
CS 5523: Operating Systems

Homework 2

!!!!! No late HW will be accepted !!!!!!

(Check BlackBoard Learn for due date and submission)
Objective

 Learn and practice CPU scheduling algorithms by implementing them

 Learn and practice process/thread synchronization mechanisms by implementing them

 Practice system calls and library functions

Description

In this homework, you are asked to implement a multithreaded program that will allow us to measure the

performance (i.e., CPU utilization, Throughput, Turnaround time, Waiting time, and Response time) of

the four basic CPU scheduling algorithms (namely, FIFO, SJF, PR, and RR) by simulating the processes

whose priority, sequence of CPU burst time(ms) and I/O burst time(ms) will be given in an input file.

Assume that all scheduling algorithms except RR will be non-preemptive, and all scheduling algorithms except

PR will ignore process priorities (i.e., all processes have the same priority in FIFO, SJF and RR). Also assume

that there is only one IO device and all IO requests will be served using that device in a FIFO manner.

Your program will take the name of the scheduling algorithm, related parameters (if any), and an input

file name from command line. Here how your program should be executed:

prog -alg [FIFO|SJF|PR|RR] [-quantum [integer(ms)]] -input [file name]

The output of your program will be as follows:

 Input File Name : file name

 CPU Scheduling Alg : FIFO|SJF|PR|RR (quantum)

 CPU utilization :

 Throughput :

 Turnaround time :

 Waiting time :

 Response time :

The input file is formatted such that each line starts with proc, sleep, stop key words. Following

proc, there will be a sequence of integer numbers: the first one represents the priority (1: lowest, ..., 5:

normal, ..., 10: highest), while the remaining ones represent CPU burst and I/O burst times (ms) in an

alternating manner. Following sleep, there will be an integer number representing the time (ms) after

which there will be another process. So one of the threads in your program would be responsible for

processing this file as follows. As long as it reads proc, it will create a new process and put it in a ready

queue (clearly this process is not an actual one, it will be just a simple data structure (similar to PCB) that

contains the given priority and the sequence of CPU burst and I/O burst times, and other fields). When

this thread reads sleep x, it will sleep x ms and then try to read new processes from the file. Upon

reading stop, this thread will quit.

Here is a sample input file:

proc 1 10 20 10 50 20 40 10

proc 1 50 10 30 20 40

sleep 50

proc 2 20 50 20

stop

You need at least two other threads to simulate the behaviors of CPU scheduler and I/O system.

 CPU scheduler thread will check ready queue; if there is a process, it will pick one according to

the scheduling algorithm from ready queue and hold CPU resource for the given CPU burst time

(or for quantum time if the scheduling algorithm is RR). That means CPU thread will simply

sleep for the given CPU burst time. Then it will release CPU resource and put this process into IO

queue (or ready queue if RR is used) or just terminate if there is no more CPU burst. Then CPU

scheduler thread will check ready queue again and repeat the same...

 I/O system thread will check IO queue; if there is a process, it will hold IO device for the given

IO burst time. That is IO thread will sleep for the given IO burst time. It then puts this process

back into ready queue. Finally it will check IO queue and repeat the same

Basically you will have at least the above mentioned three threads and the main one. These threads need

to be synchronized as they cooperate to collect data for performance measures and share data through

ready and IO queues. Main thread will wait until the file reading thread is done and the ready queue and

IO queue are empty, then it will print the performance evaluation results and terminate the program...

You are free to design and implement this program in C/C++ or Java (but if you use Java, DO NOT use

the ‘synchronized’ methods or high-level thread-safe Java classes. Instead use some form of semaphore

or basic synchronization mechanisms in Java. Also synchronized(obj){ } structure is OK to use

for protecting critical sections in your methods).

Also you can use any data structures in different parts of your program and share them along with new

variables; but when it comes to maintaining the list of processes in ready queue or IO queue, we would

like you to use double linked list, as this is the case in many practical OS.

Grading: This is a 200-point homework.

First make sure your program works for FIFO CPU scheduling. This will be 100 points.

Then you can add/test the others: SJF (25 points), PR (25 points) and RR (40 points).

Write a 2-3 page report (10 points) to describe your design choices at the high level and your results.

Do all your work under a directory lastname_hw2, which should include your source codes, instructions

to compile/execute, and some output files showing your test results etc...

Zip lastname_hw2 and submit lastname_hw2.zip through BB Learn

Submission

You must submit your work using Blackboard Learn and respect the following rules:

1) All assignments must be submitted as either a zip or tar archive file unless it is a single pdf file.

2) Assignments must include all source code.

3) Assignments must include an output.txt file which demonstrates the final test output run by the

student.

4) If your assignment does not run/compile, the output.txt file should include an explanation of what

was accomplished, what the error message was that prevented the student from finishing the

assignment and what the student BELIEVES to be the underlying cause of the error.

