The Design and Implementation of the
Warp Transactional Filesystem

Robert Escriva, Emin Gun Sirer
Computer Science Department, Cornell University

Presented By

Alex Garcia

Common Trends in Distributed Filesyste

« Compromises or limitations are often introduced i
of higher performance:

® Weak guarantees: (Google File System)
@ Eventual consistency

® Narrow interfaces: (Hadoop Distributed File System
@ Writes must be sequential
@ Concurrent writes prohibited

® Unscalable design: (FLAT Data Center Storage)
@ Full-bisection bandwidth
@ Large “master” server

« Warp Transactional Filesystem (W

« WTF represents a new design point in the space of dis
filesystems

#% WVTF employs the file-slicing abstraction to provide
applications with strong guarantees and zero-copy filesys
interfaces

v Strong guarantees: transactionally access and modify the
filesystem

v Expanded interface: traditional POSIX APIs and new zero-co
APls

v Scalable Design: avoids centralized master or expensive
network bottlenecks

WTF Architecture

« Client Library — Contains the majority
of the system where it combines the M
into a coherent file system and provides

)t guarantees to the end user.
b1
Metadata .)
Storage « Metadata Storage — Provides transactional
/ ! over metadata using HyperDex Warp. (No-
a . m Store, Fault Tolerant and Strong Consistency,
— TN — - Transactions)
End User Client Replicated
Application Library Coordinator
\ F 1Y « Storage Servers — Hold the file system data an

most of the I/O
) &8

Storage Servers « Replicated Coordinator — Serves as a rendezvou
for all the components of the system and maintai
of the storage servers.

Zero-Copy File Slicing APIs

* Traditional APIs transfer bytes back and forth through the
interface

* File-slicing APIs deal in references to data already in the filesys
copying of file content needed)

* Yank: Obtain references to data in the filesystem Analogous
read

* Paste:Write referenced data back to the filesystem Analogou
write append

* Append: referenced data to the end of a file Optimized for
concurrency

* Concat: Merge one or more files to create a new file Does
read or write data from the input files

File Slicing Abstraction
777

Overlaid Slices

e

WW

File Contents

« The central abstraction is a slice:an immutable,
byte-addressable, arbitrarily sized sequence of
bytes

« A file is represented by a sequence of slices that,
when overlaid, comprise the file’s contents.

« Metadata is a sequence of slices.

Slices and Slice Pointers

Slices pointers to slices
reside in HyperDex.

Slice pointers directly
indicate a slice’s location in
the system

Slices reside on storage
servers

Slice Pointer Tuple:
. Unique ldentifier for the storage server holding the slice

. Local Filename containing the slice on that storage server
. File offset of the slice within the file

. Length of the slice

. Integer offset where the slice is to be overlaid.

Slices

OMB- o AWriter creates file slices on the
storage servers.

iMB- - « Overalys them at the appropriate
positions within the file by appendin

- their slice pointers to the metadata
list.

« Readers retrieve the metadata list,

B compact it and determines which
slice must be retrieved from the

4MB- storage servers.

Time * o The overlap, the latest takes
Final Metadata:

A@[02], B@[24], C[13] Del Fepy Precedence.

Compacted Final Metadata:
A@[0,1], C@[1,2], E@[23], B@[3 4]

Locality-Aware Slice Placement

* Client library place slices contiguously to improve
reads and metadata compaction.

* Consistent hashing across storage servers in the
system on a per-file basis increases probability that
sequentially written slices are adjacent

* The metadata for adjacent slices may be represented
in 2 more compact form

Slice Pointer A: Slice Pointer B: | | Slice Pointer D:

Server: s Server: s | server: s
chunk: ¢ 1| chunk: ¢ 3| chunk: ¢
start: OMB start: 2MB start; OMB
end: 2MB end: 4MB end: 4MB
4}} \ @2MB (D)@oMB ‘R}
® OMB IMB 2MB 3MB 4MB 5MB 6 MB " OMB IMB 2MB 3MB 4MB 5MB 6MB

9

Metadata Compaction and Defragmentation

* Compaction reduces the size of the metadata list by
removing references to unused/overwritten portions
of slices.

* Fragmented data is rewritten within the region into a
single slice and replaces the metadata with a single
pointer to the slice

O0MB 1MB 2MB 3MB 4MB 5 MB 6 MB

Y \ ’
OMB 1MB 2MB 3MB 4MB OMB IMB 2MB 3MB 4MB

fr
Cursor

@D { st

<, (A)eomB (B)@2MB @@11««[]3

3 #

S0

Garbage Collection

* Garbage collection cleans up the slices no longer
referenced by any slice pointer from the results of
metadata compaction.

* WTF periodically scans the filesystem and constructs
a list of in-use slice pointers for each storage server.

* Storage servers use the scan, along with their local
data, to determine which data is garbage.

Q / b 9% .f///
OMB IMB 2MB 3MB 4MB OoMB 1MB 2MB 3MB 4MB

©

p
) @2 MB @@ms 4 (a)eoms 2M}3 @@IMB
’ .‘-{ -
’ 5 - \ N %B.‘% c

'

s @ XX

% OMB 1MB 2MB 3MB 4MB 5MB 6 MB

11

Fault Tolerance

* WTF uses replication to add fault tolerance to the
system.

* Writers create multiple replicas slices on distinct

servers and append their pointers atomically as one
list entry.

* HyperDex uses value-dependent chaining to

coordinate between the replicas and manage recovery
from failures.

Applications & Evaluation

* MapReduce Sort: concat enables an efficient bucket-based merge
sort
* Work Queue: append units of work are appended to the file; all
contention happens in the metadata layer
* Video editor: yank and paste enable the editor to reorder scenes
without rewriting the movie
» Fuse Bindings: transactional behavior exposed to the user for easy
data exploration

Chronological Order 100000 «

W, ;7 — = : _
i 4%y X B 11111 O |
! _a--i~ "‘ E i E
= 1000 | S e

=
G 3 B
= 100 B :
z ,]
= = | R ™ i (1)) T — A
o 53 y A ’1 ¥ i 1
H ‘l‘ .-ai‘ 1 r .

. ; HDES Wl

Final Cut

WTF can rewrite 377 GB of raw movie footage
in 16 s using file slicing—effectively 23 GB/s,
as opposed to rewriting the footage using
traditional APIs, which requires approximately
three hours

Related Works

» Distributed Filesystems
« Farsite, AFS, xFS, Swift, Petal, Frangipani, NASD,
Panasas
« Data Center Filesystems
« CalvinFS, GFS, HDFS, Salus, Flat Datacenter Storage,
Blizzard, f4, Pelican
* Transactional Filesystems
* QuickSilver, Transactional LFS, Valor, PerDis FS,
KBDBFS, Inversion, Amino

QUESTIONS ?

THANK YOUI!

