
Review and Retrieval Exercises
for

CS 5523 Operating Systems

Instructor: Dr. Turgay Korkmaz
Department Computer Science

The University of Texas at San Antonio

CH1: INTRODUCTION
CH2: OPERATING-SYSTEM STRUCTURES

Grand tour of the major operating systems components

Operating System Structures & Services

ch01-sgg-tk.ppt

ch02-sgg-tk.ppt

Retrieval Exercises: OS Introduction
 What is OS?

 What are the goals of OS?

 What are the two key mechanisms to interact with the kernel, and how

do they work?

 Differences between System calls and Library function calls? How they

work, what information is stored in executable file etc…

 What are the differences between batch processing, multiprogramming,

time sharing systems? Adv/Disadv?

 What is a device driver (dd)?

 What are the basic OS Structures/components/tasks/services?

 What are different systems and OS types? (distributed, embedded …)

 What are different OS design approaches? +/-

 Differences between policies and mechanisms?

3

CH3: PROCESSES

Programs in execution

ch03-sgg-tk.ppt

Retrieval Exercises: program and process
• What is the difference between program and process?

• How does a program becomes a process?

• Draw a diagram to show how the state of a process changes?

• List at least four fields in PCB and explain their purposes?

• Using a diagram explain how does context-switching happens.

• Compare/contrast process vs. threads.

• What are the main parts/sections of a program image in the memory and what are
the goals of these parts/sections?

• Be able to create/copy/free structures similar to command-line argument list

• What might be the adv/disadv of using static variables?

• Given example function that would not be thread-safe? Explain Why/how?

• What is the main purpose of using static before a variable and before a function?

• Explain the purpose of fork, exec, and wait in process creation and termination?

• Be able to draw the graph of process relations and show their output.

• What happens if the parent process quits without waiting for children?

• What does zombie mean and how are they cleared from the system ?

5

CH 4: THREADS

 A fundamental unit of CPU utilization

ch04-sgg-tk.ppt

Retrieval exercises from Threads:
• What is a thread?

• What are the differences between thread and process?

• What are the benefits of threads?

• How does a process create/manages several threads?

• What are the differences between user level and kernel level threads?

• What might be the adv/disadv of using user or kernel threads?

• Draw a diagram to show how user threads can be mapped to kernel ones.

• Explain how does Light-Weight Process (LWP) approach work.

• Thread Libraries
– How to create a thread in C and Java? What does Join do?

– Give the expected output of a given program using multiple threads.

– Life-time (state transitions) of Java threads

• Other issues?
– Should we replicate all active threads upon fork(), why, why not?

– When do you think we may need thread cancelation and how to deal with it?

– What are the adv/disadv of thread pools.

CH 5 IN OLD ED: CH 6 IN 9TH ED:

CPU SCHEDULING

Pick one ‘lucky’ process from ready queue

ch05-sgg-tk.ppt

Retrieval Exercises: CPU SCHEDULING

• What is the difference between long-term, short-term, and medium-term schedulers?

• When a running process moves out of CPU?

• Draw a state diagram and show how/where/when CPU scheduler is invoked to change the state of
a process?

• Compare/contrast preemptive and non-preemptive scheduling and give examples.

• Using a diagram explain how does context-switching happens.

• What is CPU utilization? If CPU was busy for 100 ms during a second, what is CPU util?

• How can we increase CPU utilization?

• Compare/contrast CPU-bound and II-bound processes? What are the challenges in scheduling
such processes?

• What are the key performance criteria for scheduling algorithms? Explain turnaround time.

• Be able to explain the basic ideas/mechanisms behind FIFO, SFJ, PSFJ, RR, PR

• Be able to draw Gantt chart based on the given processes and scheduling algorithm and compute
performance metrics (e.g., utilization, waiting time, response time, throughput, turnaround time
etc)

• Why do we need multilevel queues and how to use them to provide different guarantees?

• What are the general approaches to evaluate the system performance: analytical (queuing theory)
and Simulation…

9

CH 6 IN OLD ED: CH 5 IN 9TH ED:

PROCESS SYNCHRONIZATION

Get processes (threads) to work together

in a coordinated manner.

ch06-sgg-tk.ppt

Retrieval exercises from Process Sync.
• What are the problems in concurrently accessing the shared data? Give an example.

• What is a Race Condition, when does it appear?

• What is critical section (CS) and why does it need to be executed atomically? What does
atomic means?

• Describe the following requirements for CS solutions: Mutual Exclusion, Progress, Bounded
Waiting.

• Compare/contrast preemptive and non-preemptive kernel approaches in solving CS
problem?

• Given a CS solution (e.g, Peterson’s sol), explain if it satisfies the above requirements!

• What are the common hardware solutions for synchronization? Disable inter, non-inter
atomic inst

 GetAndSet, Swap…

 Do they satisfy the above requirements, how, why, why not?

 Generalized solution for synch of n processes

• What is a semaphore? Acquire/Wait/P/Down, Release/Signal/V/Up… Give example usages.

• How to implement semaphore? Block waiting processes instead of spinlock, why?

• What does deadlock and starvation means, how do they happen?

• What does priority inversion mean and how can it be avoided?
11

CH 7: DEADLOCKS

Wait for someone who waits for you!

ch07-sgg-tk.ppt

Retrieval exercises from Deadlocks
• When/how does a deadlock happen? Give an example.

• What are the four conditions that must hold simultaneously for a deadlock to
arise?

• Show how to use a resource-allocation graph to detect a deadlock?

• What are the main approaches/methods to handle deadlocks? Explain and give
examples?
– Prevention, Avoidance, Detection, Recovery, Ignore… programmers responsibility

• How to realize deadlock prevention? What are the adv/disadv?

• How to realize deadlock avoidance? What are the adv/disadv?
– What does “Safe State” means? Given a set of process, max resource need, and current allocation, can yous how if they satisfy

safety condition?

– How to use resource-allocation graph to check “safe state”?

– Be able to show how Banker’s Algorithm verifies if a given state is safe or not.

• How to realize deadlock detection?

• How to recover from deadlock?
– Process Termination

– Resource Preemption

13

MEMORY MANAGEMENT

Share the main memory among many processes

ch08-sgg-tk.ppt

Retrieval Exercises: Memory Management

 What is the goal of using base and limit registers?

 Explain address binding at compile, load, and execution time.

 Explain the concept of logical/virtual address and physical address? Can they be
the same?

 What is the goal Memory Management Unit (MMU)? Give an example.

 Compare/contrast Dynamic loading and dynamic linking. Give Adv/disadv.

 What does swapping mean? Why would you disable or enable it?

 Why do we need to allocate contiguous space for a process?

 What are the adv/disadv of First, Best, Worst fit in allocating contig. space

 Explain why/how external and internal fragmentations happen. How can we
solve them?

 At the high level describe paging and basic hardware support needed.

 Given a virtual and physical addresses, show how to design a single, two-level
paging systems.

Retrieval Exercises: Memory Management

• Discuss adv/disadv of using small/big size pages/frames.

• Explain pros/cons of paging. E.g. How does it enable page sharing?

• What is the goal of translation look-aside buffers (TLBs)?

• How does it work? Draw a diagram to show the basic architecture.

• Be able to compute Effective Access Time (EAT) under a given scenario.

• Explain the key ideas and motivation behind Hierarchical Page tables, Hashed
Page Tables, Inverted Page Tables

• Be able to design a paging system with multiple levels

CH 9: VIRTUAL MEMORY

Allow the OS to hand out

more memory than existing physical memory

ch09-sgg-tk.ppt

Retrieval Exercises for Virtual Memory
• What is virtual memory?
• What are the goals and benefits of virtual memory?
• How to map virtual memory addresses to physical ones?
• What is Demad Paging? How does it work?
• What is the role of “valid-bit” in page table?
• What does page fault means? How does it happens and how is it be handled?
• Be able to compute EAT under given demand paging scenario. What are the dominant

delay components?
• What does Copy-on-Write means? Explain benefits.
• Explain how/why page replacement is needed and handled.
• Be able to trace/count number of page faults under FIFI, Opt, LRU, LFU, MFU etc.
• Adv/Disadvantages different approximate implementation of LRU?
• What does locality means, how it impacts program performance in demand paging?
• How do two programs can share memory (consider memory-mapped files)?
• What are the major concerns when allocating frames to different size programs?
• Explain the difference between global and local allocation/replacement.
• What does Thrashing means? What strategies to use for avoiding it?
• …. Optional (memory allocation user/kernel, other issues improvements)

