex problem, for several
reasons. One complication is the need to deal with several QoS
requirements, each potentially imposing some constraints on
the path choice. Then, beyond the need to address the require-
ments of individual connections, QoS routing needs to consider
also the global use of network resources. The above obstacles
notwithstanding, QoS routing is facilitated in many practical
settings by the following. First, while a connection may pose
several QoS requirements, it turns out that these often trans-
late mainly into abandwidthrequirement [1], [2]. Bandwidth,
in turn, belongs to the class of “bottleneck” path requirements,
which are much easier to handle than “additive” requirements,
such as delay, loss, or jitter [11], [16], [17]. As for global net-
work optimization, often it turns out that much can be achieved
by employing the simple criterion ofhop minimization[1], [3];
indeed, a consequence of the need to reserve resources such as

bandwidth oneach link of the connection’s path is that with
fewer hops, one consumes fewer resources. As a result, hop-con-
strained path optimization has emerged as an important com-
ponent of several recent proposals for IP-oriented QoS routing
protocols [9]. Luckily, hop minimization turns out to be an op-
timization criterion that is relatively easy to handle.

The high complexity associated with QoS routing on the one
hand and the requirement of fast path selection on the other
hand make precomputation highly desirable for QoS routing
schemes. Accordingly, this paper mainly focuses on the problem
of precomputing paths of maximal bandwidth for each pos-
sible hop-count value. This problem was initially investigated in
[12], and was termed there as theall-hops optimal pathproblem
(AHOP). While a trivial solution to that problem is offered by
the standard Bellman–Ford algorithm [8], in [12] an algorithm
with a lower worst case bound is presented; yet the improve-
ment is achieved only in dense (highly connected) topologies,
while communication networks usually have a sparse topology.
In this paper, we show that, by exploiting thehierarchical struc-
ture typical of large-scale networks, a better solution in terms of
computation complexity can be obtained.

Next, we consider QoS routing in networks with topology
aggregation, which improves the scalability of link state proto-
cols by effectively limiting the amount of link state information
stored at a node. With topology aggregation, subnetworks, or
routing domains, do not reveal the details of their internal struc-
ture, but rather supply the aggregated representation to the out-
side world. The aggregated representation summarizes traversal
characteristics of a routing domain. It may include, for example,
the description of paths available across the domain. The aggre-
gated representation is not computed for a specific event param-
eter, such as required path delay, but for a wide range thereof;
therefore, as we will see, precomputation techniques are an ef-
ficient tool for calculating aggregated representations. We indi-
cate that precomputation is a necessary element for performing
QoS routing in such settings and establish an appropriate pre-
computation scheme.

Finally, we demonstrate the (wide) scope of problems that
can benefit from precomputation techniques by considering
the harder case ofadditive QoS requirements andgeneral
(additive) path optimization criteria (i.e., other than hop min-
imization). The respective problem becomes a variant of the
restricted shortest path(RSP) problem, which is known to be

-hard [10]. Some general approximation schemes that are
-optimal have been proposed (see, e.g., [26] and references

therein). However, those schemes have not been designed with
precomputation in mind, and, consequently, are not adequate
when precomputation is sought. Accordingly, in this paper we
establish an approximation scheme which offers both efficient
solutions as well as efficient performance for precomputing
“optimal” (minimum cost) paths for all possible values of an
additive QoS requirement.

The rest of this paper is organized as follows. First, in Sec-
tion II, we formulate the network model and formally state the
considered problems. In Section III, we consider the problem
of hop minimization with bottleneck QoS constraints in hier-
archical networks and present and analyze our precomputation
scheme. In Section IV, we extend our scheme for networks with
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topology aggregation. In Section V, we consider additive QoS
constraints and general (additive) path costs, and we present and
analyze our precomputation scheme and demonstrate its advan-
tages over standard alternatives. Finally, conclusions appear in
Section VI. Due to space limitations, some proofs and technical
details are omitted and can be found in [22].

II. M ODEL AND PROBLEM FORMULATION

This section formulates the general model and main problems
addressed in this paper.

A. Network Model

We begin with a definition of ageneralcommunication net-
work; definitions of some specific classes, namely,hierarchical
andaggregatednetworks, will be introduced in the following
sections.

A networkis represented by a directed graph , where
is the set of nodes and is the set of links. We denote by

and the number of network nodes and links, respectively,
i.e., and . An -path is a finite sequence
of distinct nodes , such that,
for , ; is then said to
be thenumber of hops(or hop count) of . The subpath of
that extends from to is denoted by . Let be a

-path and be a -path; then, denotes
the -path formed by concatenation of and . We
denote by the maximum possible hop count of any path
in that may be considered for routing purposes. Obviously,

, and it is much smaller in many typical network
topologies.

Each link is assigned a positiveweight , whose sig-
nificance depends on the type of considered QoS requirement.
For example, when the QoS requirement is an upper bound on
the end-to-end delay, the link weight is its delay; whereas when
a bandwidth requirement is considered, the link weightis re-
ciprocal to its available bandwidth. Accordingly, thepath weight

of a path is defined differently for additive metrics,
such as delay, than for bottleneck metrics, such as bandwidth.
When link weights constitute anadditive metric, theweight

of a path is defined as the sum of weights of its links,
i.e., . When link weights constitute abot-
tleneckmetric, theweight of a path is defined as the
weight of its worst link, i.e., .

We can define the notion of a path that is “best” when only
path weights are considered. Aminimum-weight -path is a
path whose weight is no larger than that of any
other -path.

Obviously, a minimum-weight path has the best performance
with respect to the QoS requirement that is captured by the link
weight metric; for instance, it is a path with minimum delay
or maximum bandwidth. Minimum-weight paths can be effi-
ciently found by Dijkstra’s shortest path algorithm, in

computational complexity [8]. Obviously, if the min-
imum-weight path fails to meet the connection’s QoS require-
ment, then so does any other path. However, when the min-
imum-weight path does meet the QoS requirement, it is often
not the “right” choice, as it may be wasteful in terms of global

network usage, e.g., it may have a large number of hops, or it
may use “expensive” links.

Therefore, the goal of QoS routing is to identify a path that
satisfies a given QoS requirement while consuming as few re-
sources as possible. Since the amount of the resources consumed
on a path depends to a large extent on its number of links, the
path hop count is considered to be a good criterion for estimating
the path quality in terms of global resource utilization. When the
hop count criterion is not satisfactory, one can define somelink
costmetric that estimates the quality of each linkin
terms of resource utilization; such a cost may depend on various
factors, e.g., the link’s available bandwidth, its location, etc. The
cost of path is defined to be the sum of the costs of its
links, i.e., .

In this paper, we will consider both cases of global utilization
criteria, namely, hop count and general (integer) link costs. Note
that the former is a special case of the latter. For clarity, we say
that a path is a -weight constrained if its weight is no more
than ; similar definitions apply to -hop constrained paths and
-cost constrained paths.

B. Problem Formulation

We are now ready to formulate the main problems that are
considered in this paper. Given a connection request between a
source node to a destination node with a given QoS
requirement , and given the network utilization preferences as
captured by some link costs, the goal of the QoS routing scheme
is to identify an -path , which meets the QoS requirement
at minimum cost. This can be formulated as arestricted shortest
path (RSP)problem.

Problem RSP:Given a source node, a destination node,
and a QoS requirement, find a minimum-cost path between

and such that .
We refer to a solution of Problem RSP as a-weight con-

strained optimum -path.
For additive weights and general costs, Problem RSP is in-

tractable, i.e., -hard [10]. However, there exist pseudo-poly-
nomial solutions, based on dynamic programming, which give
rise to fully polynomial approximation schemes (FPAS), whose
computational complexity is reasonable (see, e.g., [26] and ref-
erences therein).

As mentioned above, many QoS routing problems consist of
identifying, for each connection request, a path of minimum
hop count that still meets the connection’s bandwidth require-
ment. In other words, the path weight is a bottleneck metric, and
its cost is equal to its number of hops. Effectively, these prob-
lems can be formulated as variants of Problem RSP, for which
1) weights are of the bottleneck type and 2) links have equal
costs; each of these two simplifications renders Problem RSP
tractable. The first goal of this paper is to provide efficient pre-
computation schemes for this class of problems, whose formal
definition is presented next.

Problem BH-RSP (Bottleneck Weight Hop Cost RSP):Given
a source node, a destination nodeand a bottleneck QoS re-
quirement , find a path between and of minimum hop
count such that .

As mentioned in Section I, QoS routing can often be con-
siderably facilitated by means of employing aprecomputation
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scheme, which performs the path searcha priori for any possible
connection request. Such a scheme comprises of two phases: the
first phase prepares a database with precomputed paths for any
possible QoS requirement, and the second phase promptly re-
trieves the required path from the database upon a connection
request.

Precomputation schemes for equal link costs (i.e., minimum
hops) were investigated in [1] and [12], for bottleneck as well
as additive weights. A simple precomputation scheme, which
“inverts” the roles of the constraint (QoS requirement) and the
optimization criterion (hops), was proposed in [1]. In particular,
that scheme computes a minimum weight for each possible hop
count; upon a connection request, then, one would choose the
minimum hop value for which the corresponding path meets
the connection’s QoS requirement. Accordingly, we define an

-hop constrained optimal -pathto be a path of minimum
weight among all -paths with hop count of at most. The
AHOP problem was then formulated in [12] as follows.

Problem AHOP: Given are a graph , a source
node and a maximum hop count . Find, for each hop
value , and each destination node , an -hop
constrained optimal -path.

We will contrast our precomputation scheme with schemes
that are based on solving Problem AHOP. In addition, we will
consider the precomputation perspective in the context of ad-
ditive QoS requirements and general path costs. Obviously, in
this case, precomputation of exact solutions is intractable, since
the basic underlying (RSP) problem is intractable. Therefore, in
Section V we resort to precomputingapproximated( -optimal)
solutions.

III. PRECOMPUTATIONSCHEME FORPROBLEM BH-RSP
IN HIERARCHICAL NETWORKS

In this section, we present and analyze our precomputation
scheme for the problem of hop minimization with bottleneck
QoS constraints, i.e., Problem BH-RSP, in hierarchical net-
works.

A possible approach for devising a precomputation scheme
is to fully precompute all solutions during the first phase.
With this approach, the second phase just consists of searching
for the solution in the database produced by the first phase,
according to the specific QoS requirement of the connection
request. Such is indeed the precomputation scheme for Problem
BH-RSP proposed in [12], which consists of precomputing
all paths for all possible bandwidth requirements, i.e., solving
Problem AHOP. The Bellman–Ford shortest path algorithm
provides a simple precomputation scheme for solving Problem
AHOP with a computational complexity of ; for a
general (dense) topology, that bound can grow to be as large as

. In [12], an alternative scheme is described whose
computational complexity is ; evidently,
the latter outperforms Bellman–Ford’s in dense topologies,
i.e., when , but not in sparse topologies,
which are the typical case of communication networks. The
computational complexity incurred by the second phase of both
schemes is just , where is the hop count of
the identified solution.

It thus remained an open question whether one can devise a
faster precomputation scheme for typical network topologies.
In the following, we demonstrate that, by exploiting the hierar-
chical structure that is typical of large-scale networks, one can
establish a precomputation scheme for Problem BH-RSP, which
offers a significant improvement upon the above solutions.

We begin with a formulation of the hierarchical model.

A. Hierarchical Model Formulation

A routing algorithm may be presented with a hierarchical
topology due to two possible reasons. First, the (actual)
topology intrinsically has a hierarchical structure, as is often
the case with large-scale networks. Alternatively, the (actual)
topology was hierarchically aggregated, as in the ATM PNNI
recommendations [25].

We begin with the first case, assuming alink staterouting
environment, where the source node has a detailed image of the
entire network. Beside being an interesting frameworkper se,
it provides the required foundations for an extension that deals
with the second case, which will be considered in Section IV.

We assume that the network has a certainhierarchical struc-
ture. In order to state the precise meaning of the last term, we
need to introduce some additional terminology.

The network is referred to as theactual net-
work. Suppose that we partition the actual network nodes into
some disjoint set oflayer-1 peer groups(or clusters). Further-
more, suppose that we repeat the above process, such that, for
each , layer- peer groups are combined into layer-
peer groups. We repeat this process until, for some, we end
up with a single layer- peer group. Having performed such
a ( -stage) partition, we say that nodes that form a layer-1
peer group are itschildren and is their parent. Similarly,
layer- peer groups that form a layer-peer group are
referred to as the children of; is referred to as their parent.
We denote by the maximum hop count of a path in a peer
group that can be considered for routing purposes. As we will
see, plays an important role in our scheme.

A node in a peer group, which has a neighbor that does not
belong to , is called abordernode of . For each peer group

that includes the source node, we consider to be a border
node of . We also assume that a path between two nodes of a
peer group does not cross the peer group’s boundary.

We are now ready to define the concept ofhierarchical struc-
ture. Intuitively, it means that the network can be partitioned into
peer groups, according to the above process, such that, for all,

, each layer- peer group has a small number (at
most ) of children, and, at the same time, the number of border
nodes in a peer group is also small (at most). Formal defini-
tions are given below.

Definition 1: A network is said to be -hier-
archical if it can be iteratively clustered into some layers of
peer groups, according to the process described above, such that
all the following hold.

1) For , each layer- peer group is a union of at
least two and at most children.

2) The number of border nodes of each peer group is at most
.
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Fig. 1. Example of a hierarchical network.

Note that, since each layer- peer group has at least two
children, we have that .

Let us illustrate the above terminology through an example.
Fig. 1 depicts a -hierarchical network. ,

, are layer-2 peer groups, while
are layer-3 peer groups. In this example, .

We assume that the hierarchical structure of the network, i.e.,
partition into peer groups, is given. The next lemma establishes
a “sparsity” property of hierarchical networks.

Lemma 1: The number of links in a -hierarchical net-
work is at most .

Proof: We divide the set of actual network links into the
following subsets .

1) includes all links in that connect nodes of the same
layer-1 peer group.

2) , for , includes all links in that
connect layer- peer groups.

Each node is connected to at mostnodes of its layer-1 peer
group. Thus, . Since each layer-peer group
comprises of at least two children, the number of layer-peer
groups is . Note that each layer-peer group, ,
is connected to at most layer- peer groups. Note also that
each two layer- peer groups are connected by at mostlinks.
Hence, for , it holds that . We con-
clude that

and the lemma follows.
In practical settings, and are small values. Typically, a

network grows as a flat topology until its size reaches a certain
threshold, which triggers the creation of a new peer group. As
the network grows larger, more peer groups are added, but the
size of each peer group remains bounded. Thus, the size of a peer
group does not depend on the size of the network, hence, we can
assume that . Border nodes connect a peer group to
its neighbors; in typical settings, the number of neighbors does
not depend on the network size, i.e., . Hence, in such
settings, we have and .

B. Traversal Functions

The precomputation scheme proposed in [12] consists of
precomputing all paths for all possible bandwidth requirements.
Our precomputation scheme is based on a different approach.
Rather than explicitly precomputing a set of paths for each

Fig. 2. Typical traversal functionF (h).

Fig. 3. Algorithm BH-HIE.

destination, our scheme computestraversal functions(defined
below) for each peer group at each hierarchical layer. The
traversal functions summarize the ability of a peer group to
support QoS connections that may be established across it.
Such an approach allows to exploit the network’s hierarchical
structure and yields an efficient precomputation scheme. In
addition, this approach is useful in networks with topology
aggregation, as will be shown in the next section.

Definition 2: Given a peer group and two border nodes,
and of , the traversal function is defined to be
the minimum weight of a -path whose hop count is at
most .

A typical traversal function is depicted in Fig. 2.
In this example, the minimum weight of a 5-hop constrained

-path across is 1, while the minimum weight of a 3-hop
constrained path is 7.

C. First Phase: Algorithm BH-HIE

We proceed to describe Algorithm BH-HIE, which imple-
ments the first phase of our precomputation scheme. For each
peer group and for each pair of s border nodes,
the algorithm computes the corresponding traversal function

.
The key idea is to compute the traversal function of a peer

group out of the traversal functions of its children. Accordingly,
Algorithm BH-HIE runs across the hierarchical layers in a
“bottom-up” manner, processing first peer groups of layer-1,
then peer groups of layer-2, and so on, up the last,s layer. For
each peer group and for each border node of , the algo-
rithm invokes Procedure CLUSTER, described in Section III-C1.
The formal specification of Algorithm BH-HIE appears in
Fig. 3.

1) Procedure CLUSTER: We proceed to describe Procedure
CLUSTER, the main building block of Algorithm BH-HIE. Pro-
cedure CLUSTER receives as input some layer-peer group



ORDA AND SPRINTSON: PRECOMPUTATION SCHEMES FOR QoS ROUTING 583

(a)

(b)

Fig. 4. Construction of auxiliary graph�. (a) Peer group�. (b) Auxiliary
graph�.

and a node , which is one of s border nodes. It then (pre)com-
putes the traversal function for each border nodeof

. The order of processing of peer groups by Algorithm BH-HIE
implies that, when Procedure CLUSTER is applied to a layer-
peer group , it already has available the traversal functions

for each child of .
Since layer-1 peer groups have flat topologies, we can employ

the standard Bellman–Ford scheme. For all higher layers peer
groups, however, we need more elaborate methods, in order to
exploit their hierarchical structure.

The procedure starts by constructing the following auxil-
iary graph , whose purpose is to provide a concise
representation of children and the connectivity among them.
Each child of is represented in by the set of
its border nodes. Each pair of s border nodes is
connected by several links, each corresponding to a different
hop count constraint. Specifically, for each ,
we add a link between and in , with cost
and weight . In addition, for each actual
network link that connects children of, we add a
link to , with weight and cost .
Fig. 4 illustrates the construction of the auxiliary graph for a
layer-3 peer group.

The lemma below follows from the construction ofand
from the validity of traversal functions of the children of .

Lemma 2: Let be a pair of s border nodes. Then:

1) for each -path in , there exists a -path
in such that and ;

2) for each -path in , there exists a -path
in such that and .

The lemma implies that we can use the auxiliary graphfor
computing the traversal functions of. Specifically, we need to
find, for each border node of and for each , a

minimum weight -cost constrained -path in . The key
idea is to first remove (temporarily) all links fromand then add
them back to by increasing order of the weight values. During
this process, we maintain the tree of minimum-cost paths in
from the source node ; we update the tree after each insertion
of a link to .

More specifically, for each , we maintain the minimum
cost of a -path in . In addition, we maintain an array

, such that:

• keeps the weight of a-cost constrained op-

timum -path in ;
• keeps the predecessorof on ;

• keeps the cost of the last link of .

When we add a link to , we check whether the value
decreases; if it does, we updateand set

We perform a similar process for each nodefor which de-
creases as a result of adding link. Upon completion, for each
border node of , the traversal function is stored
in the array , i.e., for each ,

The formal specification of Procedure CLUSTER appears in
Fig. 5.

D. Procedure FIND

We proceed to present Procedure FIND. This procedure is in-
voked upon each new connection request, and its goal is to iden-
tify a minimum hop -weight constrained -path .

For clarity, we denote by the parent of, by the parent of
, etc., up to some peer group for which is a border node.

First, the procedure identifies, for each border nodeof each
peer group , the minimum hop count of a -weight
constrained optimal -path in . Next, a suitable path is
determined by Procedure PATH, which is described in the Ap-
pendix.

We begin with a layer-1 peer group . We prune each link
for which , and then apply a breadth-first

search (BFS) algorithm [8] to the reversed graph, i.e., a graph
in which each link appears in the reverse direction. This yields,
for each border node of , a -weight constrained optimal

-path in and its hop count .
For a layer- peer group , , we construct the fol-

lowing auxiliary graph . Each child of is represented
in by the set of its border nodes. Each pair of

s border nodes is connected a link, whose cost is set to

(1)

In addition, for each actual network link that con-
nects children of and whose weight is no more than, we
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Fig. 5. Procedure CLUSTER.

add a link to with cost . Finally, we con-
nect by a link each border node of and the destina-
tion node . The cost of such a link is set to the ; the
value of was computed in the previous iteration. We
note that a minimum-cost -path in corresponds to a

-weight constrained path in the actual network. Having con-
structed the auxiliary graph , we identify, for each border
node of , the minimum-cost -path in ,
by applying Dijkstra’s algorithm on the reverse graph of.
Then, we set . In the last step, Pro-
cedure FIND invokes Procedure PATH that identifies, for a peer
group and a border node , a -weight constrained op-
timal -path. The formal specification of Procedure FIND

appears in Fig. 6.

Fig. 6. Procedure FIND.

E. Analysis of the Precomputation Scheme

Lemma 3: Suppose that the (correct) traversal function
is available for each pair of border

nodes of each child of . Then, Procedure CLUSTER, applied
on and a border node of , computes the traversal function

for each border node of .
Proof: See [22].

Theorem 1: Algorithm BH-HIE determines, for each peer
group at each hierarchical layer, the traversal function

for each pair of border nodes of .
Proof: Straightforward by induction on hierarchical

layers and application of Lemma 3.
Lemma 4: The computational complexity of Algorithm

BH-HIE is .
Proof: See [22].

Theorem 2: Procedure FIND provides an
solution to Problem BH-RSP, i.e.,: given

a connection request with source node, destination
node , and (bottleneck) QoS constraint, and given the
output of Algorithm BH-HIE, Procedure FIND identifies,
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in steps, a -weight optimal
-path in .
Proof: See [22].

Note 1: In some settings the detailed path is not required.
For example, in order to decide whether to admit a connection,
we only need to know the minimum hop count of a QoS path.
Then, the computational complexity of Procedure FIND is just

.

F. Discussion

We conclude this section with a performance comparison be-
tween our scheme and some alternatives.

Consider first the “standard” precomputation scheme pro-
posed in [1] and [12], which was based on solving Problem
AHOP through Bellman–Ford’s shortest path algorithm.
Lemma 1 implies that hierarchical networks are sparse, in the
sense that . This, in turn, implies that the stan-
dard scheme incurs a computational complexity of
for its first phase, i.e., it is times slower than
ours. Since , our scheme offers a significant
improvement over the standard solution. The difference is
particularly significant when and ,1 which
is a typical case.

Considering the second phase, the standard scheme (as well
as any other which is based on fully solving Problem AHOP
in the first phase) yields a computational complexity of just

, where is the path identified by the scheme.
This is somewhat less than that of our scheme, i.e.,

. However, in typical settings, where ,
and , our scheme is just times

slower than the standard solution. Moreover, the difference is
not significant when is the dominating component.

Next, let us compare our precomputation scheme with an al-
ternative where no precomputation is performed at all. In such a
single-phase scheme, the required path can be identified by ap-
plying a BFS algorithm [8], which, for , incurs

running time compared to
of our scheme. Since , our solution is

times faster. Typically,
and , hence, the difference is significant.

It is interesting to compare the two approaches also in the
related context ofconnection admission, where one needs to
decide whether a connection request should be admitted based
on its QoS requirement and the cost it incurs; to that end, one
needs to identify the (best) cost of a path over which the con-
nection can be established, however, there is no need to ex-
plicitly specify the path itself. This means that our scheme al-
lows to obtain an admission decision upon a connection request
in just time (see Note 1), whereas the
single-phase scheme still incurs time. Thus, our solu-
tion is times faster. The difference
is significant in typical settings where .

1Recall thatH is the maximum hop count of a path inG and, in the worst
case,H = O(N), whileK = O(logN).

IV. PRECOMPUTATIONSCHEME FORAGGREGATEDNETWORKS

In the previous section, we assumed that each node has full
and unabridged information about link states, which is stored in
its topology database. However, such an approach suffers from
scalability problems. Indeed, as the network grows in size, sig-
nificant resources are consumed for flooding and recording the
changes in the link state throughout the network. With topology
aggregation, subnetworks, orrouting domains, do not reveal the
details of their internal structure, but rather supply the aggre-
gated representation to the outside world [15]. Such an approach
could also be mandated by security and administrative needs.
Topology aggregation is useful for ATM [25] and IP networks
[20].

A key issue in topology aggregation is how to provide
the routing information of a domain to the outside world.
Constructing an accurateaggregated representationposes
several complex challenges. First, there is a need to identify the
traversal characteristicsof a routing domain, i.e., its ability to
support connections with different QoS requirements. Second,
each domain, in turn, comprises of aggregated subdomains,
whose traversal characteristics are available only through
aggregated representation. Finally, each subdomain may use a
different method for representing its routing information.

In this section, we establish that precomputation is a useful
(virtually necessary) tool for constructing accurate aggregated
representations. In particular, we show that, by using precom-
putation schemes, the traversal characteristics of a peer group
can be computed efficiently. We employ the concept oftraversal
functions, introduced in Section III, in order to accurately rep-
resent the traversal characteristics. Further, we adapt our algo-
rithmic techniques in order to cope with aggregated networks,
i.e., networks in which each link represents an aggregated sub-
domain.

Also in this section, we consider a generic model for multi-
level aggregated networks. The model can be used, for example,
in conjunction with the ATM PNNI protocol [25], in which peer
groups are represented by structures termedcomplex nodes.2

Similarly to the previous section, we focus on bottleneck QoS
requirements and use hop minimization for optimizing resource
utilization.

A. Aggregated Representation of a Peer Group

A significant body of research has been devoted to the area of
topology aggregation; we proceed to quote a few relevant refer-
ences. A compact representation for undirected networks
and a single bottleneck QoS requirement was presented in [15].
For additive QoS constraints, [23] shows that an accurate rep-
resentation of a peer group requires links in the worst
case. An representation that achieves a bounded distortion
is presented in [4].

Devising a topology aggregation scheme that takes into ac-
count both the QoS constraints and the use of network resources
is still an open research issue. A practical approach is to asso-
ciate each pair of border nodes with two values: the first corre-
sponds to a (bottleneck) weight and the second to a cost value

2This requires a mild extension of the complex node structure. Specifically,
we allow parallel bypass links, each link corresponding to a different value of
the QoS constraint.
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(a)

(b)

Fig. 7. (a) Actual and (b) aggregated networks.

(e.g., hop count). This approach provides a compact representa-
tion, but suffers from high distortion. In order to reduce distor-
tion, some studies [5], [14], [18] present schemes that resemble
the traversal functions introduced in Section III. Specifically,
[5] proposes to use bandwidth-cost functions, i.e., functions that
specify the available bandwidth for several cost values; [14] and
[18] propose to approximate the bandwidth-cost functions by
using curves and link segments, respectively. We note that the
methods presented in the following for efficiently computing
traversal functions can be used in order to compute the curves
in [14] and line segments in [18], hence, resulting in a more ef-
ficient scheme.

B. Aggregated Model

In multilevel aggregated topologies, a domain comprises ag-
gregated subdomains. This gives rise to the followingaggre-
gated network model.

The actual network topology (i.e., with no aggregation) is rep-
resented by a directed graph. The aggregated network is rep-
resented by a directed graph, in which each link
represents an aggregated subdomainof . Fig. 7 depicts an
example of an actual network and its corresponding aggregated
topology. We assume that a node only knows the aggregated
topology . We denote by the maximum hop count of a path
that can be considered for routing purposes in the actual network

. Each link is associated with a traversal function
, which provides the minimum weight value that can

be supported by for each hop count limitation. More specif-
ically, for , is the minimum weight of a
-hop constrained -path across the subdomain, where

is a maximum hop count of a path acrossthat can be
considered for routing purposes.

Each path in can support several QoS constraints at dif-
ferent costs. Accordingly, we define the cost of sup-
porting the QoS constraint by .

Definition 3: Given a path
in and a QoS constraint , we define, for each link

, the local cost of supporting to be

. The cost of satisfying the
QoS constraint along the path is then defined to be

A traversal function in an aggregated network is defined as
follows.

Definition 4: Given an aggregated network, a source node
, and a destination node , we define theaggregated

traversal function , , to be the minimum

weight of an -path in for which . If
no such path exists, is defined as .

Intuitively, the aggregated traversal function inis identical
to the traversal function in the actual network. Furthermore,
the traversal function that is associated with each link

is, in fact, the aggregated traversal function of the
subdomain . Note that may, in turn, comprise aggregated
subdomains.

We proceed to formulate the aggregated version of Problem
AHOP (Agg-AHOP).

Problem Agg-AHOP:Let be an aggregated network,
where each link is associated with a traversal func-
tion . For a source node and each destination
node , find the aggregated traversal function .

Problem Agg-AHOP can be solved by substituting each link
with several links, each link being associated with

a single weight and cost value, such that ,
and then applying the Bellman–Ford algorithm on the resulting
graph. However, as the resulting graph includes
links, this approach incurs a high computational complexity
of . By using the algorithmic methods developed
in the previous section, we can devise an alternative scheme
for Problem Agg-AHOP, whose computational complexity is
significantly lower.

C. Precomputation Scheme

Consider first a simple case, in whichcomprises just links
and , and our goal is to compute a traversal func-

tion . We refer to this operation asmergingthe func-

tions and into a single function .
The merge operation essentially amounts to computing, for each
budget , , the partition of the budget be-
tween the links and that minimizes the weight of
a -path in the actual network, i.e.,

Our main observation is that, in the case of bottleneck QoS
parameters, the merge operation can be performed in just

steps, through the following inductive process. Clearly,
for budget , the optimal partition is . Having
computed the optimal partition for a budget ,
the optimal partition for a budget is then either

or :
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The merge operation allows to solve Problem Agg-AHOP in
acyclic directed graphs in time. For general directed
graphs, we present a more elaborated algorithm that utilizes that
same idea, and whose running time is . The algo-
rithm, referred to as Algorithm AGG-AHOP, is, in fact, an adap-
tation of Procedure CLUSTER (Section III) for networks with
topology aggregation.

The algorithm starts by constructing the following auxiliary
graph , whose purpose is to represent traversal charac-
teristics of subdomains and the connectivity among them. Each
link of is represented in by several links, each cor-
responding to a different cost constraint. Specifically, for each

, we add a link between and in , with
cost and weight , where is the aggre-
gated subdomain represented by. For each , we main-
tain the minimum cost of an -path in . In addition, we
maintain array , such that

• keeps the minimum weight of a-cost con-

strained -path in ;
• keeps the predecessor ofon ;

• keeps the cost of the last link of .

The key idea is to first remove (temporarily) all links from
and then add them back to by increasing order of the weight
values. When we add a link to , we check whether the
value decreases, and if it does, we updateand set

We perform a similar process for each nodefor which de-
creases as a result of adding link. Upon completion, for each
node of , the traversal function is stored in the array

. The formal specification of Algorithm AGG-AHOPap-
pears in Fig. 8.

Given a QoS constraint and a destination node, we deter-
mine a suitable path through the following procedure. First,
we determine the minimum costof a -path is that sup-
ports by setting . Next, path
is identified by iteratively discovering the predecessor of each
node, beginning with. The predecessor of is deter-
mined by setting , where

is the cost of supporting by the subpath of
identified so far. The budget allocated to link of

is set to . We note that the

identification of requires time.
Theorem 3: Algorithm AGG-AHOP determines, in

time the aggregate traversal function

for each node .
Proof: See [22].

D. Discussion

We presented an algorithm for computing tra-
versal functions in an aggregated environment. As previously
noted, a straightforward approach would be to substitute each
link by links and execute the Bellman–Ford algorithm in
the resulting graph. Since the Bellman–Ford algorithm would

Fig. 8. Algorithm AGG-AHOP.

then be applied to a graph with links, its computa-
tional complexity would be , which is
times higher than that of our scheme. Recall thatis the max-
imum hop count in theactualnetwork, whereas is the number
of nodes in theaggregatednetwork, hence, our improvement is
significant.

Next, let us compare our precomputation scheme with an al-
ternative where no precomputation is performed at all. In such
a single-phase scheme, the required path can be identified by
computing, for each link , the cost of supporting
the QoS constraint (i.e., ),
and then applying Dijkstra’s shortest path algorithm [8] to a
graph with link costs . This scheme incurs

running time, compared to in our
scheme. Hence, our scheme allows to significantly reduce the
time required for the identification of a suitable path.

V. PRECOMPUTATIONSCHEMES FORADDITIVE METRICS

In this section, we consider the routing problem with addi-
tive QoS constraints and general links costs. We assume a link
state environment, i.e., the source node has a full image of the
network. We consider general networks, i.e., we do not assume
that the network has a specific (e.g., hierarchical) structure. Our
purpose is to devise a scheme that (pre)computes, for each cost
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and for each destination node , a -cost
constrained -path of minimum weight, where is max-
imal cost of a path that can be considered for routing purposes.
Accordingly, we introduce the all-costs optimal path problem
(Problem ACOP), which is a generalization of Problem AHOP
for general link costs.

Problem ACOP: Given are a graph , a source
node and a maximum cost . Find, for each cost,

, and each destination node , a -cost constrained
-path of minimum weight.

Problem ACOP is computationally intractable since it con-
tains Problem RSP, which is -hard. Accordingly, we resort
to precomputation schemes that offerapproximatesolutions.

Definition 5: Given an instance of Problem ACOP, with
source node , maximum cost , and approximate ratio,

, an -approximate solutionis a set of paths , such
that, for each and , there exists an -path

that satisfies:

1) , for any -cost constrained -path
;

2) .

We note that an approximate solution for Problem ACOP
can be constructed on the basis of existing approximation
algorithms for Problem RSP (e.g., [13], [26]), i.e., by sequen-
tially executing them for various values of the cost constraint.
However, as we will see, such a simplistic approach results in
a (overly) high computational complexity. Therefore, in this
section we propose a scheme that precomputes a set of suitable
paths within computational complexity.
Upon a connection request, a suitable path is chosen from a set
of precomputed path within time.

This section is organized as follows. First, we present a
simple precomputation scheme whose running time is ,
which is pseudo-polynomial. Next, by using alogarithmic
scaling technique, we establish a pre-
computation scheme that offers an-approximate solution for
Problem ACOP.

A. Pseudo-Polynomial Solution for Problem RSP

As a first step, we present a simple precomputation scheme,
whose computational complexity is pseudo-polynomial. The
scheme is based on dynamic programming and is an extension
of the standard Bellman–Ford’s algorithm. For each node

we maintain array such that keeps
the minimum weight of a -cost constrained -path in
and keeps the predecessor ofin that path. The
algorithm iterates over “budget” values . At
each iteration, the algorithm repeatedly selects a link
and relaxes it. The process of relaxing a link consists
of testing whether the minimum weight of -path can
be improved by going through under the current budget
restriction and, if so, updating . Since for each

, the algorithm performs operations, its
complexity is . A formal specification of the scheme
can be found in [22].

Fig. 9. Algorithm RSP-GEN.

B. Polynomial Precomputation (Approximation) Scheme

We proceed to present an efficient precomputation scheme
that provides an-approximate solution to Problem ACOP. The
scheme is based on the pseudo-polynomial solution and uses a
logarithmic scalingapproach. Specifically, it considers only a
limited number of budget values, namely, ,
where , and .
For each node we maintain array such that,
for , keeps the minimum weight
of a -cost constrained -path in and keeps
the predecessor of in that path. The algorithm iterates over
“budget” values . At each iteration,
the algorithm repeatedly selects a link and relaxes it.
The process of relaxing a link consists of testing whether
the minimum weight of -path can be improved by going
through under the current budget restrictionand, if so, up-
dating . As will be shown below, the set of such paths
constitutes a-optimal solution for Problem ACOP. The formal
specification of Algorithm RSP-GEN appears in Fig. 9.

We will demonstrate the precomputation process by using the
network depicted in Fig. 10. Algorithm RSP-GEN is invoked
for , , and . Thus, . We consider a
request for a -path that satisfies a QoS constraint .
For this request, is an optimal path.
We show that the algorithm identifies a path whose weight is
at most and whose cost is at most . First, after
executing line 4, we have . Next, consider the
execution of the main loop, i.e., the loop that begins at line 6,
for . Since , the condition of line 12 is
satisfied, hence, upon completion of the iteration, it holds that

. Next, consider the iteration of the main
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Fig. 10. Execution of Algorithm RSP-GEN. For each linke the upper number
showsc and the lower number showsw .

loop for and the iteration of the subloop at line 11 for
. In line 13 we set , which is the highest

degree of that is lower than , where
. In the next lines we check whether

and, if so, we assign
. Thus, after completion of the iteration

of the main loop for , we have .
Finally, after the completion of the iteration for we have

, where . We conclude that
the algorithm identifies a path whose weight is at most ,
and whose cost is at most . In fact,
Algorithm RSP-GEN applied for , , and , yields
a path whose cost is 13, which is 1.18 times more
than the optimum (11).

Algorithm RSP-GEN constitutes the first phase of our pre-
computation scheme, and its output, i.e., the arrays , is
used by the second phase. That phase is invoked upon a con-
nection request betweenand a destination node , with a
QoS requirement .

Upon arrival of a connection request for an -path with
a QoS requirement , we first find the cost of by setting

, where . This operation
is performed through a binary search on
values of and requires time.
The running time can be improved by considering only

values of , namely, ,
where . This improvement yields a running time
of , and, as we prove in Theorem 4, does
not introduce a penalty in terms of approximation’s accuracy.

Next, we identify a suitable path
by using the information stored in the arrays
. Specifically, the predecessor of in is determined

by setting . Generally, the predecessor of
is determined by setting , where

and is
the cost of the subpath of discovered so far.

Theorem 4: Algorithm RSP-GEN computes, in
time, an -approximate solution of

Problem ACOP.
Proof: See [22].

C. Discussion

We established a precomputation scheme for Problem RSP
that provides -optimal solutions within a computational
complexity of for the first phase and

for the second phase.

Compared to an alternative single-phase (i.e., “no precom-
putation”) scheme, our scheme allows to significantly reduce
the time required for establishing a new connection. Indeed,
in a single-phase scheme, Problem RSP should be solved for
each connection request, through an-optimal approximation
to Problem RSP [26], which incurs a computational complexity
of . We conclude that the second
phase of our scheme allows to identify an-optimal path upon
a connection request times
faster.

As previously noted, a precomputation scheme can be triv-
ially constructed on the basis of existing approximation algo-
rithms for Problem RSP, such as [26], by sequentially executing
them for various weight values. In order to perform the pre-
computation for Problem RSP, this algorithm should be invoked

timesper destination, with a total complexity
of for all destinations, which is signif-
icantly ( times) higher than that of our solution.

VI. CONCLUSION

QoS routing poses major challenges in terms of algorithmic
design. On one hand, the path selection process is a complex
task, due to the need to concurrently deal with the connection’s
QoS requirements, as well as with the global utilization of net-
work resources; on the other hand, connection requests need to
be handled promptly upon their arrival, hence, there is limited
time to spend on path selection. In many practical cases, a pre-
computation scheme offers a suitable solution to the problem:
a background process (the “first phase”) prepares a database,
which enables to identify a suitable path upon each connection
request, through a simple, fast, procedure (the “second phase”).

While much work has been done in terms of path selection
algorithms for QoS routing, the precomputation perspective re-
ceived little attention. As was demonstrated in this paper, sim-
plistic adaptations of standard algorithms are usually inefficient.

Accordingly, this paper investigated the precomputation per-
spective, considering two major settings of QoS routing. First,
we focused on the (practically important) special case where
the QoS constraint is of the bottleneck type, e.g., a bandwidth
requirement, and network optimization is sought through hop
minimization. For this setting, the standard Bellman–Ford al-
gorithm offers a straightforward precomputation scheme. How-
ever, we showed that by exploiting the typical hierarchical struc-
ture of large-scale networks, one can achieve a substantial im-
provement in terms of computational complexity.

Next, we considered networks with topology aggregation,
which is an inevitable tool for providing scalable routing. We
indicated that precomputation is an inherent component of QoS
routing schemes in aggregated environments. Accordingly,
we extended our precomputation scheme for bottleneck QoS
requirements in a way that is suitable for topology aggregation.
This specific extension indicates how our precomputation tech-
niques can be adapted to aggregated environments in general.

Then we considered the second setting, namely, additive QoS
constraints (i.e., delay) and general link costs. As the related
routing problem is -hard, we focused on-optimal approx-
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imations and derived a precomputation scheme that offers a
major improvement over the “standard” approach.

Finally, we note that the precomputation concept is applicable
to various areas of network control and management, hence,
offering a rich ground for future research.

APPENDIX

DETAILED DESCRIPTION OFPROCEDUREPATH

We begin by presenting Procedure GET-PATH, which re-
trieves the paths (pre)computed by Procedure CLUSTER. Next,
we present Procedure PATH, which identifies the required QoS
path by concatenating paths returned by Procedure GET-PATH.
Formal specifications of the two procedures can be found in
[22].

A. Procedure GET-PATH

This procedure receives as input a layer-peer group , a pair
of ’s border nodes , and a hop constraint. The procedure
uses the output of Procedure CLUSTERto identify a -path

such that and .
If is a layer-1 peer group, then we use the following pro-

cedure. We first discover the predecessorof , then the pre-
decessor of , etc. The predecessor of is determined
by setting . The procedure returns the

path .
If is a layer- peer group, then we need a more elaborated

procedure, becauseruns through children of . We first iden-
tify the children through which the path runs. Next, we recur-
sively determine the detailed path through each (layer- )
child crossed by . Specifically, beginning with , we iter-
atively discover the predecessorof each node , such that

. This is done by setting ,

where is the subpath of identified so far. If and are
border nodes of some child of , then the subpath of

is determined by invoking Procedure GET-PATH on . Oth-
erwise, comprises of the link . We continue
this process till we reach .

B. Procedure PATH

This procedure identifies, for a peer group and a border
node , a -weight constrained optimal -path. If

, i.e., is a layer-1 peer group, such a path was identi-
fied by the BFS algorithm. For , Procedure FIND yields
the minimum-cost -path in the auxiliary graph

. Procedure PATH identifies a path in that corresponds to
. For each link , one of the following

cases applies.

1) connects border nodes and of different chil-
dren of . In this case, link is substituted by a link

.
2) connects border nodes and of the same child

of . In this case, we substitutewith the -path
across , which is identified by Procedure GET-PATH.

3) connects a border node of and the destination
. In this case, Procedure PATH is applied recursively for

and border node . The link is then
substituted by a path returned by the recursive invocation
of Procedure PATH.
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