
Motivation

Algorithms are the core of many papers.

The value is in the problem solved, not in the code.

Why should the reader bother learning your Algorithm?
What does ”better” mean?

Faster: Theoretically, in practice, or both.
Fewer resources, such as memory, disk, code size.
Less error:

Improves the average case.
Improves the worst case.
Improves a class of cases.

Broader applicability.
Solves previously insoluble problems.
Enables a tradeoff between resources (e.g. time for memory)
Converts static to dynamic, or vice versa.

What is the cost?

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 1 / 15



What’s In It?

What should we expect to find in an algorithmic paper?

Steps: Detailed steps that make up the algorithm.

Data: Inputs, Outputs, and internal data structures.

Scope: How is the algorithm used? Where does it apply?
Is it globally applicable or limited to a class?

Limitations: Where does it fail?

Correctness:

How do we know it works? Theoretical proof? Empirical proof?
Can you demonstrate correctness?

Complexity Analysis: Time, Space, Error.

At least the worst case.
Sometimes the average (expected) case, or distribution data.

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 2 / 15



Formalisms

Some examples follow, but the main categorizations are:

List code: Numbered steps for each action, with ”GOTO”
statements.
Control structure is obscure and ideas are buried.

Pseudo-code: Numbered lines of a block-structured language.
Detailed structure is clear but statements are terse and overall
idea less obvious.

prose code: Outline form: Numbered major steps with
sub-numbered component steps; combined with explanatory text.

literate code: Details are introduced gradually, intermingled
with discussions of underlying ideas and even asymptotic
analysis, proof of correctness, or details of key insights.

Do not use flowcharts or other large diagrams. No room for
complexity, comments, and lack modularity.
Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 3 / 15



Formalisms
Example of Pseudo-Code

WeightedEdit(S1, S2):
1. L1 = len(S1)
2. L2 = len(S2)
3. M = 2 · (L1+L2)
4. F[0,0] = 0
5. for i from 1 to L1
6. F[i,0] = F[i-1,0]+M-i
7. for j from 1 to L2
8. F[0,j] = F[0,j-1]+M-j
9. for i from 1 to L1
10. C = M-i
11. for j from 1 to L1
12. C = C-1
13. F[i,j] = min(F[i-1, j] + C,

F[i,j-1] + C,
F[i-1,j-1]+C · isdiff(S1[i], S2[j]))

14. return(F[L1,L2])

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 4 / 15



Formalisms
Example of Prose Code

1. (Set Penalty) Set p ← 2 · (ks + kt)
2. (Initialize data structure) The boundaries of array F are

initialized with the penalty for deletions at start of
string. for example, Fi,0 is the penalty for deleting i
characters from the start of s.
(a) Set F0,0 ← 0
(b) For each position i in s, set Fi,0 ← Fi−1,0 + p − i
(c) For each position j in t, set F0,j ← F0,j−1 + p − j

3. (Compute edit distance) For each position i in s and j in t:
(a) The penalty is C = p − i − j
(b) The cost of inserting a character into t (or equivalently,

deleting from s) is I = Fi−1,j + C.
(c) The cost of deleting a character from t is D = Fi,j−1 + C.
(d) If s1 is identical to tj, the replacement cost is set as

R ← Fi−1,j−1, otherwise, we set R ← Fi−1,j−1 + C.
(e) Set Fi,j ← min(I ,D,R).

4. (Return) Return Fks ,kl
.

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 5 / 15



Formalisms
Example of Literate Code

The major steps of the algorithm are as follows:
1. Set the penalty.
2. Initialize the data structure, a dynamic programming array.
3. Compute the edit distance.

We now examine these steps in detail.
1. Set the penalty. The main property we require of the penalty
is that costs reduce smoothly from the start to the end of the
string. As we will see, the algorithm proceeds by comparing
each position i in s to each position j in t. Thus a diminishing
penalty can be computed with the expression p − i − j, where p is
the maximum penalty. By setting the penalty with
(a) Set p ← 2x(ks + kt)
the minimum penalty is p − ks − kt = p/2 and the next smallest
penalty is (p/2) + 1. This means that two errors (regardless of
the positions in the strings) will outweigh one.
2. Initialize the data structure, a dynamic programming array.
...

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 6 / 15



Details. Or Not.

Algorithms are about ideas. Details are distractions.

Your Audience: CS Journal readers or conference attendees.

Write for those “skilled in the art”. They don’t need you to
Code a loop to add up a list of numbers,
Implement a binary search,
Write a quicksort,
Implement any textbook algorithm.

Provide the detail needed to implement what you invented,
reference work by Newton, Gauss, Djikstra, Rivest and Knuth.

Remember, you are presenting a new insight, not your wondrous
coding style. Insights are best understood by one or two key
relationships you have discovered. When the audience understands
these the framework of your algorithm will fall into place. The details
should address points in the implementation that require guidance
only you can provide.
Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 7 / 15



Notation

Use mathematical notation, not programming notation.

Use positional notation: xi , not x [i ]. use xn, not x ∧ n.

Do not use ’*’ or ’x’ to denote multiplication; use ’x’ or ’·’.
Avoid specific language syntax; ’==’, ’a=b=0’, ’a++’, ’a+=c’,
etc. Do not assume your audience programs in C . Do not use
for(i=0;i<n;i++) or anything else that requires a knowledge
of the syntax of a specific language or programming tool.

Show nesting by indentation or by numbering style (as in an
outline), don’t use BeginBlock, EndBlock, {curly braces}, etc.

Use mathematic shortcuts: Σ, Π, dne, bnc, superscripting and
subscripting in place of loops, function calls or braces.

Good programming practice may be bad expositional practice.
Variable names of one character leave no room for ambiguity; pq
cannot be mistaken for p · q.

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 8 / 15



Environment
Data Structures, I/O types, OS, Hardware

Describe possible inputs.

Describe possible outputs.
If there are hardware constraints, specify them, and use realistic
assumptions (current technology or likely improvements on it):

Memory requirements
Offline storage requirements (disk, non-volatile memory)
Communication speeds

Provide data types when ambiguous

Be consistent with notation and descriptions. If ”int” and
”integer” mean the same thing, pick one. If they do not,
define the difference.

Avoid pseudo-code for structures if possible, and use
mathematical set description. e.g., ”Each element is a triple,
(string, length, positions), in which positions is a list of byte
offsets.”

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 9 / 15



Performance
Methodology

How do you evaluate Performance?

Formal Proof

Mathematical Modelling

Simulation

Experimentation

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 10 / 15



Performance
Basis of Evaluation

Functionality (Is your algorithm useful in more situations?)

Speed (Theoretical or Actual? Measured how, exactly?)

Asymptotic performance

Typical performance

Real data

Synthetic data

Compared to ...

Benchmark?
Standard Library?
Specific existing package or canonical algorithm?

Be realistic. Those versed in the art, like your reviewers, will
spot comparisons chosen to make you look good, and you may
not get a second chance (e.g., submission to a conference).

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 11 / 15



Performance
Big Numbers

What are you measuring? Is it what people care about?

CPU time

Memory requirements

Disk requirements

Memory traffic/throughput

Disk traffic/throughput (fetch time, transfer rate)

Network traffic/throughput

Other measures (fewer collisions, fewer errors, more hits, more
resilient, tougher to crack, etc)

Be honest; don’t leave out unflattering numbers. If you are twice
as fast but use ten times as much memory, this is a tradeoff
some people might want to make.

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 12 / 15



Asymptotic Complexity

How Well Does It Scale?

O() notation; worst case.

Ω() notation; best case.

Θ() notation; bounded case.

A Common Abuse: Big-O is often used to indicate complexity,
as in, ”comparison-based sorting takes O(n log n) time”; which
is clear and acceptable, even though formally we would say
”comparison-based sorting has an operation complexity of
Ω(n log n)”.

Be careful with ambiguous words: ”quadratic”, ”constant”,
”linear”, ”logarithmic”, ”exponential”.

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 13 / 15



Asymptotic Complexity
Problems with Problems

Database: Number of records. Record length too?

An integer operation is unit cost. Even in cryptography?

Does the dominant cost change with scale? O(n) disk accesses,
O(n log n) comparisons = O(n log n) complexity. But disk takes
5,000,000 nanoseconds and comparison takes 1...

What happens when the problem size exceeds the various cache
sizes? What happens when it exceeds real memory?

Does the limit matter? Consider floating point error; where the
bound for a certain widely used class of data is hundreds of
thousands of times what we see in practice. Limits are just caps
and not always proportional expectation predictors.

Are your simplifying assumptions justifiable and reliable? e.g.,
can you really assume the input data for a sort is randomly
arranged and not already in order?

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 14 / 15



Conclusion

First: What are you selling, and why should they care?

Describe both the algorithm and the environment it works in.

Detail the edges of the environment.

Choose the right formalism. When in doubt:

Prose code for relatively small or straightforward algorithms.
Literate code for complex algorithms.

Waste as little time as possible on the obvious.

Math notation is concise and well-defined. Use it.

Proof of correctness, Asympotic proofs, Expected case proofs
and experimental results show precisely how your algorithm is

better.
or, if they don’t, then how you’ve wasted six months.

Anthony M. Castaldo (UTSA-CS) Presenting Algorithms September 10, 2007 15 / 15


