
3.1 SGG Operating System Concepts

Chapter 3: Processes

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

Programs in execution

3.2 SGG Operating System Concepts

Chapter 3: Processes

 Process Concept *

 Process Scheduling **** (more in ch 5)

 Operations on Processes ***

 Interprocess Communication ****

 Communication in Client-Server Systems ***** (more later)

 Socket, RPC, RMI

 Examples of IPC Systems *

3.3 SGG Operating System Concepts

Objectives

 To introduce the notion of a process -- a program in

execution, which forms the basis of all computation

 To describe the various features of processes, including

scheduling, creation and termination, and communication

 To describe communication in client-server systems

(more later)

3.4 SGG Operating System Concepts

Process Concept

 Program: a set of instructions

 Passive entity, stored as files on disk

 Process: a program in execution

 Dynamic concept, an active entity in memory

 A process includes:
 code section (text segment),

 data section (global variables),

 stack (temporary data or local variables and return address etc.)

 heap: memory for dynamically allocated data

 Auxiliary: environment variables and command line arguments

 Process execution must progress in sequential

fashion (single thread)

 An OS executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 The terms job and process are used interchangeably

How do we run
a program?

What are the
steps to create

a process?

3.5 SGG Operating System Concepts

Load to Memory

 Special CPU registers

 Base register: start of the

process’s memory partition

 Limit register: length of the

process’s memory partition

 Access limited to system mode

 Address translation

 Logical address: location from the

process’s point of view

 Physical address: location in actual

memory

 Physical = base + logical address

 Logical address: 0x1204

Physical address:0x1204+0x9000 = 0xa204

 Logical address larger than limit error

P1

OS
0

0xFFFF

Limit

Base

0x2000

0x9000

Physical
memory

.

3.6 SGG Operating System Concepts

Program Image in Memory (Fig. 2.1 USP)

6

int A[8]; vs. int A[8] = {3,5};
> gcc prog.c

> ls –la a.out

… 8710 … a.out

… 8766 … a.out

> size a.out

text data bss dec hex

filename

2351 568 136 3055 bef

a.out

2351 616 104 3071 bff

a.out

3.7 SGG Operating System Concepts
7

int A[8]; int B[8]={3}; int i, *ptr;

int main(int argc, char *argv[]) {

 int C[8]; int D[8] ={6};

 printf("argc at %p contains %d \n", &argc, argc);

 printf("argv at %p contains %p\n", argv, *argv);

 printf("argv[0] at %p contains %s\n", &argv[0], argv[0]);

 printf("argv[%d] at %p contains %s\n",argc, &argv[argc] , argv[argc]);

 printf("C: [0] at %p contains %d\n", &C[0], C[0]);

 printf("C: [7] at %p contains %d\n", &C[7], C[7]);

 printf("D: [0] at %p contains %d\n", &D[0], D[0]);

 printf("D: [7] at %p contains %d\n", &D[7], D[7]);

 foo(5);

 for(i=0; i<5; i++) {

 ptr = (int *) malloc(sizeof(int));

 printf("ptr at %p points to %p\n", &ptr, ptr);

 }

 printf("A: [0] at %p contains %d\n", &A[0], A[0]);

 printf("A: [7] at %p contains %d\n", &A[7], A[7]);

 printf("B: [0] at %p contains %d\n", &B[0], B[0]);

 printf("B: [7] at %p contains %d\n", &B[7], B[7]);

 printf("foo at %p\n", foo);

 printf("main at %p\n", main);

 return 0;

}

int foo(int x){

 printf("foo at %p x is at %p contains %d\n", foo, &x, x);

 if (x > 0) foo(x-1);

 return x;

}

An example

Program…

Where do you

think this

highlighted

things are

stored in

memory?

3.8 SGG Operating System Concepts

An Example

Program

argc at 0x7fff378e0e3c contains 1

argv at 0x7fff378e0f68 contains 0x7fff378e2a0b

argv[0] at 0x7fff378e0f68 contains a.out

argv[1] at 0x7fff378e0f70 contains (null)

C: [0] at 0x7fff378e0e40 contains 1

C: [7] at 0x7fff378e0e5c contains 0

D: [0] at 0x7fff378e0e60 contains 6

D: [7] at 0x7fff378e0e7c contains 0

foo at 0x4007ba x is at 0x7fff378e0e1c contains 5

foo at 0x4007ba x is at 0x7fff378e0dfc contains 4

foo at 0x4007ba x is at 0x7fff378e0ddc contains 3

foo at 0x4007ba x is at 0x7fff378e0dbc contains 2

foo at 0x4007ba x is at 0x7fff378e0d9c contains 1

foo at 0x4007ba x is at 0x7fff378e0d7c contains 0

ptr at 0x6010a0 points to 0x88e010

ptr at 0x6010a0 points to 0x88e030

ptr at 0x6010a0 points to 0x88e050

ptr at 0x6010a0 points to 0x88e070

ptr at 0x6010a0 points to 0x88e090

A: [0] at 0x6010c0 contains 0

A: [7] at 0x6010dc contains 0

B: [0] at 0x601060 contains 3

B: [7] at 0x60107c contains 0

foo at 0x4007ba

main at 0x40057d

8

Return address

Saved frame ptr

Variables (local)

3.9 SGG Operating System Concepts

What might go wrong here? How can we fix?

char *get_me_a_name(){

 char buff[100];

 scanf(“%s”, buff);

 return buff;

}

char *get_me_a_name(){

 static char buff[100];

 scanf(“%s”, buff);

 return buff;

}

char *get_me_a_name(){

 char *buff;

 buff = malloc(100); // if NULL

?

 scanf(“%s”, buff);

 return buff;

}
9

Return address

Saved frame

ptr

Variables

(local)

3.10 SGG Operating System Concepts

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

CPU Switch
From Process to
Process

3.11 SGG Operating System Concepts

Process Control Block (PCB)

 Process state

 Registers: in addition to general registers

 Program Counter (PC): contains the memory address of the

next instruction to be fetched.

 Stack Pointer (SP): points to the top of the current stack in

memory. The stack contains one frame for each procedure

that has been entered but not yet exited.

 Program Status Word (PSW): contains the condition code

bits and various other control bits

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

 Thread synchronization and communication

resource: semaphores and sockets

/linux-3.6.5/include/linux/sched.h

struct task_struct {
 volatile long state;
 void *stack;
 atomic_t usage;
 unsigned int flags;
 unsigned int ptrace;
 /* … ~1.7K
 360 lines */
}

Double linked list to maintain PCBs

3.12 SGG Operating System Concepts

Threads

 A process can have multiple threads

but…

 We just consider single thread here….

 Multiple threads will be covered later (Chapter 4)….

3.13 SGG Operating System Concepts

PROCESS SCHEDULING

Maximize CPU utilization in time sharing system

(More in Chapter 5)….

3.14 SGG Operating System Concepts

Scheduling Queues

 Job queue – set of all

processes in the system

 Ready queue – set of

all processes residing in

main memory, ready

and waiting to execute

 Device queues – set of

processes waiting for an

I/O device

 Processes migrate

among the various

queues

 Dispatcher takes the

next task from ready

queue and executes it

3.15 SGG Operating System Concepts

Schedulers

 Long-term scheduler (or job

scheduler) – selects which

processes should be brought

into the ready queue

 Less frequent

 Controls degree of multiprogramming

 Short-term scheduler (or CPU

scheduler) – selects which

process should be executed

next and allocates CPU

 More frequent (e.g., every 100 ms)

 Must be fast (if it takes 10ms, then we

have ~10% performance degradation)

3.16 SGG Operating System Concepts

Schedulers (Cont.)

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts

 CPU-bound process – spends more time doing

computations; few very long CPU bursts

 Addition of Medium Term Scheduling

 Fine tune degree of multiprogramming

3.17 SGG Operating System Concepts

Context Switch

 When CPU switches to another

process, the system must save the

state of the old process and load

the saved state for the new process

via a context switch

 Context of a process represented

in the PCB

 Context-switch time is overhead;

the system does no useful work

while switching

 Hardware support

 Multiple set of registers then just change

pointers

 Other performance issues/problems

 Cache content: locality is lost

 TLB content: may need to flush

3.18 SGG Operating System Concepts

Let’s try to see context switching in action?

> vi prog.c

 for(i=0; i<1000; i++) {

 // …

 printf(“%s”, argv[1]);

 }

> prog A &; prog B &; prog C &

18

3.19 SGG Operating System Concepts

OPERATIONS ON PROCESSES

3.20 SGG Operating System Concepts

Process Creation

 Parent process create children

processes, which, in turn create

other processes, forming a tree

of processes (Process hierarchy)

 System initialization

 User request to create a new

process

 Running processes use system

call to create new process

 Generally, process identified and

managed via a process

identifier (pid)

3.21 SGG Operating System Concepts

Process Creation (Cont.)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 UNIX examples

 fork system call creates new process
 The child process has a separate copy of the parent’s address space.

 Both the parent and the child continue execution at the instruction following the fork system call

 Return value of 0 new (child) process continues

 exec system call used after a fork to replace the process’

memory space with a new program

3.22 SGG Operating System Concepts

An Example: Unix fork()

pid = 26

UNIX kernel

Text

Process Status

Stack

Data

File
File

Stack

Data
Resources

Resources

<…>

int cpid = fork();

if (cpid = = 0) {

 <child code>

 exit(0);

}

<parent code>

wait(cpid);

Text

<…>

int cpid = fork();

if (cpid = = 0) {

 <child code>

 exit(0);

}

<parent code>

wait(cpid);

Process Status

pid = 25

cpid = 26 cpid = 0

*

3.23 SGG Operating System Concepts

C Program Forking Separate Process

int main()

{

pid_t pid;

 pid = fork(); /* fork another process */

 if (pid < 0) { /* error occurred */

 fprintf(stderr, "Fork Failed");

 exit(-1);

 }

 else if (pid == 0) { /* child process */

 execlp("/bin/ls", "ls", NULL);

 }

 else { /* parent process */

 /* parent will wait for the child to complete */

 wait (NULL);

 printf ("Child Complete");

 exit(0);

 }

}

3.24 SGG Operating System Concepts

Process Creation in POSIX and Win32

3.25 SGG Operating System Concepts

Process Creation in Java

JVM is created as an ordinary application.

Each JVM supports multiple threads but not process model in a JVM. Why?

Java allows to create external processes using ProcessBuilder class…

3.26 SGG Operating System Concepts

26

Process Termination

 Voluntarily

 process finishes and asks OS to delete it (exit).

 Output data from child to parent (wait or waitpid).

 Process’ resources are de-allocated by OS.

 Involuntarily

 parent terminate execution of children processes (e.g.
TerminateProcess() in Win32, abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its parent

terminates (All children terminated - cascading termination)

 Some operating system do, and init owns them

 Parent process is terminated (e.g., due to errors)

 What will happen to the children process?! Zombies

3.27 SGG Operating System Concepts

Wait for Processes

#include <sys/wait.h>

pid_t wait(int *stat_loc);

pid_t waitpid(pid_t pid, int *stat_loc, int options);

 wait : parent blocks until the child finishes

 If a child terminated, return its pid

 Otherwise, return -1 and set errno

 waitpid : parent blocks until a specific child finishes

 Allow to wait for a particular process (or all if pid=-1);

 NOHANG option: return 0 if there is a specified child to wait for but

it has not yet terminated

 Important values of errno

 ECHILD no unwaited for children;

 EINTR a signal was caught

27

3.28 SGG Operating System Concepts

INTERPROCESS

COMMUNICATION

Information Sharing

Computation speedup

Modularity

Convenience (user can do multiple things…)

!!!!!!! (more later) !!!!!

3.29 SGG Operating System Concepts

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other

processes, including sharing data

 Example: Producer-Consumer Problem

 producer process produces information that is consumed by a

consumer process

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Shared memory

 Message passing

bounded or
Unbounded buffer

3.30 SGG Operating System Concepts

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer process

 unbounded-buffer places no practical limit on the size of the buffer

 bounded-buffer assumes that there is a fixed buffer size

3.31 SGG Operating System Concepts

Communications Models

Message Passing Shared Memory

3.32 SGG Operating System Concepts

SHARED-MEMORY

Self-study

3.33 SGG Operating System Concepts

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BSIZE 10

typedef struct {

 . . .

} itemT;

itemT buffer[BSIZE];

itemT item;

int in = 0;

int out = 0;

 Solution is correct,

but can only use

BSIZE-1 elements

while (true) {

/* Produce an item */

 while (((in = (in + 1) % BSIZE) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BSIZE;

}

while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 item = buffer[out];

 out = (out + 1) % BSIZE;

 /* Consume the item */

}

3.34 SGG Operating System Concepts

POSIX Shared-Memory APIs
.

 POSIX Shared Memory

 Process first creates shared memory segment

segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

 Process wanting access to that shared memory must attach to it

shared memory = (char *) shmat(id, NULL, 0);

 Now the process could write to the shared memory

sprintf(shared memory, "Writing to shared memory");

 When done a process can detach the shared memory from its address

space

shmdt(shared memory);

 shmctl: alter the permission of the shared segment

shmctl(shm_id, cmd, *buf);

cmd: SHM_LOCK, SHM_UNLOCK, IPC_STAT, IPC_SET, and IPC_RMID

3.35 SGG Operating System Concepts

IPC with Shared Memory (POSIX/C)

#include <sys/ipc.h>

#include <sys/shm.h>

int main(int argc, char *argv[]) {

 int shmid; char *data;

 /* create the shared segment: */

 shmid = shmget(100, 1024, 0644 | IPC_CREAT))

 /* attach it to a pointer */

 data = shmat(shmid, (void *)0, 0);

 /* write some data */

 sprintf(data, “Hi, I am writing share memory”);

 shmdt(data); /* detach from the segment: */

 /*remove the shared segment*/

 shmctl(shmid, IPC_RMID, NULL);

 return 0;

}

.

3.36 SGG Operating System Concepts

Communicate via Shared Memory

int main(int argc, char *argv[]) {

 int shmid;

 char * data;

 … … /* setup the shared segment: */

 if ((cpid = fork())==0){ //child process

 sprintf(data, “Child: using SM!”);

 sleep(1); //give parent a chance

 printf(“%s\n”, data); exit(0);

 } else if (cpid >0){ //parent process

 sleep(1); //let child first

 sprintf(data, “Parent: changing SM”);

 wait(cpid); //wait child to finish

 }

 shmdt(data);

 shmctl(shmid, IPC_RMID, NULL);

 return 0;

}

.

3.37 SGG Operating System Concepts

Simulating Shared Memory in Java

Java does not provide support for shared memory,
but it can be emulated …

3.38 SGG Operating System Concepts

MESSAGE PASSING

!!!!!!! (more later) !!!!!

3.39 SGG Operating System Concepts

Message Passing

 Mechanism for processes to communicate and to

synchronize their actions

 Message system – processes communicate with each other

without resorting to shared variables

 IPC facility provides at least two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

When to use
shared

memory vs.
message
passing?

3.40 SGG Operating System Concepts

Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate

fixed or variable?

 Is a link unidirectional or bi-directional?

3.41 SGG Operating System Concepts

Naming and Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

3.42 SGG Operating System Concepts

Naming and Indirect Communication

 Messages are directed and received from mailboxes (also

referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

 Operations

 create a new mailbox, send and receive messages through mailbox,

destroy a mailbox

 Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

3.43 SGG Operating System Concepts

Naming and Indirect Communication (cont’d)

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.

3.44 SGG Operating System Concepts

Message Passing: Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is

received

 Blocking receive has the receiver block until a message is

available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and

continue

 Non-blocking receive has the receiver receive a valid message

or null

3.45 SGG Operating System Concepts

Message Passing: Buffering

 Queue of messages attached to the link;

implemented in one of three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

3.46 SGG Operating System Concepts

public interface Channel<E>
{
 public void send(E item);
 public E receive();
}

import java.util.Vector;
public class MessageQueue<E>
 implements Channel<E>
{
 private Vector<E> queue;
 public MessageQueue() {
 queue = new Vector<E>();
 }

 public void send(E item) {
 queue.addElement(item);
 }

 public E receive() {
 if (queue.size() == 0)
 return null;
 else
 return queue.remove(0);
 }
}

import java.util.Date;
public class Test
{
 public static void main(String[] args){
 Channel<Date> mailBox =
 new MessageQueue<Date>();
 mailBox.send(new Date());

 Date rightNow =
 mailBox.receive();
 System.out.println(rightNow);
 }
}

Example: Producer-Consumer

with Message Passing in Java

3.47 SGG Operating System Concepts

COMMUNICATIONS IN

CLIENT-SERVER SYSTEMS

!!!!!!! (more later) !!!!!

Sockets

Remote Procedure Calls (RPC)

Remote Method Invocation (RMI) Java

3.48 SGG Operating System Concepts

Sockets

 A socket is defined as an

endpoint for

communication

 Concatenation of IP

address and port

 The socket

161.25.19.8:1625 refers

to port 1625 on host

161.25.19.8

 Communication consists

between a pair of

sockets

3.49 SGG Operating System Concepts

IPC with Message Passing (socket)

 C/C++ (sys/socket.h, netinet/in.h)

 Server

 Create a socket with the socket()

 Bind the socket to an address using the bind()

 Listen for connections with the listen()

 Accept a connection with the accept() system call.

 Client

 Create a socket with the socket() system call

 Connect to server using the connect() system call

 read() and write()

 Java

 Server: ServerSocket

 Client: Socket

.

3.50 SGG Operating System Concepts

Socket Communication in Java

3.51 SGG Operating System Concepts

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems

 Stubs – client-side proxy for the actual procedure on the

server

 The client-side stub locates the server and marshalls the

parameters

 The server-side stub receives this message, unpacks the

marshalled parameters, and peforms the procedure on

the server

3.52 SGG Operating System Concepts

Execution of RPC

3.53 SGG Operating System Concepts

Remote Method Invocation

 Remote Method Invocation (RMI) is a Java mechanism

similar to RPCs

 RMI allows a Java program on one machine to invoke a

method on a remote object

3.54 SGG Operating System Concepts

Marshalling Parameters (UML seq. diagram)

3.55 SGG Operating System Concepts

RMI

 Remote Objects

 Access to the Remote Object

 Running the Programs

 rmiregistery &

 RMI versus RPC vs Sockets

3.56 SGG Operating System Concepts

RMI Example (Appendix D online)

3.57 SGG Operating System Concepts

EXAMPLES OF IPC SYSTEMS

Mach: Message passing

Windows XP : Shared Memory

3.58 SGG Operating System Concepts

Examples of IPC Systems - Mach

 Mach communication is message based

 Even system calls are messages

 Each task gets two mailboxes at creation- Kernel and Notify

 Only three system calls needed for message transfer

 msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via

 port_allocate()

3.59 SGG Operating System Concepts

Examples of IPC Systems – Windows XP

 Message-passing centric via local procedure call (LPC)

facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain

communication channels

 Communication works as follows:

 The client opens a handle to the subsystem’s connection port

object

 The client sends a connection request

 The server creates two private communication ports and

returns the handle to one of them to the client

 The client and server use the corresponding port handle to

send messages or callbacks and to listen for replies

3.60 SGG Operating System Concepts

Local Procedure Calls in Windows XP

3.61 SGG Operating System Concepts

End of Chapter 3

