
The Design and Implementation of the

Warp Transactional Filesystem

Robert Escriva, Emin Gün Sirer

Computer Science Department, Cornell University

Presented By

Alex Garcia

1

Common Trends in Distributed Filesystems

 Compromises or limitations are often introduced in search

of higher performance:

 Weak guarantees: (Google File System)

Eventual consistency

 Narrow interfaces: (Hadoop Distributed File System)

Writes must be sequential

Concurrent writes prohibited

 Unscalable design: (FLAT Data Center Storage)

Full-bisection bandwidth

Large “master” server
2

Warp Transactional Filesystem (WTF)

 WTF represents a new design point in the space of distributed

filesystems

WTF employs the file-slicing abstraction to provide

applications with strong guarantees and zero-copy filesystem

interfaces

Strong guarantees: transactionally access and modify the

filesystem

Expanded interface: traditional POSIX APIs and new zero-copy

APIs

Scalable Design: avoids centralized master or expensive

network bottlenecks
3

WTF Architecture

 Client Library – Contains the majority of the functionality

of the system where it combines the Metadata and data

into a coherent file system and provides transactional

guarantees to the end user.

 Metadata Storage – Provides transactional operations

over metadata using HyperDex Warp. (No-SQL, Key-Value

Store, Fault Tolerant and Strong Consistency, ACID

Transactions)

 Storage Servers – Hold the file system data and handle

most of the I/O

 Replicated Coordinator – Serves as a rendezvous point

for all the components of the system and maintains a list

of the storage servers.

4

Zero-Copy File Slicing APIs

• Traditional APIs transfer bytes back and forth through the filesystem

interface

• File-slicing APIs deal in references to data already in the filesystem (No

copying of file content needed)

• Yank: Obtain references to data in the filesystem Analogous to

read

• Paste: Write referenced data back to the filesystem Analogous to

write append

• Append: referenced data to the end of a file Optimized for

concurrency

• Concat: Merge one or more files to create a new file Does not

read or write data from the input files

5

File Slicing Abstraction

 The central abstraction is a slice: an immutable,

byte-addressable, arbitrarily sized sequence of

bytes

 A file is represented by a sequence of slices that,

when overlaid, comprise the file’s contents.

 Metadata is a sequence of slices.
 6

Slices and Slice Pointers

Slices pointers to slices

reside in HyperDex.

Slice pointers directly

indicate a slice’s location in

the system

Slices reside on storage

servers

Slice Pointer Tuple:

 Unique Identifier for the storage server holding the slice

 Local Filename containing the slice on that storage server

 File offset of the slice within the file

 Length of the slice

 Integer offset where the slice is to be overlaid.

7

Slices

 A Writer creates file slices on the

storage servers.

 Overalys them at the appropriate

positions within the file by appending

their slice pointers to the metadata

list.

 Readers retrieve the metadata list,

compact it and determines which

slice must be retrieved from the

storage servers.

 The overlap, the latest takes

precedence.

8

Locality-Aware Slice Placement

• Client library place slices contiguously to improve

reads and metadata compaction.

• Consistent hashing across storage servers in the

system on a per-file basis increases probability that

sequentially written slices are adjacent

• The metadata for adjacent slices may be represented

in a more compact form

9

Metadata Compaction and Defragmentation

• Compaction reduces the size of the metadata list by

removing references to unused/overwritten portions

of slices.

• Fragmented data is rewritten within the region into a

single slice and replaces the metadata with a single

pointer to the slice

10

Garbage Collection

• Garbage collection cleans up the slices no longer

referenced by any slice pointer from the results of

metadata compaction.

• WTF periodically scans the filesystem and constructs

a list of in-use slice pointers for each storage server.

• Storage servers use the scan, along with their local

data, to determine which data is garbage.

11

Fault Tolerance

• WTF uses replication to add fault tolerance to the

system.

• Writers create multiple replicas slices on distinct

servers and append their pointers atomically as one

list entry.

• HyperDex uses value-dependent chaining to

coordinate between the replicas and manage recovery

from failures.

12

Applications & Evaluation

• MapReduce Sort: concat enables an efficient bucket-based merge

sort

• Work Queue: append units of work are appended to the file; all

contention happens in the metadata layer

• Video editor: yank and paste enable the editor to reorder scenes

without rewriting the movie

• Fuse Bindings: transactional behavior exposed to the user for easy

data exploration

WTF can rewrite 377 GB of raw movie footage

in 16 s using file slicing—effectively 23 GB/s,

as opposed to rewriting the footage using

traditional APIs, which requires approximately

three hours
13

Related Works

• Distributed Filesystems

• Farsite, AFS, xFS, Swift, Petal, Frangipani, NASD,

Panasas

• Data Center Filesystems

• CalvinFS, GFS, HDFS, Salus, Flat Datacenter Storage,

Blizzard, f4, Pelican

• Transactional Filesystems

• QuickSilver, Transactional LFS, Valor, PerDis FS,

KBDBFS, Inversion, Amino

14

QUESTIONS ?

15

THANK YOU!

16

