
The Design and Implementation of the

Warp Transactional Filesystem

Robert Escriva, Emin Gün Sirer

Computer Science Department, Cornell University

Presented By

Alex Garcia

1

Common Trends in Distributed Filesystems

 Compromises or limitations are often introduced in search

of higher performance:

 Weak guarantees: (Google File System)

Eventual consistency

 Narrow interfaces: (Hadoop Distributed File System)

Writes must be sequential

Concurrent writes prohibited

 Unscalable design: (FLAT Data Center Storage)

Full-bisection bandwidth

Large “master” server
2

Warp Transactional Filesystem (WTF)

 WTF represents a new design point in the space of distributed

filesystems

WTF employs the file-slicing abstraction to provide

applications with strong guarantees and zero-copy filesystem

interfaces

Strong guarantees: transactionally access and modify the

filesystem

Expanded interface: traditional POSIX APIs and new zero-copy

APIs

Scalable Design: avoids centralized master or expensive

network bottlenecks
3

WTF Architecture

 Client Library – Contains the majority of the functionality

of the system where it combines the Metadata and data

into a coherent file system and provides transactional

guarantees to the end user.

 Metadata Storage – Provides transactional operations

over metadata using HyperDex Warp. (No-SQL, Key-Value

Store, Fault Tolerant and Strong Consistency, ACID

Transactions)

 Storage Servers – Hold the file system data and handle

most of the I/O

 Replicated Coordinator – Serves as a rendezvous point

for all the components of the system and maintains a list

of the storage servers.

4

Zero-Copy File Slicing APIs

• Traditional APIs transfer bytes back and forth through the filesystem

interface

• File-slicing APIs deal in references to data already in the filesystem (No

copying of file content needed)

• Yank: Obtain references to data in the filesystem Analogous to

read

• Paste: Write referenced data back to the filesystem Analogous to

write append

• Append: referenced data to the end of a file Optimized for

concurrency

• Concat: Merge one or more files to create a new file Does not

read or write data from the input files

5

File Slicing Abstraction

 The central abstraction is a slice: an immutable,

byte-addressable, arbitrarily sized sequence of

bytes

 A file is represented by a sequence of slices that,

when overlaid, comprise the file’s contents.

 Metadata is a sequence of slices.
 6

Slices and Slice Pointers

Slices pointers to slices

reside in HyperDex.

Slice pointers directly

indicate a slice’s location in

the system

Slices reside on storage

servers

Slice Pointer Tuple:

 Unique Identifier for the storage server holding the slice

 Local Filename containing the slice on that storage server

 File offset of the slice within the file

 Length of the slice

 Integer offset where the slice is to be overlaid.

7

Slices

 A Writer creates file slices on the

storage servers.

 Overalys them at the appropriate

positions within the file by appending

their slice pointers to the metadata

list.

 Readers retrieve the metadata list,

compact it and determines which

slice must be retrieved from the

storage servers.

 The overlap, the latest takes

precedence.

8

Locality-Aware Slice Placement

• Client library place slices contiguously to improve

reads and metadata compaction.

• Consistent hashing across storage servers in the

system on a per-file basis increases probability that

sequentially written slices are adjacent

• The metadata for adjacent slices may be represented

in a more compact form

9

Metadata Compaction and Defragmentation

• Compaction reduces the size of the metadata list by

removing references to unused/overwritten portions

of slices.

• Fragmented data is rewritten within the region into a

single slice and replaces the metadata with a single

pointer to the slice

10

Garbage Collection

• Garbage collection cleans up the slices no longer

referenced by any slice pointer from the results of

metadata compaction.

• WTF periodically scans the filesystem and constructs

a list of in-use slice pointers for each storage server.

• Storage servers use the scan, along with their local

data, to determine which data is garbage.

11

Fault Tolerance

• WTF uses replication to add fault tolerance to the

system.

• Writers create multiple replicas slices on distinct

servers and append their pointers atomically as one

list entry.

• HyperDex uses value-dependent chaining to

coordinate between the replicas and manage recovery

from failures.

12

Applications & Evaluation

• MapReduce Sort: concat enables an efficient bucket-based merge

sort

• Work Queue: append units of work are appended to the file; all

contention happens in the metadata layer

• Video editor: yank and paste enable the editor to reorder scenes

without rewriting the movie

• Fuse Bindings: transactional behavior exposed to the user for easy

data exploration

WTF can rewrite 377 GB of raw movie footage

in 16 s using file slicing—effectively 23 GB/s,

as opposed to rewriting the footage using

traditional APIs, which requires approximately

three hours
13

Related Works

• Distributed Filesystems

• Farsite, AFS, xFS, Swift, Petal, Frangipani, NASD,

Panasas

• Data Center Filesystems

• CalvinFS, GFS, HDFS, Salus, Flat Datacenter Storage,

Blizzard, f4, Pelican

• Transactional Filesystems

• QuickSilver, Transactional LFS, Valor, PerDis FS,

KBDBFS, Inversion, Amino

14

QUESTIONS ?

15

THANK YOU!

16

