
1

Turgay Korkmaz

Office: SB 4.01.13
Phone: (210) 458-7346
Fax: (210) 458-4437

e-mail: korkmaz@cs.utsa.edu
web: www.cs.utsa.edu/~korkmaz

CS 2213
Advanced Programming

Ch 4 – Recursion

Thanks to Eric S. Roberts, the author of our textbook, for providing some slides/figures/programs.

http://www.cs.utsa.edu/~korkmaz

Objectives

 To be able to define the concept of recursion as a
programming strategy distinct from other forms of
algorithmic decomposition.

 To recognize the paradigmatic form of a recursive function.

 To understand the internal implementation of recursive calls.

 To appreciate the importance of the recursive leap of faith.

 To understand the concept of wrapper functions in writing
recursive programs.

 To be able to write and debug simple recursive functions at
the level of those presented in this chapter.

2

Recursion:
One of the most important “Great Ideas”

 Recursion is the process of solving a problem by dividing it
into smaller sub-problems of the same form.

 The italicized phrase is the essential characteristic of
recursion; without it, all you have is a description of
stepwise refinement of the solution.

 Since the recursive decomposition generates sub-problems
that have the same form as the original problem, we can
use the same function or method to solve the
generated sub-problems at different levels.

 In terms of the structure of the code, the defining
characteristic of recursion is having functions that call
themselves, directly or indirectly, as the decomposition
process proceeds.
 3

A Simple Illustration
of Recursion

 Suppose that you need to raise $1,000,000.

 One possible approach is to find a wealthy donor and ask
for a single $1,000,000 contribution.
o Individuals with that much money are difficult to find.

o Donors are much more likely to donate in the $100 range.

 Another strategy would be to ask 10,000 friends for $100
each. But, most of us don’t have 10,000 friends.

 There are, however, more promising strategies.
o You could, for example, find ten regional coordinators and charge

each one with raising $100,000.

o Those regional coordinators could in turn delegate the task to
local coordinators, each with a goal of $10,000, continuing the
process reached a manageable contribution level.

4

A Simple Illustration
of Recursion (cont’d)

The following diagram
illustrates the recursive
strategy for raising
$1,000,000

Goal:
$1,000,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$100,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$10,000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$1000

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100

Goal:
$100 5

A Pseudocode
for Fundraising Strategy

void CollectContributions(int n) {

 if (n <= 100) {

 Collect the money from a single donor.
 } else {

 Find 10 volunteers.
 Get each volunteer to collect n/10 dollars.
 Combine the money raised by the volunteers.
 }

}

What makes this strategy recursive is that the line

Get each volunteer to collect n/10 dollars.

will be implemented using the following recursive call:

CollectContributions(n / 10);
6

Recursive Paradigm:
Writing a Recursive Function

Finding a recursive solution is mostly a matter of figuring out how to break it
down so that it fits the paradigm. When you do so, you must do two things:

1. Identify simple case(s) that can be solved without recursion.

2. Find a recursive decomposition that breaks each instance of the problem into
simpler sub-problems of the same type, which you can then solve by applying
the method recursively.

7

if (test for simple case) {

 Compute a simple solution without using recursion

} else {

 Break the problem down into sub-problems of the same form.

 Solve each of the sub-problems by calling this function recursively.

 Reassemble the solutions to the sub-problems into a solution for the whole.

}

The recursive formulation of
Factorial

 n! = n x (n – 1)!

 Thus, 4! is 4 x 3!, 3! is 3 x 2!, and so on.

 To make sure that this process stops at some
point, mathematicians define 0! to be 1.

 Thus, the conventional mathematical
definition of the factorial looks like

8 

 




otherwise

0 if

)!1(

1
!

n

nn
n

Recursive vs. iterative
implementation

int Fact(int n)

{

 if (n == 0) {

 return 1;

 } else {

 return n * Fact(n-1);

 }

}

int FactIteration(int n)

{

 int product;

 product = 1;

 for (int i = 1; i <= n; i++) {

 product *= i;

 }

 return product;

}

9

Tracing Factorial Function

skip simulation

Fact

Enter n: 3
3! = 6

int main() {

 printf("Enter n: “);

 int n = GetInteger();

 printf(“%d! = %d\n”,n, Fact(n));

 return 0;

}

n

3 6

int Fact(int n) {

 if (n == 0) {

 return 1;

 } else {

 return n * Fact(n - 1);

 }

}

n

3 2

int Fact(int n) {

 if (n == 0) {

 return 1;

 } else {

 return n * Fact(n - 1);

 }

}

n

2 1

int Fact(int n) {

 if (n == 0) {

 return 1;

 } else {

 return n * Fact(n - 1);

 }

}

n

1 1

int Fact(int n) {

 if (n == 0) {

 return 1;

 } else {

 return n * Fact(n - 1);

 }

}

n

0

 Local variables and return addresses are stored in a stack.

The Recursive “Leap of Faith”

• The purpose of going through the complete decomposition of factorial is
to convince you that the process works and that recursive calls are in
fact no different from other method calls, at least in their internal
operation.

• The danger with going through these details is that it might encourage
you to do the same when you write your own recursive programs. As it
happens, tracing through the details of a recursive program
almost always makes such programs harder to write.

• Writing recursive programs becomes natural only after you have enough
confidence in the process that you don’t need to trace them fully.

• As you write a recursive program, it is important to believe that any
recursive call will return the correct answer as long as the
arguments define a simpler sub-problem.

• Believing that to be true—even before you have completed the code—is
called the recursive leap of faith.

12

The Fibonacci function

int Fib(int n)

{

 if (n < 2) {

 return n;

 } else {

 return Fib(n - 1) + Fib(n - 2);

 }

} 13

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

 0 1 1 2 3 5 8 13 21 34 55 89 144








 otherwise

1or 0 is if

21

n

tt

n
t

nn

n

How about

int FibIteration(int n)

{

… // dynamic programming

}

Steps in the calculation of
Fib(5)

14

Recursive leap of faith

Efficiency of the Recursive
implementation of Fib

 Can you implement an iterative version of Fib,
say int IterativeFib(int n)?

 Which one will be faster Recursive or Iterative?

 Look at the details of Fib(5) in previous slide:

 you will see that it is extremely inefficient

 the same Fib term is computed many times
(redundant calls to Fib())

 Should we blame Recursion!

 Can we fix this?
15

Wrapper function and a subsidiary
function for the more general case

 Suppose we have the following function
int AdditiveSequence(int n, int t0, int t1)

{

 if (n == 0) return t0;

 if (n == 1) return t1;

 return AdditiveSequence(n-1, t1, t0+t1);

}

 Then we can simply implement Fib(n) as
int Fib(int n) {

 return AdditiveSequence(n, 0, 1);

} 16

s
u

b
s
id

ia
ry

 f
u

n
c
ti

o
n

 f
o
r

th
e
 m

o
re

 g
e
n
e
ra

l
ca

se

W
ra

p
p

e
r

fu
n

c
ti

o
n

Trace and Efficiency of Fib

Fib(5)

= AdditiveSequence(5, 0, 1)

 = AdditiveSequence(4, 1, 1)

 = AdditiveSequence(3, 1, 2)

 = AdditiveSequence(2, 2, 3)

 = AdditiveSequence(1, 3, 5)

 = 5

 The new implementation is entirely recursive, and it
is comparable in efficiency to the standard iterative
version of the Fib() function.

17

Common Errors

 Recursive function may not terminate if the
stopping case is not correct or is incomplete

 stack overflow: run-time error

 Make sure that each recursive step leads to
a situation that is closer to a stopping case.

 (problem size gets smaller and smaller and smaller and smaller)

18

Iteration vs. Recursion

 In general, an iterative version of a program will execute
more efficiently in terms of time and space than a recursive
version. Why?

 This is because the overhead involved in entering and exiting a
function is avoided in iterative version.

 However, a recursive solution can be sometimes the most
natural and logical way of solving a problem (tree traversal).

 Conflict:

 machine efficiency vs. programmer efficiency

 It is always true that recursion can be replaced with
iteration and a stack.

19

Mutual Recursion

 So far, the recursive functions have called
themselves directly

 But, the definition is broader:

 To be recursive, a function must call itself at some point
during its evaluation.

 For example, if a function ƒ calls a function g, which in
turn calls ƒ, the function calls are still considered to be
recursive.

 The recursive call is actually occurring at a deeper
level of nesting.

20

Mutual Recursion Example

21

bool IsEven(unsigned int n) {

 if (n == 0) {

 return true;

 } else {

 return IsOdd(n - 1);

 }

}

bool IsOdd(unsigned int n) {

 return !IsEven(n);

}

Study Other examples
in Section 4.4

 A palindrome is a string that reads identically
backward and forward, such as "level” or "noon".

 it is easy to check whether a string is a palindrome by
iterating through its characters,

 Palindromes can also be defined recursively.

 Insight: any palindrome longer than a single character
must contain a shorter palindrome in its interior.

 For example, "level" consists of the palindrome "eve"
with an "l" at each end.

 Binary Search
22

bool IsPalindrome(string str) {
 int len = strlen(str);
 if (len <= 1) {
 return true;
 } else {
 return (str[0] == str[len – 1] &&
 IsPalindrome(SubString(str,1, len - 2)));
 }
} // see the textbook using wrapper function

More Recursive Examples in
Ch 5

 Tower of Hanoi (Self-Study)

 Generating Permutations

 Graphical applications (Self-Study)

23

Solution: A Recursive gcd Function Exercise: A Recursive GCD Function

public int gcd(int x, int y) {

 if (y == 0) {

 return x;

 } else {

 return gcd(y, x % y);

 }

}

int GCD(int x, int y) {

 int r = x % y;

 while (r != 0) {

 x = y;

 y = r;

 r = x % y;

 }

 return y;

}

One of the oldest known algorithms that is worthy of the title is
Euclid’s algorithm for computing the greatest common divisor
(GCD) of two integers, x and y. Euclid’s algorithm is usually
implemented iteratively using code that looks like this:

As always, the key to solving this problem lies in identifying the
recursive decomposition and defining appropriate simple cases.
Rewrite this method so that it uses recursion instead of iteration,
taking advantage of Euclid’s insight that the greatest common
divisor of x and y is also the greatest common divisor of y and
the remainder of x divided by y.

int gcd (int x, int y) int gcd (int x, int y)

