
C for Java Programmers

Advanced Programming

4-Oct-11 Advanced Programming

Spring 2002

2

Credits

 Software Construction (J. Shepherd)

 Operating Systems at Cornell (Indranil Gupta)

4-Oct-11 Advanced Programming

Spring 2002

3

Overview

 Why learn C after Java?

 A brief background on C

 C preprocessor

 Modular C programs

4-Oct-11 Advanced Programming

Spring 2002

4

Why learn C (after Java)?

 Both high-level and low-level language
 OS: user interface to kernel to device driver

 Better control of low-level mechanisms
 memory allocation, specific memory locations

 Performance sometimes better than Java (Unix, NT!)
 usually more predictable (also: C vs. C++)

 Java hides many details needed for writing OS code

 But,….
 Memory management responsibility

 Explicit initialization and error detection

 generally, more lines for same functionality

 More room for mistakes

4-Oct-11 Advanced Programming

Spring 2002

5

Why learn C, cont’d.

 Most older code is written in C (or C++)

 Linux, *BSD

 Windows

 Most Java implementations

 Most embedded systems

 Philosophical considerations:

 Being multi-lingual is good!

 Should be able to trace program from UI to
assembly (EEs: to electrons)

4-Oct-11 Advanced Programming

Spring 2002

6

C pre-history

 1960s: slew of new languages

 COBOL for commercial programming (databases)

 FORTRAN for numerical and scientific programs

 PL/I as second-generation unified language

 LISP, Simula for CS research, early AI

 Assembler for operating systems and timing-
critical code

 Operating systems:

 OS/360

 MIT/GE/Bell Labs Multics (PL/I)

4-Oct-11 Advanced Programming

Spring 2002

7

C pre-history

 Bell Labs (research arm of Bell System ->
AT&T -> Lucent) needed own OS

 BCPL as Multics language

 Ken Thompson: B

 Unix = Multics – bits

 Dennis Ritchie: new language = B + types

 Development on DEC PDP-7 with 8K 16-bit
words

4-Oct-11 Advanced Programming

Spring 2002

8

C history

 C
 Dennis Ritchie in late 1960s and early 1970s

 systems programming language
 make OS portable across hardware platforms

 not necessarily for real applications – could be written in
Fortran or PL/I

 C++
 Bjarne Stroustrup (Bell Labs), 1980s

 object-oriented features

 Java
 James Gosling in 1990s, originally for embedded systems

 object-oriented, like C++

 ideas and some syntax from C

4-Oct-11 Advanced Programming

Spring 2002

9

C for Java programmers

 Java is mid-90s high-level OO language

 C is early-70s procedural language

 C advantages:

 Direct access to OS primitives (system calls)

 Fewer library issues – just execute

 (More) C disadvantages:

 language is portable, APIs are not

 memory and “handle” leaks

 preprocessor can lead to obscure errors

4-Oct-11 Advanced Programming

Spring 2002

10

C vs. C++

 We‟ll cover both, but C++ should be largely
familiar

 Very common in Windows

 Possible to do OO-style programming in C

 C++ can be rather opaque: encourages
“clever” programming

4-Oct-11 Advanced Programming

Spring 2002

11

Aside: “generations” and
abstraction levels

 Binary, assembly

 Fortran, Cobol

 PL/I, APL, Lisp, …

 C, Pascal, Ada

 C++, Java, Modula3

 Scripting: Perl, Tcl, Python, Ruby, …

 XML-based languages: CPL, VoiceXML

4-Oct-11 Advanced Programming

Spring 2002

12

C vs. Java
Java C

object-oriented function-oriented

strongly-typed can be overridden

polymorphism (+, ==) very limited (integer/float)

classes for name space (mostly) single name space, file-
oriented

macros are external, rarely
used

macros common
(preprocessor)

layered I/O model byte-stream I/O

4-Oct-11 Advanced Programming

Spring 2002

13

C vs. Java
Java C

automatic memory
management

function calls (C++ has
some support)

no pointers pointers (memory
addresses) common

by-reference, by-value by-value parameters

exceptions, exception
handling

if (f() < 0) {error}

OS signals

concurrency (threads) library functions

4-Oct-11 Advanced Programming

Spring 2002

14

C vs. Java

Java C

length of array on your own

string as type just bytes (char []),
with 0 end

dozens of common
libraries

OS-defined

4-Oct-11 Advanced Programming

Spring 2002

15

C vs. Java

 Java program

 collection of classes

 class containing main method is starting class

 running java StartClass invokes
StartClass.main method

 JVM loads other classes as required

4-Oct-11 Advanced Programming

Spring 2002

16

C program

 collection of functions

 one function – main() – is starting function

 running executable (default name a.out)
starts main function

 typically, single program with all user code
linked in – but can be dynamic libraries (.dll,
.so)

4-Oct-11 Advanced Programming

Spring 2002

17

C vs. Java

public class hello

{

 public static void main

(String args []) {

 System.out.println

 (“Hello world”);

 }

}

#include <stdio.h>

int main(int argc, char

*argv[])

{

 puts(“Hello, World”);

 return 0;

}

4-Oct-11 Advanced Programming

Spring 2002

18

What does this C program do ?
#include <stdio.h>

struct list{int data; struct list *next};

struct list *start, *end;

void add(struct list *head, struct list *list, int data};

int delete(struct list *head, struct list *tail);

void main(void){

 start=end=NULL;

 add(start, end, 2); add(start, end, 3);

 printf(“First element: %d”, delete(start, end));

}

void add(struct list *head, struct list *tail, int data}{

 if(tail==NULL){

 head=tail=malloc(sizeof(struct list));

 head->data=data; head->next=NULL;

 }

 else{

 tail->next= malloc(sizeof(struct list));

 tail=tail->next; tail->data=data; tail->next=NULL;

 }

}

4-Oct-11 Advanced Programming

Spring 2002

19

What does this C program, do –
cont’d?

void delete (struct list *head, struct list *tail){

 struct list *temp;

 if(head==tail){

 free(head); head=tail=NULL;

 }

 else{

 temp=head->next; free(head); head=temp;

 }

}

4-Oct-11 Advanced Programming

Spring 2002

20

Simple example

#include <stdio.h>

void main(void)

{

 printf(“Hello World. \n \t and you ! \n ”);

 /* print out a message */

 return;

}

$Hello World.

 and you !

$

4-Oct-11 Advanced Programming

Spring 2002

21

Dissecting the example

 #include <stdio.h>

 include header file stdio.h

 # lines processed by pre-processor

 No semicolon at end

 Lower-case letters only – C is case-sensitive

 void main(void){ … } is the only code executed

 printf(“ /* message you want printed */ ”);

 \n = newline, \t = tab

 \ in front of other special characters within printf.

 printf(“Have you heard of \”The Rock\” ? \n”);

4-Oct-11 Advanced Programming

Spring 2002

22

Executing the C program

int main(int argc, char argv[])

 argc is the argument count

 argv is the argument vector

 array of strings with command-line arguments

 the int value is the return value

 convention: 0 means success, > 0 some error

 can also declare as void (no return value)

4-Oct-11 Advanced Programming

Spring 2002

23

Executing a C program

 Name of executable + space-separated
arguments

 $ a.out 1 23 „third arg‟

4

a.out 1 23 “third arg”

argc argv

4-Oct-11 Advanced Programming

Spring 2002

24

Executing a C program

 If no arguments, simplify:
int main() {

 puts(“Hello World”);

 exit(0);

}

 Uses exit() instead of return – same thing.

4-Oct-11 Advanced Programming

Spring 2002

25

Executing C programs
 Scripting languages are usually interpreted
 perl (python, Tcl) reads script, and executes it

 sometimes, just-in-time compilation – invisible to
user

 Java programs semi-interpreted:
 javac converts foo.java into foo.class

 not machine-specific

 byte codes are then interpreted by JVM

 C programs are normally compiled and linked:
 gcc converts foo.c into a.out

 a.out is executed by OS and hardware

4-Oct-11 Advanced Programming

Spring 2002

26

Executing C programs

perl

javac

gcc,

g++

java

a.out

x.pl

x.java

x.c,

x.cc

data

args

results

4-Oct-11 Advanced Programming

Spring 2002

27

The C compiler gcc

 gcc invokes C compiler

 gcc translates C program into executable for
some target

 default file name a.out

 also “cross-compilation”
$ gcc hello.c

$ a.out

Hello, World!

4-Oct-11 Advanced Programming

Spring 2002

28

gcc

 Behavior controlled by command-line
switches:

 -o file output file for object or executable

-Wall all warnings – use always!

-c compile single module (non-main)

-g insert debugging code (gdb)

-p insert profiling code

-l library

-E preprocessor output only

4-Oct-11 Advanced Programming

Spring 2002

29

Using gcc

 Two-stage compilation

 pre-process & compile: gcc –c hello.c

 link: gcc –o hello hello.o

 Linking several modules:

gcc –c a.c a.o

gcc –c b.c b.o
gcc –o hello a.o b.o

 Using math library
 gcc –o calc calc.c -lm

4-Oct-11 Advanced Programming

Spring 2002

30

Error reporting in gcc

 Multiple sources

 preprocessor: missing include files

 parser: syntax errors

 assembler: rare

 linker: missing libraries

4-Oct-11 Advanced Programming

Spring 2002

31

Error reporting in gcc

 If gcc gets confused, hundreds of messages

 fix first, and then retry – ignore the rest

 gcc will produce an executable with warnings

 don‟t ignore warnings – compiler choice is often
not what you had in mind

 Does not flag common mindos

 if (x = 0) vs. if (x == 0)

4-Oct-11 Advanced Programming

Spring 2002

32

gcc errors

 Produces object code for each module

 Assumes references to external names will be
resolved later

 Undefined names will be reported when
linking:

 undefined symbol first referenced in file

 _print program.o

 ld fatal: Symbol referencing errors

 No output written to file.

4-Oct-11 Advanced Programming

Spring 2002

33

C preprocessor

 The C preprocessor (cpp) is a macro-
processor which

 manages a collection of macro definitions

 reads a C program and transforms it

 Example:
#define MAXVALUE 100

#define check(x) ((x) < MAXVALUE)

if (check(i) { …}

becomes
if ((i) < 100) {…}

4-Oct-11 Advanced Programming

Spring 2002

34

C preprocessor

 Preprocessor directives start with # at
beginning of line:

 define new macros

 input files with C code (typically, definitions)

 conditionally compile parts of file

 gcc –E shows output of preprocessor

 Can be used independently of compiler

4-Oct-11 Advanced Programming

Spring 2002

35

C preprocessor

#define name const-expression

#define name (param1,param2,…) expression

#undef symbol

 replaces name with constant or expression

 textual substitution

 symbolic names for global constants

 in-line functions (avoid function call
overhead)
 mostly unnecessary for modern compilers

 type-independent code

4-Oct-11 Advanced Programming

Spring 2002

36

C preprocessor

 Example: #define MAXLEN 255

 Lots of system .h files define macros

 invisible in debugger

 getchar(), putchar() in stdio library

Caution: don‟t treat macros like function calls
#define valid(x) ((x) > 0 && (x) < 20)

if (valid(x++)) {…}

valid(x++) -> ((x++) > 0 && (x++) < 20)

4-Oct-11 Advanced Programming

Spring 2002

37

C preprocessor –file inclusion

#include “filename.h”

#include <filename.h>

 inserts contents of filename into file to be compiled

 “filename” relative to current directory

 <filename> relative to /usr/include

 gcc –I flag to re-define default

 import function prototypes (cf. Java import)

 Examples:
#include <stdio.h>

#include “mydefs.h”

#include “/home/alice/program/defs.h”

4-Oct-11 Advanced Programming

Spring 2002

38

C preprocessor – conditional
compilation

#if expression

code segment 1

#else

code segment 2

#endif

 preprocessor checks value of expression

 if true, outputs code segment 1, otherwise code segment 2

 machine or OS-dependent code

 can be used to comment out chunks of code – bad!
#define OS linux

…

#if OS == linux

 puts(“Linux!”);

#else

 puts(“Something else”);

#endif

4-Oct-11 Advanced Programming

Spring 2002

39

C preprocessor - ifdef

 For boolean flags, easier:
#ifdef name

code segment 1

#else

code segment 2

#endif

 preprocessor checks if name has been
defined
 #define USEDB

 if so, use code segment 1, otherwise 2

4-Oct-11 Advanced Programming

Spring 2002

40

Advice on preprocessor

 Limit use as much as possible

 subtle errors

 not visible in debugging

 code hard to read

 much of it is historical baggage

 there are better alternatives for almost everything:

 #define INT16 -> type definitions

 #define MAXLEN -> const

 #define max(a,b) -> regular functions

 comment out code -> CVS, functions

 limit to .h files, to isolate OS & machine-specific code

4-Oct-11 Advanced Programming

Spring 2002

41

Comments

 /* any text until */

 // C++-style comments – careful!

 no /** */, but doc++ has similar

conventions

 Convention for longer comments:
/*

 * AverageGrade()

 * Given an array of grades, compute the average.

 */

 Avoid **** boxes – hard to edit, usually look
ragged.

4-Oct-11 Advanced Programming

Spring 2002

42

Numeric data types
type bytes

(typ.)

range

char 1 -128 … 127

short 2 -65536…65535

int, long 4 -2,147,483,648 to

2,147,483,647

long long 8 264

float 4 3.4E+/-38 (7 digits)

double 8 1.7E+/-308 (15 digits)

4-Oct-11 Advanced Programming

Spring 2002

43

Remarks on data types

 Range differs – int is “native” size, e.g., 64
bits on 64-bit machines, but sometimes int
= 32 bits, long = 64 bits

 Also, unsigned versions of integer types

 same bits, different interpretation

 char = 1 “character”, but only true for ASCII

and other Western char sets

4-Oct-11 Advanced Programming

Spring 2002

44

#include <stdio.h>

void main(void)

{

 int nstudents = 0; /* Initialization, required */

 printf(“How many students does Columbia have

?:”);

 scanf (“%d”, &nstudents); /* Read input */

 printf(“Columbia has %d students.\n”, nstudents);

 return ;

}

$ How many students does Columbia have ?: 20000 (enter)
Columbia has 20000 students.

Example

4-Oct-11 Advanced Programming

Spring 2002

45

#include <stdio.h>

void main(void)

{

 int i,j = 12; /* i not initialized, only j */

 float f1,f2 = 1.2;

 i = (int) f2; /* explicit: i <- 1, 0.2 lost */

 f1 = i; /* implicit: f1 <- 1.0 */

 f1 = f2 + (int) j; /* explicit: f1 <- 1.2 + 12.0 */

 f1 = f2 + j; /* implicit: f1 <- 1.2 + 12.0 */

}

Type conversion

4-Oct-11 Advanced Programming

Spring 2002

46

Explicit and implicit conversions

 Implicit: e.g., s = a (int) + b (char)

 Promotion: char -> short -> int -> …

 If one operand is double, the other is made
double

 If either is float, the other is made float,

etc.

 Explicit: type casting – (type)

 Almost any conversion does something – but
not necessarily what you intended

4-Oct-11 Advanced Programming

Spring 2002

47

Type conversion

int x = 100000;

short s;

s = x;

printf(“%d %d\n”, x, s);

100000 -31072

4-Oct-11 Advanced Programming

Spring 2002

48

C – no booleans

 C doesn‟t have booleans

 Emulate as int or char, with values 0 (false)
and 1 or non-zero (true)

 Allowed by flow control statements:
if (n = 0) {

 printf(“something wrong”);

}

 Assignment returns zero -> false

4-Oct-11 Advanced Programming

Spring 2002

49

User-defined types

 typedef gives names to types:

typedef short int smallNumber;

typedef unsigned char byte;

typedef char String[100];

smallNumber x;

byte b;

String name;

4-Oct-11 Advanced Programming

Spring 2002

50

Defining your own boolean

typedef char boolean;

#define FALSE 0

#define TRUE 1

 Generally works, but beware:
check = x > 0;

if (check == TRUE) {…}

 If x is positive, check will be non-zero, but
may not be 1.

4-Oct-11 Advanced Programming

Spring 2002

51

Enumerated types

 Define new integer-like types as enumerated types:
typedef enum {

 Red, Orange, Yellow, Green, Blue, Violet

} Color;

enum weather {rain, snow=2, sun=4};

 look like C identifiers (names)

 are listed (enumerated) in definition

 treated like integers
 can add, subtract – even color + weather

 can‟t print as symbol (unlike Pascal)

 but debugger generally will

4-Oct-11 Advanced Programming

Spring 2002

52

Enumerated types

 Just syntactic sugar for ordered collection of
integer constants:
typedef enum {

 Red, Orange, Yellow

} Color;

is like
#define Red 0

#define Orange 1

#define Yellow 2

 typedef enum {False, True} boolean;

4-Oct-11 Advanced Programming

Spring 2002

53

Objects (or lack thereof)

 C does not have objects (C++ does)

 Variables for C‟s primitive types are defined very
similarly:
short int x;

char ch;

float pi = 3.1415;

float f, g;

 Variables defined in {} block are active only in block

 Variables defined outside a block are global (persist
during program execution), but may not be globally
visible (static)

4-Oct-11 Advanced Programming

Spring 2002

54

Data objects

 Variable = container that can hold a value

 in C, pretty much a CPU word or similar

 default value is (mostly) undefined – treat as
random

 compiler may warn you about uninitialized
variables

 ch = „a‟; x = x + 4;

 Always pass by value, but can pass address
to function:
scanf(“%d%f”, &x, &f);

4-Oct-11 Advanced Programming

Spring 2002

55

Data objects

 Every data object in C has

 a name and data type (specified in definition)

 an address (its relative location in memory)

 a size (number of bytes of memory it occupies)

 visibility (which parts of program can refer to it)

 lifetime (period during which it exists)

 Warning:
int *foo(char x) {

 return &x;

}

pt = foo(x);

*pt = 17;

4-Oct-11 Advanced Programming

Spring 2002

56

Data objects

 Unlike scripting languages and Java, all C
data objects have a fixed size over their
lifetime

 except dynamically created objects

 size of object is determined when object is
created:

 global data objects at compile time (data)

 local data objects at run-time (stack)

 dynamic data objects by programmer (heap)

4-Oct-11 Advanced Programming

Spring 2002

57

Data object creation

int x;

int arr[20];

int main(int argc, char *argv[]) {

 int i = 20;

 {into x; x = i + 7;}

}

int f(int n)

{

 int a, *p;

 a = 1;

 p = (int *)malloc(sizeof int);

}

4-Oct-11 Advanced Programming

Spring 2002

58

Data object creation

 malloc() allocates a block of memory

 Lifetime until memory is freed, with free().

 Memory leakage – memory allocated is never
freed:
char *combine(char *s, char *t) {

 u = (char *)malloc(strlen(s) + strlen(t) + 1);

 if (s != t) {

 strcpy(u, s); strcat(u, t);

 return u;

 } else {

 return 0;

 }

}

4-Oct-11 Advanced Programming

Spring 2002

59

Memory allocation

 Note: malloc() does not initialize data

 void *calloc(size_t n, size_t elsize)
does initialize (to zero)

 Can also change size of allocated memory
blocks:

void *realloc(void *ptr, size_t size)

ptr points to existing block, size is new size

 New pointer may be different from old, but
content is copied.

4-Oct-11 Advanced Programming

Spring 2002

60

Memory layout of programs

Header info

Code

Data - Heap

 0

 100

 400

 560

1010

1200

Dynamic memory

Local memory
+ function call
stack

all normal vars

all malloc()s

Data - stack

4-Oct-11 Advanced Programming

Spring 2002

61

Data objects and pointers

 The memory address of a data object, e.g., int x

 can be obtained via &x

 has a data type int * (in general, type *)

 has a value which is a large (4/8 byte) unsigned integer

 can have pointers to pointers: int **

 The size of a data object, e.g., int x

 can be obtained via sizeof x or sizeof(x)

 has data type size_t, but is often assigned to int (bad!)

 has a value which is a small(ish) integer

 is measured in bytes

4-Oct-11 Advanced Programming

Spring 2002

62

Data objects and pointers

 Every data type T in C/C++ has an
associated pointer type T *

 A value of type * is the address of an object
of type T

 If an object int *xp has value &x, the
expression *xp dereferences the pointer and
refers to x, thus has type int

&x 42

xp x

int * int

4-Oct-11 Advanced Programming

Spring 2002

63

Data objects and pointers

 If p contains the address of a data object,
then *p allows you to use that object

 *p is treated just like normal data object
int a, b, *c, *d;

d = 17; / BAD idea */

a = 2; b = 3; c = &a; d = &b;

if (*c == *d) puts(“Same value”);

*c = 3;

if (*c == *d) puts(“Now same value”);

c = d;

if (c == d) puts (“Now same address”);

4-Oct-11 Advanced Programming

Spring 2002

64

void pointers

 Generic pointer

 Unlike other pointers, can be assigned to any
other pointer type:

void *v;

char *s = v;

 Acts like char * otherwise:

v++, sizeof(*v) = 1;

4-Oct-11 Advanced Programming

Spring 2002

65

Control structures

 Same as Java

 sequencing: ;

 grouping: {...}

 selection: if, switch

 iteration: for, while

4-Oct-11 Advanced Programming

Spring 2002

66

Sequencing and grouping

 statement1 ; statement2; statement n;

 executes each of the statements in turn

 a semicolon after every statement

 not required after a {...} block

 { statements} {declarations statements}

 treat the sequence of statements as a single
operation (block)

 data objects may be defined at beginning of block

4-Oct-11 Advanced Programming

Spring 2002

67

The if statement

 Same as Java
if (condition1) {statements1}

else if (condition 2) {statements2}

else if (condition n-1) {statements n-1}|

else {statementsn}

 evaluates statements until find one with non-
zero result

 executes corresponding statements

4-Oct-11 Advanced Programming

Spring 2002

68

The if statement

 Can omit {}, but careful
if (x > 0)

 printf(“x > 0!”);

 if (y > 0)

 printf(“x and y > 0!”);

4-Oct-11 Advanced Programming

Spring 2002

69

The switch statement

 Allows choice based on a single value
switch(expression) {

 case const1: statements1; break;

 case const2: statements2; break;

 default: statementsn;

}

 Effect: evaluates integer expression

 looks for case with matching value

 executes corresponding statements (or
defaults)

4-Oct-11 Advanced Programming

Spring 2002

70

The switch statement

Weather w;

switch(w) {

 case rain:

 printf(“bring umbrella‟‟);

 case snow:

 printf(“wear jacket”);

 break;

 case sun:

 printf(“wear sunscreen”);

 break;

 default:

 printf(“strange weather”);

}

4-Oct-11 Advanced Programming

Spring 2002

71

Repetition

 C has several control structures for repetition

 Statement repeats an action...

while(c) {} zero or more times,
while condition is 0

do {...} while(c) one or more times,

while condition is 0

for (start; cond;
upd)

zero or more times,
with initialization and
update

4-Oct-11 Advanced Programming

Spring 2002

72

The break statement

 break allows early exit from one loop level
for (init; condition; next) {

 statements1;

 if (condition2) break;

 statements2;

}

4-Oct-11 Advanced Programming

Spring 2002

73

The continue statement

 continue skips to next iteration, ignoring

rest of loop body

 does execute next statement
for (init; condition1; next) {

 statement2;

 if (condition2) continue;

 statement2;

}

 often better written as if with block

4-Oct-11 Advanced Programming

Spring 2002

74

Structured data objects

 Structured data objects are available as

 object property

array [] enumerated,
numbered from 0

struct names and types of
fields

union occupy same space
(one of)

4-Oct-11 Advanced Programming

Spring 2002

75

Arrays

 Arrays are defined by specifying an element
type and number of elements
 int vec[100];

 char str[30];

 float m[10][10];

 For array containing N elements, indexes are
0..N-1

 Stored as linear arrangement of elements

 Often similar to pointers

4-Oct-11 Advanced Programming

Spring 2002

76

Arrays

 C does not remember how large arrays are (i.e., no
length attribute)

 int x[10]; x[10] = 5; may work (for a while)

 In the block where array A is defined:
 sizeof A gives the number of bytes in array

 can compute length via sizeof A /sizeof A[0]

 When an array is passed as a parameter to a function
 the size information is not available inside the function

 array size is typically passed as an additional parameter
 PrintArray(A, VECSIZE);

 or as part of a struct (best, object-like)

 or globally
 #define VECSIZE 10

4-Oct-11 Advanced Programming

Spring 2002

77

Arrays

 Array elements are accessed using the same syntax
as in Java: array[index]

 Example (iteration over array):
int i, sum = 0;

...

for (i = 0; i < VECSIZE; i++)

 sum += vec[i];

 C does not check whether array index values are
sensible (i.e., no bounds checking)
 vec[-1] or vec[10000] will not generate a compiler

warning!

 if you‟re lucky, the program crashes with
Segmentation fault (core dumped)

4-Oct-11 Advanced Programming

Spring 2002

78

Arrays

 C references arrays by the address of their
first element

 array is equivalent to &array[0]

 can iterate through arrays using pointers as
well as indexes:
int *v, *last;

int sum = 0;

last = &vec[VECSIZE-1];

for (v = vec; v <= last; v++)

 sum += *v;

4-Oct-11 Advanced Programming

Spring 2002

79

2-D arrays

 2-dimensional array
int weekends[52][2];

weekends

 weekends[2][1] is same as *(weekends+2*2+1)
 NOT *weekends+2*2+1 :this is an int !

 [0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0]

4-Oct-11 Advanced Programming

Spring 2002

80

Arrays - example

#include <stdio.h>

void main(void) {

 int number[12]; /* 12 cells, one cell per student */

 int index, sum = 0;

 /* Always initialize array before use */

 for (index = 0; index < 12; index++) {

 number[index] = index;

 }

 /* now, number[index]=index; will cause error:why ?*/

 for (index = 0; index < 12; index = index + 1) {

 sum += number[index]; /* sum array elements */

 }

 return;

}

4-Oct-11 Advanced Programming

Spring 2002

81

Aside: void, void *

 Function that doesn‟t return anything
declared as void

 No argument declared as void

 Special pointer *void can point to anything
#include <stdio.h>

extern void *f(void);

void *f(void) {

 printf("the big void\n");

 return NULL;

}

int main(void) {

 f();

}

4-Oct-11 Advanced Programming

Spring 2002

82

Overriding functions – function
pointers

 overriding: changing the implementation,
leave prototype

 in C, can use function pointers

returnType (*ptrName)(arg1, arg2, ...);

 for example, int (*fp)(double x); is a pointer
to a function that return an integer

 double * (*gp)(int) is a pointer to a function
that returns a pointer to a double

4-Oct-11 Advanced Programming

Spring 2002

83

structs

 Similar to fields in Java object/class
definitions

 components can be any type (but not
recursive)

 accessed using the same syntax struct.field

 Example:
struct {int x; char y; float z;} rec;

...

r.x = 3; r.y = „a‟; r.z= 3.1415;

4-Oct-11 Advanced Programming

Spring 2002

84

structs

 Record types can be defined

 using a tag associated with the struct definition

 wrapping the struct definition inside a typedef

 Examples:
struct complex {double real; double imag;};

struct point {double x; double y;} corner;

typedef struct {double real; double imag;} Complex;

struct complex a, b;

Complex c,d;

 a and b have the same size, structure and type

 a and c have the same size and structure, but
different types

4-Oct-11 Advanced Programming

Spring 2002

85

structs

 Overall size is sum of elements, plus padding
for alignment:
struct {

 char x;

 int y;

 char z;

} s1; sizeof(s1) = ?

struct {

 char x, z;

 int y;

} s2; sizeof(s2) = ?

4-Oct-11 Advanced Programming

Spring 2002

86

structs - example

struct person {

 char name[41];

 int age;

 float height;

 struct { /* embedded structure */

 int month;

 int day;

 int year;

 } birth;

};

struct person me;

me.birth.year=1977;

struct person class[60];

 /* array of info about everyone in class */

class[0].name=“Gun”; class[0].birth.year=1971;……

4-Oct-11 Advanced Programming

Spring 2002

87

structs

 Often used to model real memory layout,
e.g.,
typedef struct {

 unsigned int version:2;

 unsigned int p:1;

 unsigned int cc:4;

 unsigned int m:1;

 unsigned int pt:7;

 u_int16 seq;

 u_int32 ts;

} rtp_hdr_t;

4-Oct-11 Advanced Programming

Spring 2002

88

Dereferencing pointers to
struct elements

 Pointers commonly to struct‟s

(*sp).element = 42;

y = (*sp).element;

 Note: *sp.element doesn‟t work

 Abbreviated alternative:

sp->element = 42;

y = sp->element;

4-Oct-11 Advanced Programming

Spring 2002

89

Bit fields

 On previous slides, labeled integers with size
in bits (e.g., pt:7)

 Allows aligning struct with real memory data,
e.g., in protocols or device drivers

 Order can differ between little/big-endian
systems

 Alignment restrictions on modern processors
– natural alignment

 Sometimes clearer than (x & 0x8000) >> 31

4-Oct-11 Advanced Programming

Spring 2002

90

Unions

 Like structs:
union u_tag {

 int ival;

 float fval;

 char *sval;

} u;

 but occupy same memory space

 can hold different types at different times

 overall size is largest of elements

4-Oct-11 Advanced Programming

Spring 2002

91

int month[12]; /* month is a pointer to base address 430*/

month[3] = 7; /* month address + 3 * int elements

 => int at address (430+3*4) is now 7 */

ptr = month + 2; /* ptr points to month[2],

 => ptr is now (430+2 * int elements)= 438 */

ptr[5] = 12; /* ptr address + 5 int elements

 => int at address (434+5*4) is now 12.

 Thus, month[7] is now 12 */

ptr++; /* ptr <- 438 + 1 * size of int = 442 */

(ptr + 4)[2] = 12; /* accessing ptr[6] i.e., array[9] */

More pointers

 Now , month[6], *(month+6), (month+4)[2],
ptr[3], *(ptr+3) are all the same integer variable.

4-Oct-11 Advanced Programming

Spring 2002

92

Functions - why and how ?

 If a program is too long

 Modularization – easier
to

• code

• debug

 Code reuse

 Passing arguments to
functions

 By value

 By reference

 Returning values from
functions

 By value

 By reference

4-Oct-11 Advanced Programming

Spring 2002

93

Functions

 Prototypes and functions (cf. Java interfaces)
 extern int putchar(int c);

 putchar(„A‟);

 int putchar(int c) {

 do something interesting here

 }

 If defined before use in same file, no need for
prototype

 Typically, prototype defined in .h file

 Good idea to include <.h> in actual definition

4-Oct-11 Advanced Programming

Spring 2002

94

Functions

 static functions and variables hide them to
those outside the same file:
static int x;

static int times2(int c) {

 return c*2;

}

 compare protected class members in Java.

4-Oct-11 Advanced Programming

Spring 2002

95

Functions – const arguments

 Indicates that argument won‟t be changed.

 Only meaningful for pointer arguments and
declarations:
int c(const char *s, const int x) {

 const int VALUE = 10;

 printf("x = %d\n", VALUE);

 return *s;

}

 Attempts to change *s will yield compiler

warning.

4-Oct-11 Advanced Programming

Spring 2002

96

Functions - extern
#include <stdio.h>

extern char user2line [20]; /* global variable defined

 in another file */

char user1line[30]; /* global for this file */

void dummy(void);

void main(void) {

 char user1line[20]; /* different from earlier

 user1line[30] */

 . . . /* restricted to this func */

}

void dummy(){

 extern char user1line[]; /* the global user1line[30] */

 . . .

}

4-Oct-11 Advanced Programming

Spring 2002

97

Overloading functions – var.
arg. list

 Java:
void product(double x, double y);

void product(vector x, vector y);

 C doesn‟t support this, but allows variable
number of arguments:
debug(“%d %f”, x, f);

debug(“%c”, c);

 declared as void debug(char *fmt, ...);

 at least one known argument

4-Oct-11 Advanced Programming

Spring 2002

98

Overloading functions

 must include <stdarg.h>:
#include <stdarg.h>

double product(int number, ...) {

 va_list list;

 double p;

 int i;

 va_start(list, number);

 for (i = 0, p = 1.0; i < number; i++) {

 p *= va_arg(list, double);

 }

 va_end(list);

}

 danger: product(2,3,4) won‟t work, needs
product(2,3.0,4.0);

4-Oct-11 Advanced Programming

Spring 2002

99

Overloading functions

 Limitations:

 cannot access arguments in middle

 needs to copy to variables or local array

 client and function need to know and adhere to
type

4-Oct-11 Advanced Programming

Spring 2002

100

Program with multiple files

 Library headers

 Standard

 User-defined

void myproc(void);

int mydata;

#include <stdio.h>

#include “mypgm.h”

void myproc(void)

{

 mydata=2;

 . . . /* some code */

}

#include <stdio.h>

#include “mypgm.h”

void main(void)

{

 myproc();

}

hw.c mypgm.c

mypgm.h

4-Oct-11 Advanced Programming

Spring 2002

101

Data hiding in C

 C doesn‟t have classes or private members, but this can be
approximated

 Implementation defines real data structure:
#define QUEUE_C

#include “queue.h”

typedef struct queue_t {

 struct queue_t *next;

 int data;

} *queue_t, queuestruct_t;

queue_t NewQueue(void) {

 return q;

}

 Header file defines public data:
#ifndef QUEUE_C

typedef struct queue_t *queue_t;

#endif

queue_t NewQueue(void);

4-Oct-11 Advanced Programming

Spring 2002

102

Pointer to function

int func(); /*function returning integer*/

int *func(); /*function returning pointer to integer*/

int (*func)(); /*pointer to function returning integer*/

int *(*func)(); /*pointer to func returning ptr to int*/

4-Oct-11 Advanced Programming

Spring 2002

103

Function pointers

int (*fp)(void);

double* (*gp)(int);

int f(void)

double *g(int);

fp=f;

gp=g;

int i = fp();

double *g = (*gp)(17); /* alternative */

4-Oct-11 Advanced Programming

Spring 2002

104

#include <stdio.h>

void myproc (int d);

void mycaller(void (* f)(int), int param);

void main(void) {

 myproc(10); /* call myproc with parameter 10*/

 mycaller(myproc, 10); /* and do the same again ! */

}

void mycaller(void (* f)(int), int param){

 (*f)(param); /* call function *f with param */

}

void myproc (int d){

 . . . /* do something with d */

}

Pointer to function - example

4-Oct-11 Advanced Programming

Spring 2002

105

Libraries

 C provides a set of standard libraries for

 numerical math
functions

<math.h> -lm

character
strings

<string.h>

character types <ctype.h>

I/O <stdio.h>

4-Oct-11 Advanced Programming

Spring 2002

106

The math library

 #include <math.h>

 careful: sqrt(5) without header file may give

wrong result!

 gcc –o compute main.o f.o –lm

 Uses normal mathematical notation:

 Math.sqrt(2) sqrt(2)

Math.pow(x,5) pow(x,5)

4*math.pow(x,3) 4*pow(x,3)

4-Oct-11 Advanced Programming

Spring 2002

107

Characters

 The char type is an 8-bit byte containing ASCII code
values (e.g., „A‟ = 65, „B‟ = 66, ...)

 Often, char is treated like (and converted to) int

 <ctype.h> contains character classification

functions:

isalnum(ch) alphanumeric [a-zA-Z0-9]

isalpha (ch) alphabetic [a-zA-Z]

isdigit(ch) digit [0-9]

ispunct(ch) punctuation [~!@#%^&...]

isspace(ch) white space [\t\n]

isupper(ch) upper-case [A-Z]

islower(ch) lower-case [a-z]

4-Oct-11 Advanced Programming

Spring 2002

108

 In Java, strings are regular objects

 In C, strings are just char arrays with a NUL
(„\0‟) terminator

 “a cat” =

 A literal string (“a cat”)

 is automatically allocated memory space to contain it and
the terminating \0

 has a value which is the address of the first character

 can‟t be changed by the program (common bug!)

 All other strings must have space allocated to them
by the program

Strings

a c a t \0

4-Oct-11 Advanced Programming

Spring 2002

109

Strings

char *makeBig(char *s) {

 s[0] = toupper(s[0]);

 return s;

}

makeBig(“a cat”);

4-Oct-11 Advanced Programming

Spring 2002

110

Strings

 We normally refer to a string via a pointer to its first
character:
char *str = “my string”;

char *s;

s = &str[0]; s = str;

 C functions only know string ending by \0:
char *str = “my string”;

...

int i;

for (i = 0; str[i] != „\0‟; i++)

putchar(str[i]);

char *s;

for (s = str; *s; s++) putchar(*s);

4-Oct-11 Advanced Programming

Spring 2002

111

Strings

 Can treat like arrays:
char c;

char line[100];

for (i = 0; i < 100 && line[c]; i++) {

 if (isalpha(line[c]) ...

}

4-Oct-11 Advanced Programming

Spring 2002

112

Copying strings

 Copying content vs. copying pointer to
content

 s = t copies pointer – s and t now refer to

the same memory location

 strcpy(s, t); copies content of t to s
char mybuffer[100];

...

mybuffer = “a cat”;

 is incorrect (but appears to work!)

 Use strcpy(mybuffer, “a cat”) instead

4-Oct-11 Advanced Programming

Spring 2002

113

Example string manipulation

#include <stdio.h>

#include <string.h>

int main(void) {

 char line[100];

 char *family, *given, *gap;

 printf(“Enter your name:”); fgets(line,100,stdin);

 given = line;

 for (gap = line; *gap; gap++)

 if (isspace(*gap)) break;

 *gap = „\0‟;

 family = gap+1;

 printf(“Your name: %s, %s\n”, family, given);

 return 0;

}

4-Oct-11 Advanced Programming

Spring 2002

114

string.h library

 Assumptions:
 #include <string.h>

 strings are NUL-terminated

 all target arrays are large enough

 Operations:
 char *strcpy(char *dest, char *source)

 copies chars from source array into dest array up to NUL

 char *strncpy(char *dest, char *source, int
num)

 copies chars; stops after num chars if no NUL before
that; appends NUL

4-Oct-11 Advanced Programming

Spring 2002

115

string.h library

 int strlen(const char *source)

 returns number of chars, excluding NUL

 char *strchr(const char *source, const
char ch)

 returns pointer to first occurrence of ch in source;
NUL if none

 char *strstr(const char *source, const
char *search)

 return pointer to first occurrence of search in
source

4-Oct-11 Advanced Programming

Spring 2002

116

Formatted strings

 String parsing and formatting (binary from/to text)
 int sscanf(char *string, char *format, ...)

 parse the contents of string according to format

 placed the parsed items into 3rd, 4th, 5th, ... argument

 return the number of successful conversions

 int sprintf(char *buffer, char *format, ...)

 produce a string formatted according to format

 place this string into the buffer

 the 3rd, 4th, 5th, ... arguments are formatted

 return number of successful conversions

4-Oct-11 Advanced Programming

Spring 2002

117

Formatted strings

 The format strings for sscanf and sprintf

contain

 plain text (matched on input or inserted into the
output)

 formatting codes (which must match the
arguments)

 The sprintf format string gives template

for result string

 The sscanf format string describes what

input should look like

4-Oct-11 Advanced Programming

Spring 2002

118

Formatted strings

 Formatting codes for sscanf

 Code meaning variable

%c matches a single character char

%d matches an integer in decimal int

%f matches a real number (ddd.dd) float

%s matches a string up to white space char *

%[^c] matches string up to next c char char *

4-Oct-11 Advanced Programming

Spring 2002

119

Formatted strings

 Formatting codes for sprintf

 Values normally right-justified; use negative field width to get
left-justified

 Code meaning variable

%nc char in field of n spaces char

%nd integer in field of n spaces int, long

%n.mf real number in width n, m
decimals

float, double

%n.mg real number in width n, m digits of
precision

float, double

%n.ms first m chars from string in width n char *

4-Oct-11 Advanced Programming

Spring 2002

120

Formatted strings - examples

char *msg = “Hello there”;

char *nums = “1 3 5 7 9”;

char s[10], t[10];

int a, b, c, n;

n = sscanf(msg, “%s %s”, s, t);

n = printf(“%10s %-10s”, t, s);

n = sscanf(nums, “%d %d %d”, &a, &b, &c);

printf(“%d flower%s”, n, n > 1 ? “s” : “ “);

printf(“a = %d, answer = %d\n”, a, b+c);

4-Oct-11 Advanced Programming

Spring 2002

121

The stdio library

 Access stdio functions by
 using #include <stdio.h> for prototypes

 compiler links it automatically

 defines FILE * type and functions of that
type

 data objects of type FILE *

 can be connected to file system files for reading
and writing

 represent a buffered stream of chars (bytes) to be
written or read

 always defines stdin, stdout, stderr

4-Oct-11 Advanced Programming

Spring 2002

122

The stdio library: fopen(),
fclose()

 Opening and closing FILE * streams:
FILE *fopen(const char *path, const char
*mode)

 open the file called path in the appropriate mode

 modes: “r” (read), “w” (write), “a” (append), “r+” (read &
write)

 returns a new FILE * if successful, NULL otherwise

int fclose(FILE *stream)

 close the stream FILE *

 return 0 if successful, EOF if not

4-Oct-11 Advanced Programming

Spring 2002

123

stdio – character I/O

int getchar()

 read the next character from stdin; returns EOF

if none

int fgetc(FILE *in)
 read the next character from FILE in; returns EOF

if none

int putchar(int c)
 write the character c onto stdout; returns c or EOF

int fputc(int c, FILE *out)
 write the character c onto out; returns c or EOF

4-Oct-11 Advanced Programming

Spring 2002

124

stdio – line I/O

char *fgets(char *buf, int size, FILE *in)

 read the next line from in into buffer buf

 halts at „\n‟ or after size-1 characters have been

read

 the „\n‟ is read, but not included in buf

 returns pointer to strbuf if ok, NULL otherwise

 do not use gets(char *) – buffer overflow

int fputs(const char *str, FILE *out)

 writes the string str to out, stopping at „\0‟

 returns number of characters written or EOF

4-Oct-11 Advanced Programming

Spring 2002

125

stdio – formatted I/O

int fscanf(FILE *in, const char *format, ...)

 read text from stream according to format
int fprintf(FILE *out, const char *format, ...)

 write the string to output file, according to format
int printf(const char *format, ...)

 equivalent to fprintf(stdout, format, ...)

 Warning: do not use fscanf(...); use
fgets(str, ...); sscanf(str, ...);

4-Oct-11 Advanced Programming

Spring 2002

126

Before you go….
 Always initialize anything before using it (especially

pointers)

 Don‟t use pointers after freeing them

 Don‟t return a function‟s local variables by reference

 No exceptions – so check for errors everywhere

 memory allocation

 system calls

 Murphy‟s law, C version: anything that can’t fail, will fail

 An array is also a pointer, but its value is immutable.

