
-INTURI SAI HARSHINI 1

 INTRODUCTION

 WHY IS IT CHALLENGING?

 WORKFLOW OF BUZZ

 IMPLEMENTATION

 EVALUATION

2

 Checking whether a network correctly implements intended policies is
challenging.

 Can X talk to Y?

 Existing approaches face fundamental expressiveness and scalability challenge.

 Current abstractions cannot capture stateful behaviors.

 Trying to reason about stateful behaviors results in state space exposion.

3

Does the network do what I want it to
do?

Network
operator

4

What I want
the network to

do

Reality
What the network

does

???

network
A B

 Incoming traffic is allowed depending on its context.

 Even this simple policy cannot be captured.

 It doesn’t capture the policy-relevant state of the firewall.

Stateful FW Traffic from

internet

block

allow

Unsolicited TCP

Solicited TCP

5

 Cache hits/misses for H2 should be monitored.

 There could be subtle policy violations

1. The proxy hides traffic true origin.

2. The proxy’s response depends on the hidden policy-relevant state.

Web traffic from

department
proxy

Xyz.com

Hit/miss

monitor

From

h2

block

allow
otherwise

6

R1

R2

R3

R4

Light IPS Heavy IPS

A B

context-
dependent

policies

Network
operator

7

stateful network

AB
traffic

Block

Allow

suspicious

benign

Heavy
IPS

bad signature
found

Light IPS

bad conn. >=
10

state

context

Light IPS

suspicious

How can we check context-dependent
policies in stateful networks?

• Scalability: How to explore the state space?

Expressiveness: How to capture stateful behaviors?

Challenges:

Operator

stateful data plane

FW Proxy IPS

8

BUZZ is an active testing framework to check
context-dependent policies in stateful data planes

BUZZ

test
traffic

context-dependent
policies

Data
plane
model

Operator

stateful data plane

FW Proxy IPS

Test traffic
generation

9

context-dependent
policies Challenge

1:
Expressive

models?
Challenge 2:
Scalable state

space
exploration test

traffic

2. How to model a network function (e.g., an IPS)?

10

? ?

1. How to model the traffic unit?

?
NF1 NF2

NF4

NF3

11

Light
IPS

suspicious
?

or
benign?

Located packet
(e.g., Pyretic, HSA)

struct locPkt {

 IPHder ipHdr;

 NetworkPort port;
};

Context-carrying
located packet

struct CntxlocPkt {

 IPHder ipHdr;

 NetworkPort port;

 Context context;
};

struct BDU{

 IPHeader ipHdr;

 NetworkPort port;

 Context context;
…

 HTTPHdr httpHdr
 …
};

BUZZ Data Unit (BDU)

Expressive

Expressive

Scalable

Expressive

Scalable

✗

✔

✔

✔
✗

…
IP

packets
IP

packets …
BDU BDU

Data
plane
model

Operator

stateful data plane

FW Proxy IPS

Test traffic
generation

12

context-dependent
policies Challenge

1:
Expressive

models?
Challenge 2:
Scalable state

space
exploration test

traffic

13

coun%ng'IPS'per'host'modeling'

1'

<0,$0>$

<1,0>$ <0,1>$
<10,0>$

…
$

<10,1>$ <11,0>$…
$

<0,10>$

<0,10>$ <0,11>$

…
$

…
$

ini#al&state&

• Conceptual view of test traffic generation: How to
reach a colored state through a sequence of traffic
units?

• Challenge of scalability wrt traffic space and state
space

– Strawman 1: All possible sequences of traffic units

– Strawman 2: Generate random traffic units (e.g., fuzzing)

– Strawman 3: Naïve use of exploration tools (e.g., model
checking)

Light
IPS

host 1
host 2

suspicious
?

14

15

Test generation takes < 2min for a network
with 600 switches and 60 middleboxes

Topology size (# of switches)
6 52 92 196 400 600

T
e

st
 t

ra
ff

ic
 g

e
n

.
la

te
n

cy
 (

s)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

BUZZ
Naive Symbolic Execution
Model Checking

 Existing work has fundamental limitations in checking context-

dependent policies in stateful data planes

 Challenges:

Expressive-yet-scalable model of stateful data

planes

 Scalable state space exploration

 Our solution is BUZZ:

BUZZ Data Unit (BDU) as traffic unit model

Ensemble of FSMs as a network function (NF) model

 Scalable exploration via domain-specific

optimizations

 BUZZ can help find bugs and is scalable

16

