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= Checking whether a network correctly implements intended policies is
challenging.

= Can X talktoY?
= Existing approaches face fundamental expressiveness and scalability challenge.
= Current abstractions cannot capture stateful behaviors.

= Trying to reason about stateful behaviors results in state space exposion.
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STATEFUL FIREWALLING

Unsolicited TCEF

Traffic from
internet

Stateful FW

v

Solicited TCP

= Incoming traffic is allowed depending on its context.
= Even this simple policy cannot be captured.

= It doesn’t capture the policy-relevant state of the firewall.




CONTEXT-DEPENDENT TRAFFIC MONITORING

Web traffic from

e
g PIroxy

» Cache hits/misses for H2 should be monitored.

Hit/miss V’
]
otherwise

= There could be subtle policy violations
1. The proxy hides traffic true origin.

2. The proxy’s response depends on the hidden policy-relevant state.
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How can we check context-dependent
policies in stateful networks?

Challenges:
= Expressiveness: How to capture stateful behaviors?

* Scalability: How to explore the state space?




SOLUTION: BUZZ

BUZZ is an active testing framework to check
context-dependent policies in stateful data planes
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CHALLENGE 1. EXPRESSIVE DATA PLANE MODEL
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CHALLENGE 1. EXPRESSIVE DATR PLANE MODEL

1. How to model the traffic unit?

2. How to model a network function (e.qg., an IPS)?
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IP

Located packet Context-carryin

(e.g., Pyretic, HSA)
struct locPkt {

IPHder ipHdr;

}NetvvorkPort port;
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IPHder ipHdr; IPHeader 1pHdr;
NetworkPort port; NetworkPort port;
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CHALLENGE 2: SCALABLE TEST TRAFTIC GENERATION
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CHALLENGE 2: EXPLORING DATA PLANE STATE SPACK
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 Conceptual view of test traffic generation: How to
reach a colored state through a sequence of traffic

units?
 Challenge of scalability wrt traffic space and state
space
— Strawman 1: All possible sequences of traffic units
— Strawman 2: Generate random traffic units (e.g., fuzzing)

— Strawman 3: Naive use of exploration tools (e.g., model
checking) (1s)
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EVALUATION: SCALABILITY OF
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Test traffic gen. latency (s)
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6 52 92 196 400 600
Topology size (# of switches)

Test generation takes < 2min for a network
with 600 switches and 60 middleboxes
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= Existing work has fundamental limitations in checking context-
dependent policies in stateful data planes

= Challenges:

= Expressive-yet-scalable model of stateful data
planes

= Scalable state space exploration

= Our solution is BUZZ:
= BUZZ Data Unit (BDU) as traffic unit model

= Ensemble of FSMs as a network function (NF) model

= Scalable exploration via domain-specific
optimizations

= BUZZ can help find bugs and is scalable
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