BUZZ: TESTING CONTEXT-DEPENDENT POLICIES IN
STATEFUL NETWORKS

-INTURI SAI HARSHINI

CONTENTS

= INTRODUCTION

= WHY IS IT CHALLENGING?
= WORKFLOW OF BUZZ

= IMPLEMENTATION

= EVALUATION

= Checking whether a network correctly implements intended policies is
challenging.

= Can X talktoY?
= Existing approaches face fundamental expressiveness and scalability challenge.
= Current abstractions cannot capture stateful behaviors.

= Trying to reason about stateful behaviors results in state space exposion.

g o R y v RE T3 B
i | . E AW E A R
: o X% E ™ B A8 - T

i H TFVR g BB 6% /

rk do what I want it to |
2?7
What I want 8Networl<

do?
the neéwork to operator
o]

Does the netwo

Reality \
What the network >
A does
network

-

STATEFUL FIREWALLING

Unsolicited TCEF

Traffic from
internet

Stateful FW

v

Solicited TCP

= Incoming traffic is allowed depending on its context.
= Even this simple policy cannot be captured.

= It doesn’t capture the policy-relevant state of the firewall.

CONTEXT-DEPENDENT TRAFFIC MONITORING

Web traffic from

e
g PIroxy

» Cache hits/misses for H2 should be monitored.

Hit/miss V’
]
otherwise

= There could be subtle policy violations
1. The proxy hides traffic true origin.

2. The proxy’s response depends on the hidden policy-relevant state.

MULTI STAG

2

TRIGGERS

=l

How can we check context-dependent
policies in stateful networks?

Challenges:
= Expressiveness: How to capture stateful behaviors?

* Scalability: How to explore the state space?

SOLUTION: BUZZ

BUZZ is an active testing framework to check
context-dependent policies in stateful data planes

context-dependent

Operator & policies BUZZ

test
traffic

:11 E‘
PS Proxy

CHALLENGE 1. EXPRESSIVE DATA PLANE MODEL

context-dependent

olicies
Operato ® P
r

Challenge
1:

Xpressive

models?

- Challenge 2:
Test traffic
) generation Scalable state
P2 space
gai test exploration
traffic
= E‘ @

PS Proxy

ata plane

CHALLENGE 1. EXPRESSIVE DATR PLANE MODEL

1. How to model the traffic unit?

2. How to model a network function (e.qg., an IPS)?

? 2?2
‘NFI-

IP

Located packet Context-carryin

(e.g., Pyretic, HSA)
struct locPkt {

IPHder ipHdr;

}NetvvorkPort port;

ExpressiveX

BDU "BBY TP
mem)| Light | sesgn
IPS | henign?
located paciet BUZZ Data Unit (BDU)
struct CntxlocPkt! { struct BDU{
IPHder ipHdr; IPHeader 1pHdr;
NetworkPort port; NetworkPort port;
}Context context; Context context;
Expressivey/ HTTPHdr httpHdr
Scalable X Y
Expressive‘/
Scalable V

@

CHALLENGE 2: SCALABLE TEST TRAFTIC GENERATION

context-dependent
1Ci Chall
Operato @ policies Data a 1.eng-e

- Expressive
models?
Challenge 2:
’ Scalable state
space
exploration

test
traffic

5 @j
PS Proxy =

ata plane

CHALLENGE 2: EXPLORING DATA PLANE STATE SPACK

u ini#al&tateg<0,D>)
host 1 . suspicious =
host 2 = | Light == ? s

 Conceptual view of test traffic generation: How to
reach a colored state through a sequence of traffic

units?
 Challenge of scalability wrt traffic space and state
space
— Strawman 1: All possible sequences of traffic units
— Strawman 2: Generate random traffic units (e.g., fuzzing)

— Strawman 3: Naive use of exploration tools (e.g., model
checking) (1s)

Cuntext -dependent| 1. Data plane mndeI{_ Library of NF
L'}peratnr pU|IEIE5 {:54] Instanha’nnn (65.3) mndels (65.2)
test sucﬂ555
results qm\ﬂﬂﬂn
3 Test 2. Test traffic
recolution ge neration (66)

monitoring
logs

test traffic
—

s &
FW IPS Proxy
stateful data plane

EVALUATION: SCALABILITY OF

- B BUZZ 3
: B Naive Symbolic Execution| 3

L [IModel Checking .
10° ¢ B B B B N B

Test traffic gen. latency (s)
|_\
o

6 52 92 196 400 600
Topology size (# of switches)

Test generation takes < 2min for a network
with 600 switches and 60 middleboxes

=)

= Existing work has fundamental limitations in checking context-
dependent policies in stateful data planes

= Challenges:

= Expressive-yet-scalable model of stateful data
planes

= Scalable state space exploration

= Our solution is BUZZ:
= BUZZ Data Unit (BDU) as traffic unit model

= Ensemble of FSMs as a network function (NF) model

= Scalable exploration via domain-specific
optimizations

= BUZZ can help find bugs and is scalable

L

