
-INTURI SAI HARSHINI 1 



 INTRODUCTION 

 WHY IS IT CHALLENGING? 

 WORKFLOW OF BUZZ 

 IMPLEMENTATION 

 EVALUATION 
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 Checking whether a network correctly implements intended policies is 
challenging. 

 Can X talk to Y? 

 Existing approaches face fundamental expressiveness and scalability challenge. 

 Current abstractions cannot capture stateful behaviors. 

 Trying to reason about stateful behaviors results in state space exposion. 
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 Incoming traffic is allowed depending on its context. 

 Even this simple policy cannot be captured. 

 It doesn’t capture the policy-relevant state of the firewall. 
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 Cache hits/misses for H2 should be monitored. 

 There could be subtle policy violations  

1. The proxy hides traffic true origin. 

2. The proxy’s response depends on the hidden policy-relevant state. 
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How can we check context-dependent 
policies in stateful networks? 

• Scalability: How to explore the state space? 

Expressiveness: How to capture stateful behaviors? 

Challenges: 
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BUZZ is an active testing framework to check 
context-dependent policies in stateful data planes 
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context-dependent 
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2. How to model a network function (e.g., an IPS)? 
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1. How to model the traffic unit? 
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Light 
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or 
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Located packet 
(e.g., Pyretic, HSA) 

struct locPkt { 
 
 IPHder ipHdr; 
 
 NetworkPort port; 
}; 

Context-carrying 
located packet 

struct CntxlocPkt { 
 
 IPHder ipHdr; 
 
 NetworkPort port; 
 
 Context context;  
}; 

struct BDU{ 
 
 IPHeader ipHdr; 
 
 NetworkPort port; 
 
 Context context;  
… 
 
 HTTPHdr httpHdr 
 … 
}; 

BUZZ Data Unit (BDU) 
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• Conceptual view of test traffic generation: How to 
reach a colored state through a sequence of traffic 
units? 
 

 

 

 

• Challenge of scalability wrt traffic space and state 
space  

– Strawman 1: All possible sequences of traffic units 

– Strawman 2: Generate random traffic units (e.g., fuzzing) 

– Strawman 3: Naïve use of exploration tools (e.g., model 
checking) 

Light 
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host 1 
host 2 

suspicious
? 
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Test generation takes < 2min for a network 
with 600 switches and 60 middleboxes 

Topology size (# of switches)
6 52 92 196 400 600
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BUZZ
Naive Symbolic Execution
Model Checking



 Existing work has fundamental limitations in checking context-

dependent policies in stateful data planes 

 Challenges: 

Expressive-yet-scalable model of stateful data 

planes 

 Scalable state space exploration 

 Our solution is BUZZ: 

BUZZ Data Unit (BDU) as traffic unit model 

Ensemble of FSMs as a network function (NF) model 

 Scalable exploration via domain-specific 

optimizations 
 

 BUZZ can help find bugs and is scalable  
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