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Abstract—Routing is a process of finding a network path from
a source node to a destination node. The execution time and the
memory requirement of a routing algorithm increase with the size
of the network. In order to deal with the scalability problem, large
networks are often structured hierarchically by grouping nodes
into different domains. The internal topology of each domain
is then aggregated into a simple topology that reflects the cost
of routing across that domain. This process is called topology
aggregation. For delay-bandwidth sensitive networks, traditional
approaches represent the property of each link in the aggregated
topology as a delay-bandwidth pair, which corresponds to a point
on the delay-bandwidth plane. Since each link after aggrega-
tion may be the abstraction of many physical paths, a single
delay-bandwidth pair results in significant information loss. The
major contribution of this paper is a novel quality-of-service (QoS)
parameter representation with a new aggregation algorithm and a
QoS-aware routing protocol. Our QoS representation captures the
state information about the network with much greater accuracy
than the existing algorithms. Our simulation results show that the
new approach achieves very good performance in terms of delay
deviation, success ratio, and crankback ratio.

Index Terms—Delay-bandwidth sensitive networks, hierarchical
routing, QoS routing, topology aggregation.

I. INTRODUCTION

THE goal of quality-of-service (QoS) routing is to find a
network path from a source node to a destination node,

which has sufficient resources to support the QoS requirements
of a connection request. If such a path exists, the request is called
a feasible request and the path is called a feasible path.

The execution time and the space requirement of a routing
algorithm increase with the size of the network, which leads to
the scalability problem. For very large networks, it is impractical
to broadcast the whole topology to every node for the purpose
of routing. In order to achieve scalable routing, large networks
are structured hierarchically by grouping nodes into different
domains [1], [2]. The internal topology of each domain is then
aggregated to show only the cost of routing across the domain,
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that is, the cost of going from one border node (a node that con-
nects to another domain) to another border node. This process is
called topology aggregation. One typical way of storing the ag-
gregated topology is for every node to keep detailed information
about the domain that it belongs to, and aggregated information
about the other domains.

Since the network after aggregation is represented by a sim-
pler topology, most aggregation algorithms suffer from distor-
tion, that is, the cost of going through the aggregated network
deviates from the original value. Consequently, routing has to be
done based on inaccurate information, and it becomes NP-hard
to find the paths that are most likely to satisfy delay require-
ments [3]. Nevertheless, [4] showed that topology aggregation
reduces the routing overhead by orders of magnitude and does
not always have a negative impact on routing performance.

Some aggregation approaches have been proposed. Ref. [5]
presented algorithms that find a minimum distortion-free repre-
sentation for an undirected network with either a single additive
or a single bottleneck parameter. Examples of additive metrics
are delay and cost, while an example of a bottleneck parameter
is bandwidth. For an additive constraint, it may require
links to represent a domain in the distortion-free aggregation,
where is the number of border nodes in the domain. Ref. [6]
proposed an algorithm that aggregates directed networks with a
single additive parameter by using links. The algorithm
achieves bounded distortion with a worst-case distortion factor
of , where is the network asymmetry constant,
defined as the maximum ratio between the QoS parameters of a
pair of opposite directed links.

In this paper, we study networks with two QoS parameters,
delay and bandwidth. Some related work can be found in
[7]–[9]. Ref. [7] presented an aggregation method that aggre-
gates an undirected delay-bandwidth sensitive domain into a
spanning tree among border nodes. Therefore, there is a unique
path between each pair of border nodes after aggregation
and the space complexity is . The paper showed that
a spanning tree can provide a distortion-free aggregation for
bandwidth, but not for delay. Ref. [8] studied the problem
of topology aggregation in networks of six different QoS
parameters. The aggregated topology follows the ATM PNNI
standard [1]. The authors proposed to minimize the distortion
by using a linear programming approach. Both [7] and [8]
assumed certain precedence order among the parameters, so
that among several paths that go between the same pair of
border nodes, one path can be selected as the “best” path.

The state of a path in a delay-bandwidth sensitive network can
be represented as a delay-bandwidth pair [9]. If there are several
paths going across a domain, a single pair of values, which is
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a point on the delay-bandwidth plane, is not sufficient to cap-
ture the QoS parameters of all those paths [10]. Ref. [9] was the
first to use a curve on the delay-bandwidth plane to approximate
the properties of multiple physical paths between two border
nodes,1 without assuming any precedence among the parame-
ters. A curve is defined by three values: the minimum delay, the
maximum bandwidth, and the smallest stretch factor among all
paths between two border nodes. The stretch factor of a path
measures how much the delay and the bandwidth of the path
deviate from the best delay and the best bandwidth of all paths.
The curve provides better approximation than a single point, but
this approach has several shortcomings. First, the paper did not
provide a routing algorithm with polynomial complexity to find
a feasible path based on the aggregated topology. Instead, it pro-
vided an algorithm to check if a given path2 is likely to be fea-
sible. Essentially, the algorithm determined whether the point,
defined by the delay/bandwidth requirement, is within the curve
defined by the delay, bandwidth, and stretch factor of the path.
Second, although the paper provided an aggressive heuristic to
find the stretch factor of an interdomain path, there are cases
where only one QoS metric will contribute to the value, and the
information about the other metric is lost.

In this paper, we propose a new way of representing the aggre-
gated state in delay-bandwidth sensitive networks by using line
segments. Our approach will solve some problems in [9] and
other traditional approaches by introducing a new QoS param-
eter representation, a novel aggregation algorithm and the cor-
responding routing protocol. We compared our algorithm with
other algorithms, and the simulation results show that our algo-
rithm outperforms others due to smaller distortion.

The rest of the paper is organized as follows. Section II in-
troduces the network and aggregation models. Section III de-
scribes our QoS parameter representation. Section IV presents
the aggregation algorithm, and the routing algorithm follows in
Section V. Our simulation results are discussed in Section VI.
Finally, we conclude in Section VII.

II. NETWORK AND AGGREGATION MODELS

A large network consists of a set of domains and links that
connect the domains. It is modeled as a directed graph, where
link state can be asymmetric in two opposite directions. Fig. 1(a)
is an example of a network with four domains. There are two
kinds of nodes in a domain. A node is called a border node if
it connects to a node of another domain. A node is an internal
node if it is not a border node.

A domain is modeled as a tuple ( , , ), where is the
set of nodes in the domain, is the set of border nodes,
and is the set of directed links among the nodes in . The
entire network is modeled as ( , ), where

is the set of domains, is a set of
links that connect border nodes of different domains, and is
the number of domains in .

1The approach proposed in [9] was designed for multiple additive/bottleneck
parameters, while the discussions in this paper focus on only one additive pa-
rameter (delay) and one bottleneck parameter (bandwidth).

2The path may traverse several transit domains.

Fig. 1. Network model. (a) Whole network. (b) View of a node in domain A.

The links in and , , are called physical
links. The QoS parameter of a physical link is denoted as a pair
( , ), where is the delay of the link and is the bandwidth
of the link. Each pair ( , ) represents a single point on the
delay-bandwidth plane. A physical path from node to node

, which is denoted as ,
consists of a set of directed links , for .
Let ( , ) be the QoS parameter of link ( , ),
where is the delay and is the bandwidth of the
link. The delay of the path from to is . The
bandwidth is . For example, if and the
parameters of ( , ), ( , ), and ( , ) are (3,5), (5,4), and
(6,4), respectively, then the delay of
is and the bandwidth is .
Hence, the parameter of a physical path is also a point on the
delay-bandwidth plane.

There are several aggregation models for large networks. In
this paper, we shall use the topology aggregation model pro-
posed by the Private Network–Network Interface (PNNI) [1],
[11]. One of the representative topologies in PNNI is the star
topology. Other popular ones are simple-node and mesh. In a
simple-node topology, a domain is collapsed into one virtual
node. This offers the greatest reduction of information as the
space complexity after aggregation is , but the distortion is
large. The mesh topology is a complete graph among the border
nodes. The complexity of this topology is and its distor-
tion is much smaller. The star topology is a compromise between
the above two. It has a space complexity of and the dis-
tortion is between those of a simple node and a mesh. [12] com-
pares the performance of the above three aggregation methods.
It shows that the star topology outperforms the simple-node and
performs slightly worse than the mesh in a uniform network.

Let us consider the domain in Fig. 2(a), where nodes , ,
, and are the border nodes. The mesh aggregation is shown

in Fig. 2(b), and the star aggregation is shown in Fig. 2(c). In
a star topology, the border nodes connect via links to a virtual
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(a) (b)

(c) (d)

Fig. 2. Topology aggregation. (a) Domain F . (b) Mesh of the borders. (c) Star
representation. (d) Star representation with bypasses.

nucleus. These links are called spokes. Each link is associated
with some QoS parameters. To make the representation more
flexible, PNNI also allows a limited number of links connected
directly between border nodes. These links are called bypasses.
Fig. 2(d) is an example of a star with bypasses. We call the links
in an aggregated topology as logical links since they are not real.

After aggregation, a node in a domain sees all other nodes in
the same domain, but only aggregated topologies of the other
domains. For example, for the network in Fig. 1(a), the aggre-
gated view of the network stored at a node in Domain is
shown in Fig. 1(b). In such a view, the topology of Domain
is exactly the same as the original one but the topologies of the
other domains are now represented by border nodes, nuclei, and
spokes (without bypasses in this example). For a large network,
this aggregated view is significantly smaller than the original
topology and thus scalability is achieved. However, for the pur-
pose of QoS routing, it is extremely important to develop solu-
tions on how to represent the state information in this aggregated
topology and how to control the information loss due to aggre-
gation.

III. LINE SEGMENT REPRESENTATION

In this section, we propose a line-segment representation for
the aggregated state information. Given the original topology
and a ( , ) pair for each link, we shall first transform every
domain to a mesh among the border nodes as an intermediate
computation step, and then transform the mesh to a star with
bypasses. The state information of a logical link in either the
mesh or the final star is represented by line segments, which
will be discussed in depth shortly.

A mesh among the border nodes is a complete graph with log-
ical links connecting each pair of border nodes [see Fig. 2(b)]. A
logical link may represent multiple physical paths. For example,
in Fig. 3, there are five paths going from border node to border
node . One possible path is . The end-to-end
QoS parameter of this path is (4, 5). We can find the parameters
of all other paths and they are (7, 9), (10, 5), (2, 3), and (7, 7).

Fig. 3. Multiple paths.

Fig. 4. Representatives from Example 1.

When a logical link is used to represent all these paths, the QoS
parameter of the link should be the “best” parameter among the
paths. However, the “best” QoS parameter may not be defined
since there does not exist an absolute order among those pairs.
For example, parameter (2, 3) is better than parameter (7, 7) in
terms of delay, but not in terms of bandwidth. Fortunately, a par-
tial order can be developed.

Definition 1: A point is more representative than a
point if

• they are not the same, i.e., either or ;
• and .

In this paper, since the QoS parameter is a pair of values that
represents a point on the delay-bandwidth plane, we often use
parameter, pair, and point interchangeably. In the previous ex-
ample, (7, 9) is more representative than (10, 5) since 7 10
and 9 5.

Definition 2: Given a set of points on the delay-band-
width plane, is a representative of if there does not
exist any other point which is more representative
than . It means that, , or .

Example 1: Let be the set of the delay-bandwidth
QoS pairs of the physical paths from to in Fig. 3.

. (2, 3) is a represen-
tative of , since its delay is less than all other points in . The
other representatives are (4, 5) and (7, 9).

We plot all QoS points in on a delay-bandwidth plane as
shown in Fig. 4. The shaded area defines the region of supported
services, that is, any QoS request that falls in that region can be
supported by a physical path. The dotted line is a staircase rising
from left to right. The representatives are points on the convex
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corners of the steps. The corresponding paths of the represen-
tatives are called nondominated paths or Pareto optimal paths
in the literature. The size of depends on how many physical
paths there are between the pair of border nodes, which can be
exponential. The number of representative points is in the
worst case for a domain ( , , ). That is because there are at
most possible bandwidth values for the paths in the domain
and thus the staircase can have at most convex corners.

For the purpose of scalability, it is desirable to reduce the
memory space for storing the QoS parameter of a logical link
to . Hence, we shall neither store all QoS points in nor
store all representative points. The traditional way to solve this
problem is to keep only one QoS point per logical link. How-
ever, no matter which point we pick, much information is lost.
Our solution for this problem is to use a line segment that ap-
proximates the staircase, e.g., or in Fig. 4. Since every
line segment can be defined unambiguously by two endpoints,
the space needed for a logical link is . The line segment
representation strikes a tradeoff between the accuracy in approx-
imating the staircase and the overhead incurred.

After a line segment is chosen, all connection requests that
fall under the line segment are accepted. However, it should be
pointed out that not all requests under the line segment can be
actually supported. For example, in Fig. 4, if is selected to
approximate the staircase, then the unshaded areas below
represent connection requests that are accepted but not sup-
ported by any physical path. When a request is accepted but not
supported, our routing process will detect it, and the request will
eventually be rejected if a feasible path can not be found (see
Section V). On the other hand, when we reject the connection re-
quests that are above the line segment, we may reject supported
QoS. For example, if a connection request is in the shaded re-
gion above in Fig. 4, it is rejected although it can be served.
Therefore, the choice of line segment depends on the strictness
of the desired quality of the service. For instance, in Fig. 4, both

and are possible line segments. Using would prob-
ably reject more supported connection requests than , while
using would accept more unsupported requests than . We
use the least square method to find a line segment, which takes
linear time with respect to the number of representative points.
This line segment minimizes the least-square error, i.e., the sum-
mation of the squares of the distances from the points to the line.

We mentioned earlier that any line segment can be defined
by two endpoints. Due to the nature of the staircase, the line al-
ways has a nonnegative slope. We call the endpoint with smaller
bandwidth the lower endpoint, while the other one is called the
upper endpoint. We then denote a line segment as [lower end-
point, upper endpoint]. For example, in Fig. 4 is [(2, 1.5),
(9, 9)]. We further denote the lower endpoint and the upper end-
point of a line segment as and , respectively. The delay
of a point is and the bandwidth of a point is . There-
fore, is 2 and is 9.

We now define two operations for line segment parameters.
The first operation is the joint operation, denoted as “ .” This
operation defines the line segment parameter of a path

, given the line segment of link to be [ ,
] and the line segment of subpath to be

[ , ].

Definition 3:

The other operation is the disjoint operation, denoted as “ .”
This operation is needed when we want to split a link (one line
segment) into two links (two line segments).

Definition 4:

The disjoint operation is defined in a way that serves as the
algebraic inverse of the joint operation. The following lemma
shows the relation between the joint and disjoint operations. The
proof of this lemma can be found in Appendix II.

Lemma 1: If , and are three line segments and they
satisfy the following conditions:

• and ;
• and ;
•

Then .
Example 2: Let and

.

and

IV. QoS-AWARE TOPOLOGY AGGREGATION

Our topology aggregation algorithm consists of two phases:
1) find a line segment for each logical link in the mesh (complete
graph) of the border nodes, and 2) construct a star topology with
bypasses from the mesh.

A. Mesh Formation

In this phase, representatives of the paths between each pair
of border nodes are found. We obtain the representatives for
each pair of border nodes by running the Dijkstra’s algorithm
for every link bandwidth value. We first sort the links in the
domain by descending bandwidths. Let the largest bandwidth
be . We start by finding the smallest delay in a
graph that consists of only links of bandwidth . The pair
( , ) is a representative that has the largest band-
width. We then insert the links of the next largest bandwidth
value and find the smallest delay . If ,
( , ) is another representative. The process ends after
the smallest delays for all bandwidth values are identified.
The detailed algorithm of finding the representatives can be
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found in Appendix I-A. Other related references are [13] and
[14]. Sorting links takes time and Dijkstra’s
algorithm takes time [15]. Since there are
at most different bandwidth values, Dijkstra’s algorithm
will be executed at most times. Then, the total running
time of finding the representatives from a source border node
to all other border nodes is . As there
are border nodes, the total running time for finding all
representatives is .

After the representatives are found, linear regression is used
to find the line segment for each pair of border nodes. The time
needed for linear regression is proportional to the number of
representatives on the staircase. Since there are at most rep-
resentatives, the time complexity for linear regression between
one pair of nodes is . The complexity for all pairs of
nodes is thus . Therefore, the total time required for
the mesh formation phase is

. Note that
is typically small, and networks are typically sparse graphs, i.e.,

instead of . Moreover, the computation
is carried out on the graph of a domain instead of the entire net-
work.

B. Star Formation

Our next step is to aggregate the mesh into a star topology
with bypasses. According to the recommendation of PNNI, we
can set a default parameter value to spokes. There can be one or
more spokes of the default parameter value but at most
links can be of other values. As it is possible that all links in our
aggregation are of different values, we shall put at most
links in the domain topology after aggregation.

Let and be two border nodes and be the nucleus in the
star representation. If there is no bypass between and , the
only path from to is in the star. Our goal in this
phase is to find the QoS parameters of links and ,
such that the line segment of in the star is the same
as the line segment of in the mesh. Basically, we have to
“split” a single link in the mesh into two links and

in the star. There are three steps in this phase: 1) find
the spokes from the border nodes to nucleus; 2) find the spokes
from the nucleus to the border nodes; and 3) find the bypasses
between border nodes.

1) Spokes Incoming to the Nucleus: In order to distinguish
the line segments in the mesh from those in the star, we use su-
perscript for mesh and for star. For instance, let us consider
a line segment from to . If it is in the mesh, it is denoted as

; if it is in the star, it is denoted as .
In order to find spokes, we have to “break” the line segments

in the mesh. From the definition of the joint operation, we have
a general idea how the “broken” line segments look like. The
endpoint delays of the spokes and should be smaller than
those of , while the endpoint bandwidths of the spokes should
not be smaller than those of . Our algorithm of finding spokes
from border node to nucleus is based on these observations.
Recall that the lower endpoint and the upper endpoint of a line
segment are denoted as and , respectively. Given a

point , its delay and bandwidth are denoted as and ,
respectively. We define

where

The pseudocode of the algorithm to compute can be found
in Appendix I-B. The total running time for finding one spoke is

. There are spokes incoming to . Therefore, it takes
time to find all spokes incoming to the nucleus.

Example 3: Suppose the line segments from node 0 to nodes
1 and 2 are [(9, 4), (19, 6)] and [(3, 7), (3, 7)], respectively.

, ,
, and .

Therefore, the line segment from 0 to nucleus is [(3, 7), (3, 7)].
2) Spokes Outgoing From the Nucleus: We now proceed

to find the spokes from the nucleus to the borders. Up to this
point, we know the mesh, and we also know the set of spokes
from borders to the nucleus, which is denoted as . More
specifically, we know as well as , and we want to find

, such that the result of joining and is . Since
, ,

and , we can obtain by evaluating
, according to Lemma 1. However, for the same ,

may be different for different , as illustrated in
Example 4. Since we can have at most one , we solve this
problem by assigning the average of , for all ,

. It means to assign the average delay and the average
bandwidth of the endpoints of , for all , .
The pseudocode of finding spokes outgoing from the nucleus is
shown in Appendix I-C. The complexity of this step is .

Example 4: Refer to Example 3, and
. Then would be [(6, 4), (16, 6)]. On

the other hand, if and ,
then and .
Hence, is the average of [(6, 4), (16, 6)] and [(5, 3), (16,
6)], which is [(5.5, 3.5), (16, 6)].

3) Finding Bypasses: Due to the aggregation,
may no longer be the same as in the mesh. Some may deviate
only a little bit, while others may be quite different. In order
to make the aggregation more precise, bypasses are introduced,
which are direct links between border nodes [Fig. 2(d)]. When

deviates a lot from , we put a bypass between border
nodes and , and the QoS parameters of the paths from to
are defined by the bypass instead of . Since we have

spokes ( outgoing from and incoming to the nu-
cleus), we can put bypasses in the network according to the
recommendation of the PNNI standard. We consider including
bypasses between those pairs of border nodes that have the
largest deviations.
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(a) (b)

Fig. 5. Deviation of line segment.

TABLE I

(a) (b)

(c) (d)

Fig. 6. Different cases in Definition 5. (a) Case I. (b) Case II. (c) Case IIIa.
(d) Case IIIb.

In general, the deviation between two line segments is repre-
sented by an area. Fig. 5 shows an example. In Fig. 5(a), regions
I and II are those services that are accepted by line , while re-
gions I and III are accepted by . Hence, regions II and III
represent deviations between and . In Fig. 5(b), although
line segment is a point, the deviation area is still II and III.
Unfortunately, finding the deviation in the form of area is not
always possible, because some regions are open areas with infi-
nite size. An alternative approach for measuring deviation is to
use the distance between the endpoints, which is easy to com-
pute. We adopt this approach in our algorithm. We denote the
Cartesian distance between two points and as and
define the distance function as follows:

Definition 5: : , where is the set of line
segments, is defined such that the distance between two
line segments and is as given in Table I.

Fig. 6 shows the different cases of calculating the distance be-
tween two line segments. The distance is the sum of the lengths
of the arrows except for Case II, which is 2 times the length of
the arrow. We define Case IIIa in this way, because the point

covers the same region as the line segment from to in
Fig. 6(c).

It takes constant time to compute the deviation between two
line segments. The time complexity for computing deviations

between and , for all , , , is . We
can then select border pairs that have the largest devia-
tions for putting bypasses. By using a heap, the selection takes

time. After finding the bypasses, we can recom-
pute the spokes by excluding those border pairs that have by-
passes.

C. Complexities

The total time complexity of mesh formation and star
formation is

.
The computation for mesh formation dominates. The compu-
tation can be carried out by a designated node in the domain
periodically, and the aggregation results (size of ) are
sent to the border nodes of the same domain. The border nodes
then propagate the aggregation results to other domains. Mul-
tiple designated nodes (e.g., border nodes, internal nodes, or
dedicated computers) may share the computation if necessary.
For instance, each node computes the line segments from one
border node to all other border nodes and then exchanges the
results, so that the workload of mesh formation is spread among
them. Multiple designated nodes also prevent the problem of
single-point failure.

Recall that a network of domains is denoted as ( , ),
where . Without aggre-
gation, the storage complexity is ,
which increases with the total number of nodes and links in the
entire network. With aggregation, the storage complexity for a
node in domain , , is

, which increases with the number of border nodes,
the interdomain links, and the size of domain . The internal
complexity of external domains is not a factor.

V. LINE-SEGMENT ROUTING ALGORITHM

In this section, we describe our routing algorithm. Although
the routing problem with two additive metrics is known to
be NP-complete [16], routing in a delay-bandwidth sensitive
network can be solved in polynomial time [13]. Because our
line segment representation is different from the traditional
approaches, none of the existing routing algorithms can be
applied. We present the Line-Segment Routing Algorithm
(LSRA), a QoS-based source routing algorithm, which inte-
grates the line segment representation with Dijkstra’s algorithm
(DA) and the centralized bandwidth-delay routing algorithm
(CBDRA) [13], [17]. DA is the fastest known algorithm for
finding the least-delay paths. CBDRA first prunes all links
that do not satisfy the bandwidth requirement and then applies
DA to find the least-delay path. LSRA extends the idea to
capitalize the additional information provided by the line
segment representation.

Being a centralized routing protocol, LSRA requires that each
node keeps the topology of its own domain and the star-with-by-
passes aggregation of the other domains. As broadcasting takes
a lot of time and bandwidth, it is desirable to keep the amount of
broadcasted information small. This justifies why our aggrega-
tion is a star with bypasses of space instead of a mesh of

space. Routing is performed at two levels: interdomain
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routing and intradomain routing. An interdomain routing path
specifies the border nodes of the transit domains, and the in-
tradomain routing finds the subpath within each transit domain.
Accordingly, LSRA has two routing phases.

A. Interdomain Routing

After obtaining the star-with-bypasses aggregation from the
external domains, each node can see all nodes in its own do-
main and all border nodes of the other domains. An example is
shown in Fig. 1(b). There are five steps in the LSRA interdo-
main routing:

1) Transform stars with bypasses to meshes:
Since nuclei of stars are virtual, the actual routing paths

should not include any nucleus.
2) Prune logical links:

This step prunes the logical links that do not satisfy the
bandwidth requirement.

3) Determine the delays of logical links:
The delay value, supported by a line segment, is a func-

tion of the bandwidth requirement. This step determines
the delay values of all logical links under the bandwidth
requirement.

4) Prune physical links:
This step prunes the physical links that do not satisfy

the bandwidth requirement.
5) Apply DA on the network:

This step uses DA to find a shortest-delay path to the
destination domain.

We now describe each step in detail and analyze the runtime
complexity. The pseudocode of interdomain LSRA can be found
in Appendix I-D.

1) Transform Stars With Bypasses to Meshes: For each
external domain, the star-with-bypasses aggregation is trans-
formed to a mesh among the border nodes. For border nodes
and , if there is a bypass in the aggregation that goes from to
, that bypass is the mesh link from to ; otherwise, the mesh

link is the joint of the spoke from to the nucleus and the spoke
from the nucleus to . The step takes for domain
and for the whole network.

This step is important, because the bypass always carries
more accurate information. Suppose that the bypass is inferior
comparing with the joint of the two spokes. If this step was
not performed and DA was directly applied on the star with
bypasses, the shortest path would go through the joining of
the two spokes instead of the bypass, which would result in
inaccuracy of the path parameter.

2) Prune Logical Links: Logical links are line segments
connecting border nodes in the mesh calculated in the previous
step. If the upper bound of the bandwidth supported by a
logical link is less than the bandwidth requirement, the logical
link can be pruned. Suppose that the routing request is ( ,

) and a logical link is . If , is pruned. The
complexity of this step is also .

3) Find the Delays of Logical Links: A line segment shows
the relation between the supported bandwidth and the supported
delay. In other words, given certain bandwidth value, the line
segment predicts the smallest delay value that can be supported

Fig. 7. Delay coordinate.

by a physical path with the given amount of bandwidth. As
shown in Fig. 7, given the bandwidth requirement , the
best delay value supported by a line segment is the corre-
sponding delay coordinate . The complexity of this step
is .

4) Prune Physical Links: This step is the same as the
pruning step in CBDRA. Let the parameter of physical link
be ( , ). If , is pruned. This check is performed
for each physical link. Therefore, the complexity of this step
is , where is the set of interdomain physical
links and is the set of physical links in the source domain,

. Note that the physical links of the other do-
mains have been replaced by logical links during aggregation,
and thus do not appear in the graph.

5) Apply DA on the Network: After the previous four steps,
we have a network graph in which each link has a unique delay
value. We then use the Dijkstra’s algorithm (DA) to find the
least-delay path from the source node to the destination domain.
Among all border nodes of the destination domain, let be the
border node that is closest (in terms of delay) to the source node.
Let the delay of the shortest path from the source node to be

, which can be calculated by DA. If , then the
request is accepted and LSRA goes ahead with the intradomain
routing. Otherwise, the request is rejected. The number of links
in the network graph is .
The number of nodes is . Their
values depend only on the number of interdomain links , the
size of the source domain , and the number of border nodes

, . The internal structures of all other domains have
no impact. The complexity of this step is therefore

, which is also the total complexity of the interdo-
main routing, since the time complexities of the previous four
steps are smaller.

B. Intradomain Routing

After the interdomain routing, an interdomain path is deter-
mined. The source node knows how to traverse the nodes in its
own domain to a border node, and how to traverse the border
nodes of other domains to get to the destination domain. Be-
cause the source node does not have the detailed topology of any
external domain, it does not know how to fill in the intradomain
path segments across the external domains. Therefore, LSRA
does the intradomain routing in a distributed fashion. A routing
message is sent from the source to travel along the interdomain
path. When a border node of domain receives the message
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and the next hop on the interdomain path is another border node
of , locally computes the intradomain path going from it-

self to by using CBDRA, since has the complete knowledge
about its own domain . Node inserts the intradomain path into
the interdomain path that is carried by the message. Then the
message is sent to along the intradomain path. The message
also keeps track of the accumulated delay of the path that has
been traversed so far, including the intradomain path segments.
This accumulated delay is calculated from the actual link delays
as the message travels. If the accumulated delay exceeds ,3

the message is forwarded back to the previous node to find an
alternate path. This is called crankback [1]. If the message suc-
cessfully reaches the destination node, a feasible path is found.
If no intradomain path can be found without violating , the
message is sent back to the source to reject the request.

The complexity of CBDRA is identical to DA. That is, for
each intermediate domain that the routing message traverses,
it takes time to compute an intradomain
path in .

VI. SIMULATION

A. Comparison Metrics

We compare the performance of LSRA and other approaches
in terms of delay deviation, success ratio, and crankback ratio.

• Delay deviation: Due to the distortion of aggregation,
the delay between a source node and a destination
domain, obtained using the method described in
Section V-A, is not accurate. Delay deviation mea-
sures the difference between the real delay and the
estimated delay, obtained by the aggregation. It is
defined to be

.
• Success ratio: A feasible request may be rejected due to

the imperfect approximation of the delay and bandwidth
information during aggregation. Success ratio is used to
measure quantitatively how well an algorithm finds fea-
sible paths and it is defined as

The dividend represents all connection requests that are
accepted by both interdomain routing and intradomain
routing. The divider is the total number of feasible requests
(not the total number of requests). Therefore, in our sim-
ulation, success ratio measures the relative performance
with respect to the optimal performance (accepting all fea-
sible requests).

• Crankback ratio: When an algorithm finds an interdo-
main path from the source node to the destination domain,
it may overestimate the bandwidth or underestimate the
delay and lead to crankbacks during intradomain routing.
Crankback ratio measures how often that happens and is
defined as

3The expected path delay may be different from the actual path delay due to
the network dynamics or the inaccuracy introduced by aggregation.

A good algorithm should have small crankback ratios, high
success ratios, and small delay deviations for different band-
width and delay requirements.

B. Comparing Schemes

We compare LSRA with other aggregation and routing
schemes. They are the Best Point algorithm (BP), the Worst
Point algorithm (WP), and the modified Korkmaz–Krunz
algorithm (KK).

• Best Point: The best delay and the best bandwidth are used
to represent a mesh link. For example, if the delay-band-
width parameters between a border pair are (2, 3), (4, 4),
and (5, 6), (2, 6) is used to represent the QoS of the mesh
link. This optimistic approach is aggressive by choosing
the best delay and the best bandwidth that may come from
different paths. It suffers from large crankback ratios. We
aggregate a BP mesh to a BP star by taking the maximum
bandwidth among the mesh links as the spoke bandwidth
and by taking half of the average delay among the mesh
links as the spoke delay.4

• Worst Point: The worst delay and the worst bandwidth are
used to represent a mesh link. That is, if the parameters
are (2, 3), (4, 4) and (5, 6), then (5, 3) is used. As a result,
this algorithm has low success ratios. The minimum band-
width and average of half of the average delay are used for
aggregating a WP mesh to a WP star.

• Modified Korkmaz–Krunz: This is a modified version of
the algorithm presented in [9]. Let us consider a set of
delay-bandwidth parameters, which corresponds to a set
of paths between two border nodes. The stretch factor of a
parameter ( , ) is defined as , where

and are the best delay and the best bandwidth
among all parameters, respectively. Refer to the examples
used previously for BP and WP, and .
The stretch factor of (2, 3) is , and the
stretch factors of (4, 4) and (5, 6) are both 3 . The smallest
stretch factor is denoted as , which is 3 in the
above case. The mesh link between the two border nodes
is represented by a tuple ( , , ). The
mesh link is likely to support a connection request ( ,

), if , , and
. Readers are referred to the orig-

inal paper [9] for detailed explanation.
The modification we made is on the transformation

from a mesh to a star, in particular, on the transformation
of delay. The formula used in [9] is as follows:

where is the delay of a mesh link from border node
to border node , is the number of border nodes,

is the delay of a spoke link from to the nucleus, and

4A mesh link from i to j splits to two spokes from i to n and from n to j.
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Fig. 8. Success ratios of two aggregation schemes of the Korkmaz–Krunz
method.

is the delay of a spoke link from the nucleus to .
The problem of this averaging approach is that the delay
after transformation deviates a lot from the original delay,
because the delay of may be twice the delay
of the mesh link .5

Therefore, we apply the following modification

The simulation results, using the setup described in Sec-
tion VI-C, are shown in Fig. 8. The horizontal axis is the
bandwidth requirement. The results show that the mod-
ified algorithm has better success ratios than the original
algorithm in [9]. For crankback ratios, the modified KK al-
gorithm is worse than the original KK algorithm, because
the spoke delays in the modified KK is smaller than the
spoke delays in the original KK. More optimistic estima-
tion leaves more room for overestimation, which may lead
to more crankbacks. However, as the crankback ratios of
the modified KK are less than 5% for all bandwidth values
(Fig. 11), we believe that the performance improvement in
success ratios outweighs the degradation of crankback ra-
tios. As a result, we use the modified KK algorithm for our
further simulations.

It takes two values, bandwidth and delay, for BP or WP to
store the aggregated state of a logical link. It takes three values,
bandwidth, delay, and stretch factor, for KK to store the state of
a logical link. It takes four values, bandwidth and delay of two
points, for the line segment (LS) to store the state of a logical
link. It takes two values, bandwidth and delay, for any algorithm
to store the state of a physical link. Therefore, in the worst case,
LS takes twice the space taken by BP or WP, or 1.5 times the
space taken by KK, to store the aggregated topology.

C. Simulation Testbed

The interdomain topology is generated based on the
power-law model [18], [19], and the intradomain topology is
generated based on the Waxman model [20]. The degree of

5A similar formula is used in [9] to transform bandwidth. However, for band-
width QoS constraints, such a problem does not arise because bandwidth is not
additive.

Fig. 9. Delay deviation of different aggregation schemes.

a domain is defined as the total number of interdomain links
adjacent to the border nodes of the domain. The simulation
testbed and parameter configuration are set as follows: 10%
of the domains have a degree of one, and the degrees of the
other domains follow the power law, i.e., the frequency of a
domain degree is proportional to the degree raised to
the power of a constant

After each domain is assigned a degree according to the power
law, a spanning tree is formed among the domains to ensure a
connected graph. Additional links are inserted to fulfill the re-
maining degrees of every domain with the neighbors selected
according to probabilities proportional to their respective un-
fulfilled degrees. The Waxman topology for the internal nodes
of each domain is formed as follows: the nodes are randomly
placed in a one-by-one square, and the probability of creating a
link between node and node is

where is the distance between and , , and
is the maximum distance between any two nodes. The av-

erage node degree is 4. The other simulation parameters are as
follows: the number of domains in each topology is 200, the
number of nodes in each domain is randomly selected between
10 and 40, the delay of a physical link is a random number be-
tween 2 to 10 units, and the bandwidth of a physical link is a
random number between 1 to 5 units. For delay, a unit can be
replaced by a certain number of milliseconds; for bandwidth,
a unit can be replaced by a certain number of kilobytes (per
second).

Each data point is the average of 1000 randomly generated re-
quests. More specifically, given a bandwidth requirement and/or
a delay requirement, we randomly generate five topologies. On
each topology, 200 requests are generated with the source and
the destination randomly selected from the topology. We run LS,
BP, WP, and KK over these requests, respectively, and the av-
erage results give a set of data points in the figures.

D. Simulation Results

Fig. 9 shows the delay deviations of LS, BP, WP, and KK. The
horizontal axis presents the bandwidth requirement. Since there
is no delay requirement, the least delay path with the required
bandwidth is returned. The vertical axis is the average delay de-
viation of the paths returned by the algorithms. For fairness, we
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Fig. 10. Success ratio versus bandwidth and delay.

Fig. 11. Crankback ratio versus bandwidth and delay.

count the paths of a request only when all four algorithms ac-
cept that request. Fig. 9 shows that LS has smaller delay devia-
tions than the other algorithms. That is because a line segment
approximates the parameter staircase better than the other ap-
proaches, and thus gives more accurate information about the
delay. The deviations are small when the bandwidth require-
ments are large ( 4), because the feasible paths are mostly short
(within the same domain or between neighboring domains).

The success ratios are shown in Fig. 10. It may be surprising
that the success ratios are close to one when the bandwidth re-
quirement is five units (maximum link capacity). Recall that our
success ratio is defined relative to the number of feasible re-
quests, not to the number of all requests. When the bandwidth
request is large, there are few feasible requests. These feasible
requests are mostly between nodes that are close to each other
(in the same domain or neighboring domains), which makes the
delay deviation small, as shown in Fig. 9. That means it is less
likely to reject a feasible request due to distortion. Therefore,
the success ratio is high.

Generally speaking, the success ratios of BP are the best in
Fig. 10. This is because BP advertises the largest spoke band-
widths and small spoke delays. This overestimation reduces the
chance of rejecting feasible requests during the interdomain
routing.6 On the other hand, the same overestimation increases
the chance of accepting infeasible requests by the interdomain
routing, which causes the intradomain routing to have high

6It can be noted that the success ratios of BP are not always 1. This is because
when we find spokes for BP, we take half of the average delay of the mesh
links outgoing from i as the spoke delay from i to the nucleus, and take half
the average delay of the mesh links incoming at j as the spoke delay from the
nucleus to j. Therefore, it is possible that the real minimum delay from i to j is
smaller than the delay represented by the aggregated topology. Then, the routing
algorithm may reject a supported request.

crankback ratios. Fig. 11 shows the crankback ratios of BP,
WP, KK, and LS. It is clear that BP has very high crankback
ratios compared to other methods. On the contrary, as an
aggregated WP topology tends to overestimate the real delay
and underestimate the real bandwidth of the paths, WP has very
small crankback ratios.7

A good algorithm should have high success ratios and
low crankback ratios. Therefore, we also compare success
ratio–crankback ratio, which is shown in Fig. 12. BP does
not perform well in this comparison due to its high crankback
ratios. In contrast, LS has higher success ratios than WP and
KK, and has reasonable crankback ratios. It outperforms all
other schemes for different bandwidth and delay require-
ments by making a better tradeoff between success ratio and
crankback ratio.

VII. CONCLUSION

In this paper, we present a novel QoS representation for
topology aggregation in delay-bandwidth sensitive networks.
We use line segments in the delay-bandwidth plane instead
of points to represent the QoS parameters of logical links.
We discuss algorithms to compute line segments for logical
links of a mesh, to aggregate links into a star with bypasses
representation, and to find QoS routes using line segments.

The presentation of our aggregation scheme follows the PNNI
standard, where each node has a complete view of the domain
to which it belongs and an aggregated view of the rest of the
network. Each node carries out its own on-demand interdomain
QoS routing, which spreads the workload of QoS routing across
the network. On the other hand, the aggregation approach itself

7The crankback ratios of WP are not always zero, because we take half of the
average delay among the mesh links as the spoke delay.
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Fig. 12. Success ratio–crankback ratio.

is new, general and independent of the standard. While there
may be some low-end routers in the domain that do not have the
CPU/memory capacity to handle the aggregation, our approach
does not require every node to participate in the aggregation
computation (Section IV-C) or to store the aggregated topology.
These low-end routers may forward the routing requests to their
default designated routers for QoS interdomain routing. These
designated routers for interdomain routing do not have to be
border nodes as is the case in BGP. This flexibility helps to pre-
vent the performance degradation of the critical border nodes
due to excessive number of QoS interdomain routing requests.

Extensive simulations show that our algorithms achieve high
success ratio with small crankback rate. Although this paper
focuses on delay and bandwidth, the line segment aggregation is
suitable for other additive/bottleneck metric pairs, such as cost
and bandwidth.

APPENDIX I

PSEUDOCODES

A. Pseudocode for Finding Representatives

FIND-MESH ( , , )
1 for each
2 do FIND-REPRESENTATIVES ( , , , )

pseudocode for finding representatives
of the paths from border node to each
other border node

is the minimum delay between
and computed by the Dijkstra’s
algorithm

FIND-REPRESENTATIVES ( , , , )
1 sort the links in in the order of

descending bandwidths
2 add the sorted links in
3
4 , for each and

5 while
6 do next largest bandwidth in

7 remove links of bandwidth from
8 add them in
9 apply Dijkstra’s algorithm on ( )

to find for each and

10 for each and
11 do if
12 then
13 add ( , ) to
14 the set of representative

points

B. Pseudocode for Finding Spokes Incoming to the Nucleus

find the spokes from border node to
nucleus given the mesh

FIND-TO-NUCLEUS-SPOKE( , )
1
2
3
4
5 for each and
6 do if

7 then
8 if

9 then
10 if

11 then
12 if

13 then
14
15

C. Pseudocode for Finding Spokes Outgoing From the Nucleus

find the spokes from nucleus to
border node given the mesh

and and

FIND-FROM-NUCLEUS-SPOKE ( , , )
1
2
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3
4
5 for each and
6 do
7
8
9
10
11
12

D. Pseudocode for Interdomain LSRA

find an interdomain path from source
node of domain to desti-
nation domain , given a
request ( , ) and the star-with-
bypasses aggregation, , for each ex-
ternal domain
first step: transform a star to a mesh

is a star-with-bypasses aggregation.
is the mesh calculated from . A by-

pass from border node to border node
is represented as . The spoke from

to the nucleus is , and the spoke from
the nucleus to is . A mesh link from
to is .

STAR2MESH
1
2 for each border node
3 do for each border node
4 do if
5 then continue
6 if there is a bypass from to

in
7 then
8 else
9
10 return

second step: prune logical links
is a mesh of logical links with line

segment representation. A mesh link from
to is . When a link is pruned, it

is marked.

PRUNEMESH( , )
1 for each border node
2 do for each border node
3 do if
4 then continue
5 if
6 then mark

third step: find the delays of logical
links

FINDDELAY( , )
1 for each border node
2 do for each border node
3 do if
4 then continue
5 if is marked
6 then
7 else of

fourth step: prune physical links
is the set of physical links. A link

is marked if it is pruned.

PRUNELINK( , )
1 for each link
2 do if the bandwidth of ( , ) is less

than
3 then mark ( , )

pseudocode for interdomain LSRA

the source domain
set of links that connect domains
set of star-with-bypasses aggregations
for external domains. Formally,

is the aggregation of
external domain
the source node
set of border nodes of the destina-

tion domain
delay requirement of the routing

request
bandwidth requirement of the

routing request

LSRA( , , , , , , )
1
2 for each external domain
3 do STAR2MESH
4
5 for each external domain
6 do PRUNEMESH( , )
7
8 for each external domain
9 do FINDDELAY( , , )
10
11 PRUNELINK( , )
12
13 construct a graph as the
input to the Dijkstra’s algorithm to
find a path from
to the destination domain

14 is an external
domain}
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17 and is unmarked
18 for some and is unmarked
19
20 apply the Dijkstra’s algorithm to find
21 the least-delay path from source
22 to one of the border nodes in
23
24 if the delay of the path is not

greater than
25 then
26 accept the path as interdomain

routing path
27 else
28 reject the path and the request
29

APPENDIX II

PROOF OF LEMMA 1

Let and . If
, , , and

, according to the definition of disjoint, ,
which is , should equal [ , ]. Then,

, according to the definition of joint, is equal to
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