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Abstract

Quality of service (QoS) routing has generally been addressed in the context of reservation-based network services (e.g. ATM, IntServ),

which require explicit (out of band) signaling of reservation requests and maintenance of per-flow state information. It has been recognized

that the processing of per-flow state information poses scalability problems, especially at core routers. To remedy this situation, in this paper

we introduce an approach for stateless QoS routing in IP networks that assumes no support for signaling or reservation from the network.

Instead, our approach makes use of the currently unused two bits in the DiffServ (DS) byte of the IP packet header. Simple heuristics are used

to identify a low-cost delay-constrained path. These heuristics essentially divide the end-to-end path into at most two ‘superedges’ that are

connected by a ‘relay node’. Routers that lie on the same superedge use either the cost metric or the delay metric (but not both) to forward the

packet. Standard hop-by-hop forwarding is performed with respect to either metric. Two different approaches are presented for implementing

the relay-based forwarding. In the first approach, a probing protocol is used to identify the relay node and the routing metrics of the

superedges. Tunneling and packet encapsulation are then used to forward packets from the source node to the relay node and then from

the relay node to the destination node. The second approach does not require probing, but instead relies on the time-to-live (TTL) field in the

header of the IP packet. Simulations are presented to evaluate the cost performance of the various approaches.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Motivation

The growing popularity of real-time and multimedia

applications over the Internet has stimulated strong interest

in extending QoS support to existing routing protocols (e.g.

OSPF, BGP) [3,5,15,17,49]. Several recent studies have

acknowledged the need for scalable QoS routing solutions

[4,11,27,29,48] and have given the stimulus for a number of

proposals on how to integrate QoS routing into a

Differentiated Services (DiffServ) framework [21,24,43].

For example, in one proposal that advocates integrating the

traffic engineering and scalable reservation aspects of

MPLS into the DiffServ architecture [21], QoS routing is

suggested as a mechanism to establish ‘MPLS paths’ onto

which aggregates of IP flows can be transported with given

QoS. In this context, MPLS paths are dynamically

established between ISPs as part of their bilateral Service

Level Agreements (SLAs).

So far, most work on QoS routing has been carried out

under the assumption that the underlying QoS architecture is

reservation based. In such architecture, routers maintain

per-flow state information (e.g. flow identity, the amount of

allocated bandwidth, priorities, etc.) and end systems use

explicit reservation messages (e.g. RSVP messages, ATM

PNNI signaling) to indicate their QoS requirements. In this

case, the goal of a QoS routing algorithm is to identify a

resource-efficient path for routing the reservation message.

To reduce the connection setup time, the path to be

identified should be likely to satisfy the requested QoS

requirements (i.e. the reservation request is likely to pass the

admission control test at all routers along the selected path).

The advantage of this explicit-reservation model is that it

allows the service provider to guarantee the requested QoS

on an end-to-end basis with a high degree of accuracy by

implementing admission control, traffic conditioning, and

reservation protocols. On the other hand, it has been widely

recognized that maintaining per-flow state information
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could lead to scalability problems at core routers. Accord-

ingly, the focus of the research community has shifted to

stateless QoS frameworks (e.g. DiffServ [9,10]) that rely on

per-class service differentiation at core routers (with class

information encoded in the header of the data packet),

leaving the maintenance of the per-flow state information to

edge routers. A stateless service model seems particularly

appealing to router vendors, whose priority is to reduce the

processing burden at the router to achieve high-speed packet

forwarding. Thus far, the research on stateless QoS has

mainly focused on packet scheduling issues (e.g. Refs. [31,

37–39]). In fact, it has been noticed that existing QoS

routing solutions have been developed ‘at some distance

from the task of development of QoS architectures’ [22]. In

particular, current QoS architectural models, including the

DiffServ, seem to implicitly assume that various classes of

traffic are forwarded along the same (best effort) path, with

service differentiation being achieved locally through

appropriate packet scheduling. Decoupling routing and

QoS provisioning can lead to ‘inefficient’ selection of

routes, hence reducing the likelihood of meeting the

applications end-to-end QoS requirements.

In this paper, we propose a simple approach for stateless

QoS routing in IP networks. This approach is intended to

complement, and be part of, existing stateless QoS

architectures, such as the DiffServ. It relies on dynamic

packet forwarding mechanisms that make novel use of the

two unused bits in the DiffServ (DS) byte and, optionally,

the Time-to-Live (TTL) field in the header of an IP packet.

Historically, the DS byte used to be called the TOS (Type of

Service) byte, which was originally intended for something

very similar to QoS routing. However, the original TOS byte

was rarely used for this purpose. Recently, this byte has

been renamed as the DS byte, with six of the eight bits being

used to encode the class information in the DiffServ

framework. In this paper, we propose to use the remaining

two bits to encode the routing metric according to which

packet forwarding is to be performed. We refer to these two

bits as the routing metric identifier (RMI) field. We present

a stateless QoS routing approach in which routers maintain

routing entries for each concerned routing metric (e.g.

delay, cost, etc.). Our approach involves the injection of

probe messages for exploration of viable QoS paths. No

state information is maintained at a router, which performs

the forwarding function based on information contained in

the packet header. Protocols and algorithms for supporting

the proposed stateless QoS routing framework are pre-

sented. Our approach requires very small extra compu-

tational overhead beyond what is currently used in best-

effort routing.

The rest of this paper is structured as follows. In the

remaining of this section, we present the network model and

an algorithmic statement of the QoS routing problem. In

Section 2 we present a series of source-based and distributed

heuristics for delay-constrained path selection.

These heuristics are based on the relay philosophy, in

which the routing metric of interest can be switched at relay

nodes, thus enabling stateless QoS routing. The proposed

heuristics can always find a feasible (delay constrained) path

if one exists. Two approaches for QoS based packet

forwarding are presented in Section 3. In the first approach,

a probing protocol is outlined for the discovery of a relay

node. Once a relay node is identified, tunneling and packet

encapsulation are used to forward packets along a low-cost

QoS path with known delay. The second approach relies on

a novel use of the TTL field in the header of an IP packet.

Simulation results are presented in Section 4, followed by

concluding remarks in Section 5.

1.2. Network model and problem formulation

The goal of QoS routing, in general, is to identify a

resource efficient path (or paths) that satisfies one or more

constraints on the maximum packet delay, available

bandwidth, etc. Different formulations of this problem

have been used in the literature (e.g. multi-constrained path

selection [23,25,26], restricted shortest path [20], etc.).

However, in many practical situations, the problem reduces

to finding a low-cost delay constrained path, which can be

stated as follows:

Definition 1. Delay-constrained least-cost (DCLC) pro-

blem: Consider a network that is represented by a directed

graph G ¼ ðV ;EÞ; where V is the set of nodes and E is the set

of possibly asymmetric links. Each link e ¼ ði; jÞ [ E

is associated with a cost value CðeÞ and a delay value DðeÞ:

The cost of a link can be assigned in various ways (e.g. link

utilization, inverse of available bandwidth, etc.). Given a

delay constraint D, the problem is to find a path P from a

source node s to a destination node d such that:

1. DðPÞ ;
P

e[P DðeÞ # D

2. CðPÞ ;
P

e[P CðeÞ is minimized over all paths satisfy-

ing the first condition.

The DCLC problem is known to be NP-hard [14],

necessitating the reliance on heuristic solutions. Several

computationally efficient heuristics have been proposed in

the literature (e.g. [20,35,40,41,46]). In Ref. [46] the author

proposed an algorithm that performs a breadth-first search to

find the optimal solution for the DCLC problem. However,

the running time of this algorithm grows exponentially with

the network size. Fully polynomial approximation schemes

(FPAS) are already known for many NP-complete problems

that can be solved by pseudo-polynomial algorithms.

Two efficient e-optimal approximation algorithms were

proposed by Hassin [20] with running times of

O(loglogB(lElðlVl=1) þ loglogB)) and O(lElðlV l2=1)log(lVl=1)),

respectively, where B is an upper bound on the optimal cost

(lV l2 1 times the maximum link cost). These algorithms

produce a path with a cost that is at most e-factor from the

optimal one. Despite the algorithmic elegance of these
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algorithms, they are still too complex to be applied in large-

scale networks. Furthermore, they all are source based.

Distributed solutions to the DCLC problem have been

proposed in Refs. [35,40]. These solutions have the

following properties in common: (1) each node knows

the minimum cost and minimum delay to every other

node in the network (disseminated using path-vector

protocols or computed by executing Dijkstra’s algorithm

on link-state information); (2) the cost and delay vectors

at all nodes are up-to-date (or at least consistent), a

condition that may not always hold in a dynamic

network; and (3) the path finding process added one

node at a time, where in each time the added node lies

on either the least-cost (LC) path or on the least-delay

(LD) path. The last restriction is aimed at reducing the

computational complexity of the search algorithm. The

worst-case message complexities of the heuristics in

Refs. [35,40] are OðlV l2Þ and OðlVlÞ; respectively. In

Ref. [41] the authors attempt to combine the benefits of

probing and backtracking based algorithms (better

adaptiveness and wider search) with those of distance-

vector algorithms (lower setup time). However, the

worst-case message complexity of their heuristic grows

exponentially with the size of the network.

2. Path selection algorithms

To achieve simple QoS-based forwarding, we restrict our

scope to path selection algorithms in which the computed

path consists of several concatenated superedges. A super-

edge is defined as a connected segment of the path on which

all routers use the same routing metric for packet

forwarding. A router that connects two superedges is

referred to as a relay node. First, we consider source

based path selection heuristics.

2.1. Source-based heuristics

Consider the DCLC problem with delay constraint D.

Suppose that a cost-efficient delay-constrained path is to be

found between a source node s and a destination node d. Let

Plcðu; vÞ and Pldðu; vÞ indicate, respectively, the LC and LD

paths from node u to node v, where u and v are any two

nodes in V.

Heuristic 1. A trivial heuristic for DCLC is to either choose

the LC path or the LD path, i.e. the computed path consists

of only one superedge. Clearly, if DðPlcðs; dÞÞ # D then the

optimal solution is given by Plcðs; dÞ: Otherwise, the LD

path is chosen provided that DðPldðs; dÞÞ # D (if

DðPldðs; dÞÞ . D, there is no feasible path). The compu-

tational complexity of this simple heuristic is twice that of

Dijkstra’s if link-state routing is used. If distance-vector

routing is used, the complexity is simply O(1).

Heuristic 2. Going one step further, we allow the

computed path to consist of up to two superedges. For

each node v [ V ; the algorithm considers the four

possible paths: Pldðs; vÞ< Pldðv; dÞ; Pldðs; vÞ< Plcðv; dÞ;

Plcðs; vÞ< Pldðv; dÞ; and Plcðs; vÞ< Plcðv; dÞ: Of the

approximately 4lV l possible paths, the algorithm selects

the one with the minimum cost provided that this path

satisfies the delay constraint. The node that connects the

two superedges on the selected path is called the relay

node. Note that for an arbitrary node v, the path

Pldðs; vÞ< Pldðv; dÞ is not necessarily the LD path from s

to d. More specifically, Pldðs; vÞ< Pldðv; dÞ may contain a

loop (i.e. node v may not be on the LD path from s to

d ). Likewise, Plcðs; vÞ< Plcðv; dÞ is not necessarily the

same as Plcðs; dÞ: However, as shown later, the

minimum-cost path returned by the algorithm is guaran-

teed to be loop free. The complexity of Heuristic 2 is

four times that of Dijkstra’s.

Heuristic 2 can be implemented as follows:

Step 1: Compute the LD path from node s to every node

v [ V :

Step 2: If DðPldðs; dÞÞ . D, return FAILURE (there is no

feasible path). Otherwise, go to Step 3.

Step 3: Compute the LC path from node s to each node

v [ V :

Step 4: If DðPlcðs; dÞÞ # D, return the path Plcðs; dÞ.

Otherwise, continue.

Step 5: Compute the LD path from every node v [ V to

node d.

Step 6: Compute the LC path from every node v [ V to

node d.

Step 7: From the resulting 4lVl paths, Piðs; vÞ< Pjðv; dÞ

where i; j [ {LC;LD} and v [ V ; choose the one with the

smallest cost.

Steps 1 and 3 require two runs of Dijkstra’s

algorithm, while Steps 5 and 6 require two runs of

Reverse Dijkstra’s [7]. The running time of Step 7 is

OðlV lÞ: Therefore, the overall complexity of Heuristic 2

is OðlV l2). If the Floyd–Warshall algorithm is used

instead of Dijkstra’s algorithms, then the one-time

complexity jumps to OðlV l3), but only Step 7 needs to

be executed online (in the Floyd–Warshall algorithm,

each node knows the LC and LD values for the paths

between all pairs of nodes in the network).

The following results can be stated on the performance of

Heuristic 2. Let PATHopt(D) and PATHalgo2(D) denote the

optimal path and the path returned by Heuristic 2,

respectively.

Result 1. For a node v [ PATHopt(D), if Plcðs; vÞ< Plcðv; dÞ

is a feasible path, then C(PATHopt(D)) ¼ C(PATHalgo2(D)),

i.e. the path returned by Heuristic 2 is optimal. The proof is

trivial and is omitted for brevity.
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Result 2. For any node v [ V ; if both Plcðs; vÞ< Pldðv; dÞ

and Pldðs; vÞ< Plcðv; dÞ are feasible, then

DðPlcðs; vÞ< Plcðv; dÞÞ # 2D2 DðPldðs; dÞÞ: ð1Þ

Result 2 follows from the fact that

DðPlcðs; vÞÞþDðPlcðv; dÞÞþDðPldðs; vÞÞþDðPldðv; dÞÞ# 2D;

so that

DðPlcðs; vÞ< Plcðv; dÞÞ

# 2D2 ½DðPldðs; vÞÞ þ DðPldðv; dÞÞ�

# 2D2 DðPldðs; dÞÞ: ð2Þ

Corollary.

(i) If Plcðs; vÞ< Plcðv; dÞ is a feasible path with cost that is

larger than the cost of the path returned by Heuristic 2,

then it must be that v � PATHopt(D).

(ii) If both Plcðs; vÞ< Pldðv; dÞ and Pldðs; vÞ< Plcðv; dÞ are

feasible, where v [ PATHopt(D), then we have

CðPATHalgo2ð2D2 DðPldðs; dÞÞÞ

# CðPATHoptðDÞÞ: ð3Þ

That is, if the path returned by Heuristic 2

satisfies the premise in (ii) under a delay constraint

2D2 DðPldðs; dÞÞ; then the cost of this path cannot be

worse than the cost of the optimal path under a delay

constraint D.

Heuristic 3. Heuristic 3 represents a tradeoff between the

previous two heuristics (less computational complexity

than Heuristic 2 but better performance than Heuristic 1). In

here, each node v in the network maintains a delay table and

a cost table, each consisting of lVl2 1 entries (one entry for

every other node). The entry for node vj at node v consists

of:

† The address of node vj;

† The delay of the LD path from v to vj;

† The cost of the above path (i.e. CðPldðv; vjÞÞ; and

† The predecessor of vj on the LD path from v to vj;

ld_lhopðPldðv; vjÞÞ:

Similar information is maintained in the cost table but

with the LD path replaced by the LC path. For distance-

vector routing, the information in these tables can be

disseminated as distance vectors. If link-state routing is

being used, then this information can be obtained after two

executions of Dijkstra’s algorithm (with an extra label to

keep track of the predecessor to each destination).

Given the above information, the algorithm first verifies

that there is a feasible path in the network by checking

whether DðPldðs; dÞÞ # D: If so, the algorithm checks if the

LC path Plcðs; dÞ is feasible, in which case it returns it as the

optimal solution. Otherwise, the algorithm proceeds in two

phases, as shown in Fig. 1. In Phase 1, the search proceeds

backward from the destination node d to the source node s

along the LD path Pldðs; dÞ until a relay node v is found for

which DðPlcðs; vÞÞþDðPldðv; dÞÞ# D: If such a node is

found, Phase 1 returns the path Plcðs; vÞ< Pldðv; dÞ:

Otherwise, the returned path from this phase defaults to

Pldðs; dÞ: Phase 2 attempts to improve upon the outcome of

Phase 1 by searching for a feasible path that consists of a LD

segment from s to a relay node v followed by a LC segment

from node v to node d (i.e. the search starts from node d and

proceeds along the LC path). Intuitively, the combined path

Plcðs; vÞ< Pldðv; dÞ for a node v [ Pldðs; dÞ has a lower cost

than the path Pldðs; dÞ: Similarly, the combined path

Pldðs; vÞ< Plcðv; dÞ for a node v [ Plcðs; dÞ has a smaller

delay than the path Plcðs; dÞ: It is worth noting that

Fig. 1. Pseudo-code for Heuristic 3.
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the combined path Pldðs; vÞ< Plcðv; dÞ for a node v [
Pldðs; dÞ and the path Plcðs; vÞ< Pldðv; dÞ for a node v [
Plcðs; dÞ can also be used to further improve the performance

of the algorithm. However, this requires executing Reverse

Dijkstra’s algorithm for each session with a different

destination, which will increase the OðlV lÞ computational

complexity of Heuristic 3.

In line 19 of the algorithm, the backward search along the

LC path is terminated once a node, say v, along the LC path

from s to d is found for which DðPldðs; vÞÞ þ DðPlcðv; dÞÞ .

D: This is because for any node w on the path Plcðs; vÞ; the

path Pldðs;wÞ< Plcðw; dÞ cannot be feasible since

DðPldðs;wÞÞ þ DðPlcðw; dÞÞ

¼ DðPldðs;wÞÞ þ DðPlcðw; vÞÞ þ DðPlcðv; dÞÞ

$ DðPldðs; vÞÞ þ DðPlcðv; dÞÞ . D

So there is no use in continuing to search for a relay node

along the LC path from s to v.

2.2. Correctness of the Proposed Heuristics

Since Heuristics 1 and 3 are special cases of Heuristic 2,

it is sufficient to prove the correctness of Heuristic 2. It is

obvious that the algorithm always returns a feasible path, if

one exists. So we only need to prove that the returned path is

loop-free. Note that a path that consists of two superedges

(e.g. an LC superedge and an LD superedge) may contain a

loop.

If the LD path from s to d is feasible, then Heuristic 2 will

check whether the LC path from s to d;Plcðs; dÞ; is feasible.

If so, this path is returned, which is clearly loop-free. The

other cases to be considered are as follows:

1. If the combined path through every relay node is not

feasible or if the costs of all such paths are greater than or

equal to CðPldðs; dÞÞ; then the algorithm will return

Pldðs; dÞ; which is also loop-free.

2. Now suppose that the algorithm returns a path that

consists of two superedges. This path can be

expressed as Pxðs; vÞ< Pyðv; dÞ for some relay node

v [ V ; where x, y [ {LC,LD}. There are four cases to

be considered, depending on x and y. Without loss of

generality, consider the case when both x and y are

equal to LC. We need to prove that the returned path

Plcðs; vÞ< Plcðv; dÞ is loop-free. Assume to the con-

trary that there exists a loop in this path; suppose that

there exists a node w on the LC path from s to v that

is also on the LC path from v to d (see Fig. 2). Since

Plcðs; vÞ< Plcðv; dÞ is the returned path by Heuristic 2,

we have

CðPlcðs;wÞ< Plcðw; dÞÞ $ CðPlcðs; vÞ< Plcðv; dÞÞ ð4Þ

But from Fig. 2 it is clear that

CðPlcðs; vÞ< Plcðv; dÞÞ

¼ CðPlcðs;wÞ< Plcðw; vÞÞ þ CðPlcðv;wÞ

< Plcðw; dÞÞ ð5Þ

which leads to an obvious contradiction. Thus, the

returned path must be loop-free.

2.3. Probe-based distributed heuristic

The previously introduced heuristics are source based. In

source-based routing, the source node performs the path

computation and inserts the full path in the connection

request (or in each packet) before sending the request to the

next hop. Packet-based source routing is available in IP, but

is rarely used. Instead, the vast majority of IP implemen-

tations rely on hop-by-hop (distributed) routing, in which all

nodes along the path participate in the path computation

task. To maintain compatibility with the current IP

infrastructure, we present a distributed implementation of

our stateless QoS routing approach, which is based on hop-

by-hop packet forwarding. This implementation, called

distributed delay-constrained algorithm (DDCA), uses the

previously discussed relay strategy. In essence, DDCA is an

extension of the DCR algorithm [40]. DCR uses the

following procedure to construct a delay-constrained path

from a source node to a destination node. The reservation

message travels along the LD path until reaching a node

from which the delay of its LC path satisfies the delay

constraint. From that node and on, the message travels along

the LC path all the way to the destination. In DDCA, we

replace the path construction process by a path probing

process and extend the probing direction to include both the

LC and LD directions.

In DDCA each node in the network maintains a delay

table and a cost table. These tables are similar to those

maintained in Heuristic 3 except that the entry for the

predecessor node to a destination is replaced by the next hop

along the LD (LC) path, ld_nhop (lc_nhop ). Similar

information is also maintained in the algorithms in Refs.

[35,40]. Note that in DDCA a node need not maintain the

network topology and link-state information, as in source-

based routing algorithms. The information in the delay and

Fig. 2. Hypothetical scenario for the occurrence of a loop in a returned path

with two superedges.
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cost tables can be distributed to nodes using distance (or

path) vector protocols [18].

Initially, the algorithm checks the feasibility of the LC

path from s to d. If DðPlcðs; dÞÞ # D, the algorithm returns

this path. Otherwise, the algorithm checks if a feasible path

is available (by verifying that DðPldðs; dÞÞ # D). If so, a

probing protocol is used to discover an appropriate relay

node that results in a low-cost feasible path. According to

this protocol, the source node constructs two probe

messages and sends them to a destination node d. One of

these messages is sent along the LD path to node d, while

the other is sent along the LC path. Each probe message

contains the following fields:

† probe_direction: Forwarding direction of the probe

message (LC or LD).

† next_node: Address of next hop on the path of the probe

message.

† relay_node: Address of relay node (initially set to

NULL).

† delay_so_far: Accumulated delay of path traversed by

the probe message from the source node up to the current

router.

† cost_so_far: Accumulated cost of path traversed by the

probe message from the source node up to the current

router.

† delay_constraint: D.

† total_cost: Cost of the best-known feasible path, initially

set to CðPldðs; dÞÞ: Once a relay node is discovered, the

value in this field is adjusted (reduced) to reflect the cost

of the new path.

† type: Type of probe message, which can be a probe query

message or a probe reply message.

Starting from the source, nodes along the LD (LC) path

to d are probed, one at a time. Consider, for example, the

probe message that is sent along the LD path. Node s sets the

fields in this message as follows:

probe_direction ˆ LD (bit 0)

next_node ˆ ld_nhop (read from the routing tables at

node s )

relay_node ˆ NULL

delay_so_far ˆ D(s, ld_nhop)

cost_so_far ˆ C(s, ld_nhop)

delay_constraint ˆ D

total_cost ˆ C(Pld(s,d )) (cost of the first known

feasible path)

The probe message that is sent along the LC direction is

initialized in an analogous manner, but with lc_nhop

replacing ld_nhop. Probe messages are sent to the next

hop along the LD and LC paths, respectively. When a node v

receives a probe message, it executes the algorithm in Fig. 3.

In lines 7 and 23 Fig. 3, the probe reply message

contains the direction of the probe (LD or LC), the

identity of the relay node v, and the total cost of the

discovered path. Unless the cost of the new path is less

than CðPldðs; dÞÞ; the value in the relay_node field will

stay at NULL. For the probe message that is sent along

the LD direction, a probe reply is generated by the first

relay node, say v, that satisfies DðPldðs; vÞÞ þ

DðPlcðv; dÞÞ # D: This is because it is not possible to

obtain a lower-cost path than Pldðs; vÞ< Plcðv; dÞ by

selecting another relay node on the LD path from v to d.

To see that, let w be a node on the LD path from v to d

Fig. 3. Pseudo-code for DDCA.
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and let DðPldðs;wÞÞ þ DðPlcðw; dÞÞ # D: Then,

CðPldðs;wÞ< Plcðw; dÞÞ

¼ CðPldðs; vÞÞ þ CðPldðv;wÞÞ þ CðPlcðw; dÞÞ

$ CðPldðs; vÞÞ þ CðPlcðv; dÞÞ ð6Þ

So there is no point is continuing the search beyond node

v. This does not apply to the probe message sent along

the LC path, where in this case the search continues for

a possibly better relay node. However, in this case, the

search terminates unsuccessfully (line 23) if the probe

message sent along the LC path encounters a node v for

which DðPlcðs; vÞÞ þ DðPldðv; dÞÞ . D: This is because for

any subsequent node w on the path Plcðs; dÞ; the path

Plcðs;wÞ< Plcðw; dÞ cannot be feasible since

DðPlcðs;wÞÞ þ DðPldðw; dÞÞ

¼ DðPlcðs; vÞÞ þ DðPlcðv;wÞÞ þ DðPldðw; dÞÞ

$ DðPlcðs; vÞÞ þ DðPldðv; dÞÞ . D

So there is no use in continuing to search for a relay

node along the LC path from v to d.

When node s receives the two probe reply messages,

it selects the path with the lower cost (if both messages

contain NULL in the relay node field, then node s selects

the LD path between s and d ). Note that the probe

direction is needed in the reply to distinguish between

LD þ LC and LC þ LD paths. A probe query message

may visit up to lV 2 1l nodes. Few computations are

needed at each node to process a probe message. Hence,

the worst-case message complexity of DDCA is OðlV lÞ:
There are two possible approaches to encode the

probe messages. The first one is to encode these

messages as ICMP (Internet Control Message Protocol)

packets. Currently, intermediate routers do not process

the payload portion of an ICMP packet. But it is possible

to define a new ICMP packet type and assign to it one of

the unused values in the type field. A QoS-capable router

that receives an ICMP packet with this new type

interprets this packet as a probe message, so it processes

it (e.g. it inserts the IP address of the relay node).

Routers that do not support QoS routing can simply

ignore probe messages. The second, and perhaps more

viable, approach is to define a new protocol type, called

Internet Probe Message Protocol (IPMP), which is

somewhat similar to ICMP except that it requires routers

to process the payload portion of the IPMP packet.

Currently, the protocol field byte in the IP header has

several unassigned values [34], and one of these values

can be used for IPMP. Both of the above approaches are

backward-compatible with the existing IP.

One important issue in the probing protocol is how

often probe messages are generated. One possibility is to

send these messages on demand (whenever a real-time

flow is to be ‘established’). Another possibility is to send

them on a periodic basis (e.g. at the same rate as that of

link-state or distance-path update messages), and

implement path caching at the source. A combination

of both approaches can also be used. Probe messages

may also be sent during the life of a flow for the purpose

of identifying a better route (i.e. rerouting the flow of

packets). In this case, the source may rely on end-to-end

delay measurements to infer the need for rerouting. The

effectiveness of such approaches is currently under

investigation, and will be reported in a future paper.

3. Dynamic forwarding mechanisms

Once a cost-effective constrained path has been

identified using DDCA, or a similar algorithm, the next

step is to design appropriate forwarding mechanisms that

implement the relay concept in a distributed manner. In

here, we present two such mechanisms. The first one

requires the use of a probing protocol, while no probing

is needed in the second mechanism. Both mechanisms

are suitable for stateless QoS routing.

3.1. Tunneling and encapsulation-based forwarding

Suppose that a relay node v has been identified.

Without loss of generality, assume that v � {s; d}: To

forward a packet from source node s to relay node v

along, say, the LD path, and then from node v to

destination node d along, say, the LC path, the original

IP packet is encapsulated into another (outer) packet (see

Fig. 4). The destination address of the outer packet is set

to the address of the relay node, while the destination

address of the inner packet is set to the address of node

d. Let frm be a function that maps the routing metric (e.g.

delay, cost, etc.) into an appropriate numeric value that is

encoded in the 2-bit RMI field. For the outer packet

frmðdelayÞ is inserted, while for the inner packet frmðcostÞ

is inserted. The packet is then forwarded in a standard

hop-by-hop manner. The outer packet will be forwarded

along the LD path to node v, which in turn strips off the

outer header and forwards the inner packet to node d

along the LC path. Tunneling the original packet via

node v can be achieved using the IP-within-IP encapsu-

lation technique, originally defined for Mobile IP [32]. It

is also possible to use minimal encapsulation techniques

such as the one defined in Ref. [33].

Fig. 4. Use of IP-within-IP encapsulation in QoS routing.
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An advantage of the above approach is that once the

relay node is identified, routers forward packets in the

same way as in best-effort routing (the relay node need

not process the 2-bit RMI field, which is set at the

source). However, the previously discussed probing

protocol is needed to identify a relay node. Also, there

is some overhead associated with packet encapsulation

and tunneling and with sending probe messages. Finally,

because the outer destination address is not that of the true

destination, it is relatively difficult to perform resource

management and distribution with respect to the destina-

tion address. This last problem may be remedied by using

IP loose-source routing (LSR), currently used for debug-

ging purposes, with the address of the relay node(s)

included in the option field.1

It should be emphasized here that the concept of

tunneling has already been used for multicast routing in

the Internet multicast backbone (MBONE) [13], and has

also been proposed in the context of ATM [2]. However,

in both applications the purpose of tunneling is not to

reduce the maintenance and routing burden at the

multicast nodes, but to connect multicast-capable nodes

through the general IP network (if all Internet routers had

multicast capability, tunneling would not have been

used). Tunneling has also been used in Ref. [1] to avoid

scalability problems by viewing each multicast tree as a

collection of unicast links (tunnels) and locating only the

multicast source and destination nodes on the junction of

the trees.

3.2. TTL-Based forwarding

An alternative forwarding approach is to make use of

the time-to-live (TTL) field in the IP header. In current

IP networks, each router decrements the TTL value by

the number of seconds that the packet spends in that

router (in IPv4), or by one (in IPv6). If the TTL value

reaches zero, the packet is discarded. We propose an

alternative approach for handling the TTL field, which

makes it possible to achieve stateless QoS routing. In this

approach, no probing is needed, as the relay node is

identified on a per-packet basis. Starting from the source

node, each router along the path of a given packet

computes the remaining time before the packet becomes

overdue. Initially, the remaining time is D. Once a QoS-

capable router receives a packet, it updates the TTL

value by subtracting from it the delay of the link from

which the packet was received and the expected

queueing and processing delays at the current router.

The resulting value is nonlinearly quantized (see below)

to fit into the 8-bit TTL field, and the packet is

forwarded to the next hop along the LC or the LD path,

depending on the RMI identifier. More specifically, a

router u that receives a packet from router v executes

the following algorithm before forwarding the packet to

the next hop:

if RMI ¼ frmðdelayÞ or RMI ¼ frmðcostÞ

TTL ¼ TTL 2 Dðv; uÞ–DqueueingðuÞ TTL

if TTL $ DðPlcðu; dÞÞ then

compute checksum for IP header

forward IP packet to lc_nhop

else if TTL $ DðPldðu; dÞÞ then

compute checksum for IP header

forward IP packet to ld_nhop

else // there is no feasible path

drop packet or forward it with no delay

guarantee

send ICMP message (‘path infeasible’) to

originating source

end if-else

end if-else

end if

In the above procedure, DqueueingðuÞ is the average

queueing and processing delay at router u. This value is

computed dynamically by router u, and can be specified for

each output interface at that router.

Basically, the TTL field is being used to carry the

due-date of a packet. The packet will be forwarded along

the LC path if, based on the router’s information, this

path can deliver the packet before its due-date. Other-

wise, the router will try the LD path. If even the LD

path is incapable of meeting the packet’s due-date, then

there is no need to keep forwarding the packet, so the

packet may be dropped or forwarded with no guarantees.

Note that there is an implicit assumption here that QoS

routing is used for real-time applications (e.g. voice and

video), which are typically transported using UDP/IP.

Hence, dropped packets will not be retransmitted by the

end system, and dropping overdue packets in the middle

of the path is clearly advantageous. The 2-bit RMI

allows for the encoding of up to four metrics. One of

these metrics can be used to indicate ‘best effort routing,’

in which case the packet is treated as in current

IP networks. When a packet with RMI ¼ frmðdelayÞ or

RMI ¼ frmðcostÞ is dropped at a router, the router may

send a special ICMP packet to the sender, indicating the

infeasibility of the path. The sender may then decide to

abort the session or to change its delay constraint (if

such ICMP packet is not sent, the router will continue

to drop the packets of that flow, wasting the

network resources between the source and the dropping

router).

As mentioned above, the remaining delay before the

packet becomes overdue has to be quantized to fit the 8-

bit TTL field. Nonlinear quantization techniques such as

the ones suggested in Ref. [5] can be used for this

purpose. In Ref. [5] the authors described a technique for1 However, LSR is known to have some security problems.
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exponentially encoding the link bandwidth and delay

values into the 16-bit TOS (Type of Service) field of

OSPF link-state-advertisement (LSA) packets. Such non-

linear encoding allows for the representation of a wide

range of bandwidth and delay values. In brief, the

encoding in Ref. [5] is done as follows. The 16-bit TOS

field is divided into a mantissa part (13 bits) and an

exponent part (3 bits). An appropriate base is chosen for

the exponent (in Ref. [5] the authors suggested using

base 8 for bandwidth and base 4 for delay). A bandwidth

(or delay) value is then expressed using scientific

notation. For example, a bandwidth value of 8 Gbps is

equal to 4096*86 bits, so the mantissa and exponent are

given by 4096 and 6, respectively (both encoded in

binary using 2’s complement).

In our case, the TTL field consists of 8 bits. So we

suggest using 4 bits for the mantissa and 4 bits for the

exponent, with base 2. The values produced by such

encoding consist of all the numbers X*2Y, where X and

Y are any numbers between 0 and 15 (note that some

values can have multiple representations). The encoded

values are in units of milliseconds. The maximum value

that can be encoded is 15*215 ¼ 491,520 ms, which is

sufficiently large. When the TTL value is updated at a

router, the resulting value may not exactly match the

resolution produced by the above nonlinear encoding. So

the router truncates the computed TTL value into the

next lower value supported by the nonlinear encoding

(i.e. the router takes a conservative approach). For

example, suppose that the router receives a packet with

TTL value ¼ 15*22 ¼ 60 ms. Suppose that the delay over

the link from which the packet was received plus the

average queueing and processing delay at the current

router is 22 ms. So the new TTL value is

60 2 22 ¼ 38 ms. Such value cannot be exactly encoded,

the nearest available encoding (36) is used instead. So

the router inserts the value 9*22 ¼ 36 in the TTL field

(mantissa ¼ 1001 and exponent ¼ 0100 in binary).

The main advantage of the TTL approach is that it

does not require a supporting probing protocol. Also, the

relay node is determined dynamically without relying on

possibly outdated information at the source (as in

the probing approach). On the other hand, the TTL

approach requires additional processing at the routers for

updating the TTL value and, possibly, the RMI field.

This may turn out to be insignificant, given that routers

currently process the TTL field (albeit in a different

manner). Updating the RMI field may require defining a

new protocol type to maintain backward compatibility

with existing best-effort routing. The quantization of the

remaining delay value at a router will slightly impact the

performance (since the delay values may be conserva-

tively quantized, it is possible for a router to unnecess-

arily reject the LC path).

4. Simulation results

We studied the cost performance of the previously

presented heuristics using simulated random topologies

that were generated using Waxman’s method [45]. Nodes

were placed randomly (with uniform distributions) on a

rectangular grid of dimensions 2400 times 4000 (in

simulated kilometers). Links were added such that the

probability that two nodes u and v are connected by a link

is given by bexpð2dðu; vÞ=ðaLÞÞ; where dðu; vÞ is the

Manhattan distance between nodes u and v, and L is the

maximum possible distance between any two nodes in the

graph. The parameters a and b are selected from the

range (0,1]. A large value for b results in nodes with a

high average degree, and a small a gives long paths. Both

parameters were varied to obtain appropriately sparse

networks. All simulations were conducted on 100-node

random topologies. Link costs were sampled from a

uniform distribution in the range [1,10], whereas link

delays were made proportional to their Manhattan distance

in the coordinate grid. For each experiment, 500 random

graphs were created. In each random network, we tried to

set up delay-constrained paths between all possible

source-destination pairs.

In the first experiment, we study the efficiency of the

source-based path selection heuristics, which include

Heuristics 1–3 and LDP (Least Delay Path). We use the

optimal (but exponentially complex) CBF algorithm [46] as

a point of reference. More precisely, we define

Fig. 5. Cost inefficiency of various source-based path selection heuristics.
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the inefficiency of an algorithm X as:

inefficiencyX ¼
costX 2 costCBF

costCBF

ð7Þ

Fig. 5 depicts the inefficiency of various source-based

heuristics. Clearly, LDP results in a very costly path. The

three other heuristics have reasonable costs, with Heuristic 2

being the most efficient and Heuristic 1 the least efficient of

the three. The inefficiency in Heuristics 1 and 3 relative to

CBF increases with the average degree of a node (the

connectivity of the network). Heuristic 2 seems to be less

sensitive to the node degree (the average additional costs of

Heuristic 2 compared to CBF are 2% and 3% for average

node degrees of 4 and 10, respectively). The reason why

Heuristic 2 achieves good average cost performance is due

to its larger search space. Note that all three source-based

algorithms (and also DDCA) have the same success rate

since they all return a path if one exists.

In the second experiment, we compare the cost

performance of four distributed heuristics: DDCA, DCR

[40], DCUR [35], and LDP. As before, the cost of CBF is

used as a reference. Note that our proposed TTL-based

forwarding approach has the same cost performance as that

of the DCR algorithm (which assumes a connection-

oriented network). The relative inefficiency of these

algorithms is depicted in Fig. 6 for two values for the

average node degree. Except for LDP (which is here

implemented in a distributed manner), the three tested

algorithms provide satisfactory cost performance, with

DDCA being the most efficient, followed by DCR, and

finally DCUR.

Fig. 7 depicts the average control-message overhead in

various distributed QoS routing algorithms as a function of

the delay constraint. In here, the overhead is measured in the

average number of exchanged messages (e.g. probe query

and probe reply messages). For DCUR and DCR, the

control message overhead includes Path Construction

messages and Acknowledge messages (an Acknowledge

message is sent by the destination node to notify the source

node that the delay-constrained path has been successfully

set up). Of the three algorithms, DDCA involves the least

exchange of control messages. Moreover, it is the only

algorithm that allows for stateless routing. For DDCA,

increasing the delay constraint leads to a reduction in the

average number of control messages. This is because when

the delay constraint is large, the LC path from s to d will

probably satisfy this constraint, avoiding the need for

further probing

5. Conclusions

In this paper, we presented an approach for stateless QoS

routing in IP networks. Our approach is based on simple

heuristics for finding a low-cost delay-constrained path in a

network. The returned path consists of at most two

superedges that are connected at a relay node. Within a

superedge, a packet is routed hop-by-hop using a given

routing metric (cost or delay). The routing metric may be

switched at the relay node. We presented simple source-

based and distributed path selection heuristics that

implement the relay strategy. Theoretical performance

bounds for these heuristics were presented. We also proved

the algorithmic correctness of these heuristics. To

implement the relay strategy in an IP network, we provided

two approaches, one relies on a probing protocol and the

other makes use of the TTL field in the IP packet header.

Simulation results were presented to evaluate the perform-

ance of the proposed heuristics and contrast them with

previously proposed heuristics.

Fig. 6. Inefficiency of distributed path selection algorithms (normalized by the cost of CBF).

Fig. 7. Control-message overhead in distributed QoS routing algorithms

versus the delay constraint (average node degree ¼ 4).
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