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Abstract. Multicasting is an important communication mechanism for
implementing real-time multimedia applications, which usually require
the underlying network to provide a number of quality-of-service (QoS)
guarantees to users. In this paper, we study the problem concerning how
to find a feasible multicast tree in which all the multicast paths satisfy
the given set of QoS constraints. This problem is referred as the multi-
constrained multicast tree (MCMT) problem. Based on tabu-search tech-
nique, a heuristic algorithm named MCMTS for the MCMT problem is
proposed in this study. According to the experimental results, the proba-
bility of finding a feasible multicast tree by our MCMTS method is more
than 99% if one exists. Furthermore, the MCMTS is also shown to be a
simple and highly efficient method. As a result, it would be a practical
approach for developing multicast routing protocol.

1 Introduction

For multimedia applications involved in real-time communications, they usually
require the underlying network to provide a number of quality-of-service (QoS)
guarantees to users. For a network with a set of QoS constraints, a routing
problem studied in this paper is to find a multicast tree such that any path
between a pair of source and destination nodes satisfies the given set of QoS
constraints simultaneously. This routing problem is also referred as the multi-
constrained multicast tree (MCMT) problem.

In the past, the MCMT problem did not receive much attention. Most of
previous research on finding a multicast tree considers only one or two QoS con-
straints, like delay and jitter [8,9,10,11]. As far we know, only two methods have
been published [6,13] recently for the MCMT problem. In paper [6], an algorithm
named MAMCRA is proposed for the MCMT problem. Their algorithm begins
with finding a set of shortest paths from the source node to all destinations. By
removing the overlap of paths, a multicast tree is then obtained. However, the
problem finding a path between any two nodes is a NP-complete problem [3],
and it is referred as the multi-constrained path (MCP) problem in literature. A
number of heuristic algorithms have been proposed for it [1,4,5,15,16].
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In paper [13], a heuristic based on genetic algorithm called MCMGA is pro-
posed. The goal of this method is not just to find a feasible multicast tree, but
also to minimize the cost of the tree. The first step of MCMGA is to generate k
shortest paths for each pair of source and destination. Then, a large of number
of multicast trees must be maintained for generic operations. Since k could be a
large number and many multicast trees must be kept for every generation, the
MCMGA is not just too complex but also very inefficient for large-scale networks
with a large set of destinations.

For networks with tight QoS constraints, the number of feasible multicast
trees could be very few, especially when the number of QoS constraints increases.
Hence, a routing algorithm for finding a least-cost multicast tree would be too
expensive to be practical for routing protocol implementation. In this paper we
are only concerned about how to find a feasible multicast tree efficiently. The
resulting multicast tree is not necessary to be a least-cost tree. It has been noticed
that all multicast routing protocols are developed based on simple multicast
routing algorithm [7], where simplicity and ease of implementation should be the
most important criterion when evaluating multicast routing algorithms. Hence,
the goal of this study is to develop a simple and efficient algorithm for the MCMT
problem.

Our heuristic algorithm proposed in this paper is named the multi-
constrained multicast tree algorithm based on Tabu-search technique [2]
(MCMTS). The MCMTS method begins with finding a good spanning tree in
which a multicast tree is embedded. Since the resulting multicast tree may be
infeasible, some multicast paths may violate the QoS constraints. A path replace-
ment procedure guided by tabu-search strategy is then used to improve those
infeasible multicast paths. Our MCMTS algorithm is represented in section 3.
The results of numerical simulations are given in section 4.

2 The Multi-constrained Multicast Tree Problem

Consider a network that is modeled by a directed graph G(V, E), where V is a
set of nodes and E is a set of links. Each link (u, v) ∈ E is associated with k
positive additive QoS parameters, such as delay, delay jitter, data loss rate, etc.
The value of QoS parameter i is represented by wi(u, v), where i = 0, 1, ..., (k−1).
Since the network could be asymmetric, wi(u, v) may be not equal to wi(v, u)
for some QoS parameter i. For a path P and a QoS parameter i, we use the path
constraint Wi(P ) to represent the summation of wi(u, v) on each link (u, v) on
the path P . That is, Wi(P ) =

∑
(u,v)∈P wi(u, v). In this paper, we also use the

notation (S → j) to represent the path from S node to node j.
Let D be a subset of V (D ⊂ V and |D| = m), and denote a group of

destination nodes of a multicast tree. Given a set of nodes D which does not
contain the source node S, and k QoS constraints Ci, 0 ≤ i ≤ (k − 1), the
goal of our MCMT problem is to find a multicast tree T such that the following
conditions are hold:
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Assume Pj is the path from source S to any node j in the destination group D,
Wi(Pj) ≤ Ci, for all i and j, where 0 ≤ i ≤ (k − 1), and 0 ≤ j ≤ (m − 1).

3 The MCMTS Algorithm for the MCMT Problem

A simple and efficient heuristic algorithm named MCMTS based on tabu search
strategy is developed in this section. The basic idea of our MCMTS method can
be outlined as follows:

(a) First of all, a ’good’ spanning tree T rooted at the source node must be
determined. The spanning tree covers all the nodes in the given network,
and a multicast tree M that covers all the nodes in the set D is embedded
in T . A method for determining ’good’ spanning tree is presented in section
3.1.

(b) Based on the multicast tree M obtained in step (a), for each node u in the
set D, all the QoS path constraints are checked. If M is a feasible solution,
the procedure stops. Otherwise, go to step (c).

(c) For any destination node u, whose path from source violates QoS constraints,
an efficient tabu-search based procedure is applied to modify the path from
source to u. The procedure stops after a given number of iterations. This
method is presented in section 3.2.

(d) If the multicast tree M obtained from step (c) is still infeasible, we collect all
the destination nodes whose paths do not satisfy the given QoS constraints.
Let this collection be Γ .

(e) For any node u in Γ , a fix procedure is used to find a feasible path from
source to u. The fix procedure is an optimal or heuristic algorithm for solving
the multi-constrained path (MCP) problem. Since the simulation results
presented in section 4 show that Γ is a small set, the running time spent on
these MCP problems is small.

In general, our MCMTS algorithm contains two parts: a modified Prim’s algo-
rithm for determining a good spanning tree, and a tabu-search based procedure
for improving the multicast tree embedded in a spanning tree.

3.1 The Modified Prim’s Method

The well-known Prim’s algorithm designed for finding the minimum spanning
tree is modified in this section to determine a ’good’ spanning tree T for the
given network. A multicast tree M covers all the destinations is embedded in T .
The modified Prim’s method is presented in Fig. 1. During the construction of
spanning tree T , an attribute vector Y (u) is computed and saved for any new
node u added into T . Y (u) is defined as follows:

Y (u) = [α0, ...., αk−1], αi = Wi(P )/Ci, Wi(P ) =
∑

(x,y)∈P wi(x, y),
0 ≤ i ≤ (k − 1), where P is the path from source node s to node u and

P ∈ T .
Hence, for a link (u, v) ∈ T , assume Y (u) = [α0, ..., αk−1] and Y (v) =
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[β0, ..., βk−1], then βi = αi + wi(u, v)/Ci, 0 ≤ i ≤ (k − 1). If a path (s → u) is
feasible, then every element of the attribute vector Y (u) must be equal to or less
than one. For any node u with attribute vector Y (u), a cost value Ψ(u) is defined
as follows: Ψ(u) =

∑k−1
i=0 αi. In each iteration of the ’While’ loop in Fig. 1, only

one node is selected to add into a partially built spanning tree T . The selection
strategy is that the node with the smallest cost value Ψ has the highest priority
to be selected.

An example of 4-node network is given in Fig. 2 to illustrate the modified
Prim’s method. In Fig. 2, c0 and c1 are two given QoS constraints. When T = φ
and F = s, there are two nodes, ’a’ and ’b’, can be added into set F . For node ’a’,
the cost value Ψ(a) is equal to 0.5 since the attribute vector Y (a) = [1/4, 1/4].
For node ’b’, the cost value Ψ(b) is equal to 1.5 because of Y (b) = [1, 1/2].
Hence,link (s, a) has higher priority than link (s, b) to be selected to add into
T , which is shown in Fig. 2(b). The desired ’good’ spanning tree T is given in
Fig. 2(c).

1. Given a network G(V, E) and a source s;
2. Let F = {s}, T = φ, and Y (s) = [0, .., 0];
3. Let Q = {v|(u, v) ∈ E, u ∈ F and v /∈ F};
4. While(F �= V ){
5. For each node v ∈ Q {
6. For each node u ∈ F, if the link (u, v) ∈ E{
7. Compute attribute vector Y (v) based on Y (u) and wi(u, v),0 ≤ i ≤

(k − 1);
8. Let Y (v) = [β0, .., βk−1], and a cost value Ψ(v) =

∑k−1
i=0 βi;

9. Keep the link (u, v) with the smallest value of Ψ;
10. }}
11. T = T ∪ (u, v), F = F ∪ {v};
12. }; Output the spanning tree T;

Fig. 1. The modified Prim’s algorithm
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Fig. 2. An example for generating spanning tree.
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Fig. 3. The path rebuilding process.

3.2 The Tabu-Search Based Procedure

In the multicast tree M embedded in the spanning tree T found by the modified
Prim’s algorithm, some paths from source to destinations may not satisfy the
given QoS path constraints. These infeasible paths are then improved by our
tabu-search based procedure presented in Fig. 4.

Consider an infeasible path p = (s → v → u) shown in Fig. 3(a) where s is
the source and u is a destination, the goal of our tabu-search based procedure is
to find a new path p̄ that can reach destination u. Since p̄ may be infeasible, the
decision about whether p is replaced by p̄ is based on the equation (A) given in
the following: at node u, assume that

(a) Y (u) = [α0, .., αk−1], Ψ =
∑k−1

i=0 αi for path p;
(b) Y ′(u) = [β0, .., βk−1], Ψ ′ =

∑k−1
i=0 αi for path p̄;

(c) Ψ ′ < Ψ + θ, 0 ≤ θ < k, . . . . . . . . . . . . . . . . . . (A)
When θ is zero and the equation (A) is hold, the path p̄ is said to be better than
path p, and p can be replaced by p̄. However, this condition may be too strict
for our tabu-search based procedure. To avoid the searching path trapped in a
local optimal, our heuristic procedure may accept a new path p̄ worse than path
p by setting θ value greater than zero. Hence, a path p̄ can replace a path p even
though Ψ ′ is greater than Ψ . In our simulations presented in section 4, the value
of θ is set to be 0.5.

In Fig. 3(a), the new path p̄ = (s → w → u) satisfied equation (A) is found at
the destination u. Note that a link (w, u) must satisfy the following conditions:
(w, u) ∈ E, (w, u) /∈ T and w cannot be in the sub-tree rooted at node u to avoid
creating a cycle. However, in Fig. 3(b), no acceptable path can be found at the
destination u. The ancestor nodes of u are then tested sequentially in order to
construct a desired new path p̄. In Fig. 3(b), for example, a new path is built
based on node v, which is an ancestor of the destination u. In this paper, node u
in Fig. 3(a) and node v in Fig. 3(b) are all referenced as a “branch point” on the
upward path from u to s. In Fig. 3(b), if a new path p̄ based on a “branch point”
v is constructed successfully, the attribute vectors of v and its downstream nodes
must be recomputed. For any destination node u, if any element of the attribute
vector Y ′(u) is greater than one, the new path p̄ is still infeasible.



A Heuristic Algorithm for the Multi-constrained Multicast Tree 83

The above path replacement procedure is implemented in an iteration loop,
which is developed based on the tabu-search strategy [2], and is shown at lines
5 ∼ 23 in Fig. 4. A circular queue is maintained in our procedure and served as a
tabu-list for memorizing the links having been considered recently for construct-
ing a new path (see line 12 in Fig. 4). For example, two links (w, u) and (w, v),
which are in Fig. 3(a) and Fig. 3(b) respectively, should be stored in the tabu-list
after a new path is built. Since only links not in the tabu-list are considered for
rebuilding, our procedure can avoid revisiting some links that have been visited
recently, and has better chance to explore some unvisited solution space.

1. Given a network G(V, E), a source node s and a set of destination
nodes D, D ⊂ V ;

2. Find a ’good’ spanning tree T based on the modified Prim’s algorithm
given in Fig. 1. A multicast tree M is in T;

3. Let linked list R = {u|p = (s → u), u ∈ D, p violates at least one QoS
constraints.};

4. Initialize a circular queue Q to serve as a tabu-list; I = 0;
5. While(R �= φ and I < ITERATIONS) {
6. Let u be the first element of R; R = R − {u};
7. Assume the infeasible path be p = (s → u); Let v = u ;
8. While(v �= s){
9. Assume w = v → parent node;

10. Z = {w′|w �= w′, (w′, v) ∈ E, (w′, v) /∈ T};
11. Find w′ ∈ Z such that (w′, v) /∈ Q and w′ is not in the sub-tree

rooted at v {
12. Q = Q ∪ (w′, v);Build a new path p̄ = (s → w′ → v → u);
13. Compute Y ′(v) and Ψ ′(v) based on the new path p̄;
14. If(Ψ ′(v) < Ψ(v) + θ){
15. T = T − (w, v); T = T ∪ (w′, v);
16. Update Y for v and its downstream nodes in M;
17. R=R − {u|u ∈ D, u is in the subtree rooted at v; the path p from

s to u satisfies all QoS constraints};
18. goto next;
19. } }
20. v = v → parent node;
21. }
22. next: I = I + 1;
23. }
24. If(R �= φ){call a fix procedure to find feasible paths from s to each

node in R;}
25. Output the multicast M embedded in T;

Fig. 4. The MCMTS algorithm
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3.3 The Optimal Algorithm and Fix Procedures

Recall that the multi-constrained path (MCP) problem is concerned about how
to find a feasible path between two given nodes, so that a set of QoS constraints
can be satisfied simultaneously. Hence, for the MCMT problem of a network with
m destinations, a multi-constrained multicast tree can be obtained by finding
a multi-constrained path for each destination. As a result, the MCMT problem
can be solved optimally if the corresponding MCP problem is solved optimally.

For a multicast tree determined by our heuristic procedure presented in
Fig. 4, it is possible to have a small set of destinations whose multicast paths
are infeasible. At line 24 in Fig. 4, a fix procedure is then called to find a set of
multi-constrained paths for those destinations. The fix procedures used in this
study can be the optimal or heuristic algorithm [15,16] developed for the MCP
problem. In fact, based on the simulations conducted in section 4, the set of
paths that must be determined by the fix procedure is very small. That is the
reason why our MCMTS procedure is very efficient when it is compared to the
optimal algorithm for the MCMT problem.

3.4 Time Complexity

The time complexity of the MCMTS algorithm is determined by the following
terms: O(n2) for the modified Prim’s procedure and O(m ∗n ∗ ITERATIONS)
for the loop, where O(n) is required at lines 16-17 in Fig. 4. The time complexity
of line 24 in Fig. 4 is O(dh) if the heuristic algorithm proposed in paper [15] is
used as the fix procedure, where d is the maximum number of node-degree and h
is the maximum number of hops between source and any destination. Hence, the
time complexity of our MCMTS is O(n2 + m ∗ n ∗ ITERATIONS) + O(dh) ∗ δ
where δ � m. Obviously, the executing efficiency of our MCMTS method is
determined by the value of δ.

4 Experimental Results

In this section, we have several sets of experiments for comparing executing per-
formance and solution quality between the optimal algorithm and the MCMTS
heuristic proposed in this paper for solving the MCMT problem. The optimal
algorithm is extended from the optimal algorithm proposed for the MCP prob-
lem [14]. Two network topologies, random graph and mesh, are simulated in this
study. All the simulations are done with the following experimental parameters:
P4 2.0 GHz CPU, 512MB RAM, Linux OS, and programs are developed by
C++. For all benchmarks, the values of QoS parameters assigned on each link
in the network are randomly selected from the range 0 ∼ 100. In this study, each
data is measured based on 1000 runs. For each run, a network configuration with
different QoS assignments on each link is randomly generated. As for the values
of QoS path constraints, they are assigned in such a way that feasible multicast
trees can only exist in around 90% of 1000 network configurations constructed
for the simulations. All networks considered in this study are asymmetric.
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Table 1. Simulation results for random graphs with fix procedures

∗ Results for 100-node random graphs. Two QoS constraints: C0 = C1 = 320.
Fix procedure #destinations #tabu tree #optimal tree run time ratio solution

/cpu(secs) /cpu(secs) quality
BB optimal 50 846/4.95 846/170.47 2.90% 100.0%

40 870/5.46 870/180.47 3.03% 100.0%
30 883/4.31 883/100.63 4.28% 100.0%
20 911/3.6 911/71.81 5.01% 100.0%
10 958/3.1 958/34.11 9.09% 100.0%

Average 4.86% 100.0%
TS heuristic 50 830/7.39 834/182.3 4.05% 99.52%

40 843/7.1 849/141.77 5.01% 99.29%
30 897/4.08 899/98.48 4.14% 99.78%
20 902/4.48 904/71.76 6.24% 99.78%
10 943/3.15 944/36.15 8.71% 99.89%

Average 5.63% 99.65%

Table 2. The simulation results for 8x8 meshes with fix procedures

∗ Results for 64-node meshes. Two QoS constraints: C0 = C1 = 560.
Fix procedure #destinations #tabu tree #optimal tree run time ratio solution

/cpu(secs) /cpu(secs) quality
BB optimal 32 880/110.2 880/987.5 11.16% 100.0%

25 905/129.6 905/902 14.37% 100.0%
19 937/62.2 937/610.5 10.19% 100.0%
12 963/55.7 963/482.2 11.55% 100.0%
6 972/33.1 972/191.2 17.30% 100.0%

Average 12.91% 100.0%
TS heuristic 32 899/11.2 911/1062.3 1.05% 98.68%

25 904/6.8 912/829.7 0.82% 99.12%
19 918/8.1 927/577.7 1.4% 99.03%
12 959/5.4 966/418 1.28% 99.28%
6 975/4.0 977/161.7 2.49% 99.80%

Average 1.41% 99.18%

A random graph generator [7], which was modified from Waxman’s graph
generator [12], was used to create links interconnecting the nodes. In order to
imitate real networks more closely, the average degree of nodes in each network
is set to be four [7].

4.1 With Fix Procedures

Two fix procedures are used in this study. One is the branch-and-bound based
optimal algorithm proposed in paper [14], another one is the heuristic algorithm
proposed in paper [15]. They are referred as BB optimal and TS heuristic in
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Table 3. The simulation results on three QoS constraints

Networks C0/C1/C2 Fix procedure #destinations run time ratio solution
quality

100-node 320/320/320 BB optimal 50 5.33% 100.0%
random graph 40 5.02% 100.0%

30 7.99% 100.0%
20 9.17% 100.0%
10 15.41% 100.0%

Average 8.58% 100.0%
TS heuristic 50 16.07% 98.09%

40 26.37% 97.74%
30 16.00% 98.91%
20 21.29% 99.14%
10 31.91% 99.32%

Average 22.32% 98.64%
8x8 mesh 560/560/560 BB optimal 32 22.91% 100.0%

25 19.84% 100.0%
19 27.79% 100.0%
12 16.71% 100.0%
6 18.98% 100.0%

Average 19.84% 100.0%
TS heuristic 32 3.70% 96.26%

25 3.96% 95.59%
19 3.93% 97.73%
12 4.07% 98.11%
6 7.21% 98.98%

Average 4.57% 97.33%

Table 4. The simulation results for random graphs without fix procedures

∗ The number of nodes is 100. At most 3 QoS constraints: Ci.
C0/C1/C2 #destinations run time ratio solution quality
320/320/- 50 2.0% 96.2%

40 2.5% 96.0%
30 2.7% 96.2%
20 4.0% 98.0%
10 7.9% 99.2%

Average 3.8% 97.1%
320/320/320 50 3.7% 88.6%

40 4.3% 92.5%
30 5.4% 94.2%
20 8.2% 93.3%
10 15.4% 97.2%

Average 7.4% 93.2%
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Table 5. The simulation results for 8x8 meshes without fix procedures

∗ The number of nodes is 64. At most 3 QoS constraints: Ci.
C0/C1/C2 #destinations run time ratio solution quality
560/560/- 32 0.74% 90.1%

25 0.44% 93.4%
19 0.82% 93.3%
12 0.76% 95.3%
6 1.11% 97.8%

Average 0.78% 94.0%
560/560/560 32 0.92% 71.5%

25 0.82% 76.9%
19 1.14% 81.9%
12 1.74% 86.4%
6 2.24% 93.3%

Average 1.37% 82.0%

Table 1 and 2 respectively. For performance comparisons, several terms shown
in Table 1 ∼ 5 are defined as follows:

run time ratio= CPU time required by the MCMTS procedure in 1000 runs
/ CPU time required by the optimal procedure in 1000 runs.

solution quality= the number of feasible trees found by the MCMTS proce-
dure in 1000 runs / the number of feasible trees found by the optimal procedure
in 1000 runs.

#tree tabu= the number of feasible trees found by the MCMTS algorithm.
#tree optimal= the number of feasible trees found by the optimal algo-

rithm. In Table 1, the run time ratio is around 5% on average when the
BB optimal and TS heuristic are used as the fix procedures. While in Table
2, the run time ratio is 12.9% when the BB optimal is used as the fix proce-
dure, and it is only 1.4% when the TS heuristic is used as the fix procedure.
These data show that the number of destinations, whose multicast paths cannot
be determined by our MCMTS procedure and are then found by fix procedures,
is very small. As a result, our heuristic can perform very efficient. For exam-
ple, in Table 1, it takes around 0.0074 (7.39/1000) seconds to solve a 100-node
random network in which 50% of nodes are destinations.

We also notice that in Table 2 the executing speed is greatly improved
when the fix procedure is implemented with the TS heuristic instead of the
BB optimal. This is because that the average number of hops between any two
nodes in an 8x8 mesh is large enough to slow down the executing speed of the
BB optimal, since its time complexity is O(dh) where h is the number of hops
between a pair of source and destination and d is the maximum degree of nodes
in the network. As for the performance, the solution quality of our MCMTS pro-
cedure with a fix procedure based on TS heuristic is more than 99% on average
in Table 1 and 2. That is, compared to the optimal algorithm, the probability
of finding a feasible multicast tree by our heuristic procedure is very high. As
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shown in Table 3, when three QoS constraints are considered, the solution qual-
ity of our MCMTS procedure is slightly decreased to around 98.6% for random
graphs and 97.3% for meshes respectively.

4.2 Without Fix Procedures

In this section, we have two sets of simulations to show the performance of our
MCMTS procedure when it is executed without implementing any fix procedure.
For random graphs in Table 4, the average solution quality is around 97.1% when
two QoS constraints are required. However, it decreases to 93.2% when three QoS
constraints are required. The same phenomenon is also hold for meshes in Table
5. For the same values of QoS constraints, a network becomes tight when the
number of QoS constraints increases. Obviously, for tight networks, it is not easy
for our MCMTS algorithm with no fix procedure to find an acceptable path for
replacement. As a result, its performance degrades. Although the probability
of finding a feasible multicast tree decreases, this heuristic method is still very
efficient, and is a practical approach for developing routing protocols, especially
when the executing speed is the major concern for the underlying network.

5 Conclusions

In this paper, we have presented a heuristic algorithm called MCMTS for the
MCMT problem. The experimental results show that the probability of finding
a feasible multicast tree for a given network based on our heuristic is more
than 99% if one exists. Furthermore, the MCMTS is also shown to be a simple
and highly efficient method. As a result, it would be a practical approach for
developing multicast routing protocol.
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