
4.1 SGG Operating System Concepts

Chapter 4: Threads

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

 A fundamental unit of CPU utilization

4.2 SGG Operating System Concepts

Chapter 4: Threads

 Overview *

 Multithreading Models *****

 Thread Libraries ****

 Pthreads and Java thread

 Threading Issues ***

 Operating System Examples *

 Windows XP Threads *

 Linux Threads ***

4.3 SGG Operating System Concepts

Objectives

 To introduce the notion of a thread

 a fundamental unit of CPU utilization that forms the basis of

multithreaded computer systems

 To examine issues related to multithreaded programming

 To discuss the APIs for the Pthreads and Java thread

libraries (optional Win32)

4.4 SGG Operating System Concepts

Example: A Multi-Activity Text Editor

 Process approach on data

 P1: read from keyboard

 P2: format document

 P3: write to disk

Kernel

When in the Course of
human events, it becomes
necessary for one people to
dissolve the political bands
which have connected them
with another, and to assume
among the powers of the
earth, the separate and
equal station to which the
Laws of Nature and of
Nature's God entitle them, a
decent respect to the
opinions of mankind requires
that they should declare the
causes which impel them to
the separation.

We hold these truths to be
self-evident, that all men are
created equal, that they are
endowed by their Creator
with certain unalienable
Rights, that among these are
Life, Liberty and the pursuit
of Happiness.--That to
secure these rights,
Governments are instituted
among Men, deriving their
just powers from the consent
of the governed, --That
whenever any Form of
Government becomes

destructive of these ends, it
is the Right of the People to
alter or to abolish it, and to
institute new Government,
laying its foundation on such
principles and organizing its
powers in such form, as to
them shall seem most likely
to effect their Safety and
Happiness. Prudence,
indeed, will dictate that
Governments long
established should not be
changed for light and
transient causes; and
accordingly all

How do the processes
exchange data?

The processes will actively access
the same set of data.

.

Context Switch for Processes- costly

4.5 SGG Operating System Concepts

Ideal Solution for the Text Editor

Threads

 Three activities within one

process

 Single address space

 Same execution environment

 Data shared easily

 Switch between activities

 Only running context

 No change in address space Kernel

When in the Course of
human events, it becomes
necessary for one people to
dissolve the political bands
which have connected them
with another, and to assume
among the powers of the
earth, the separate and
equal station to which the
Laws of Nature and of
Nature's God entitle them, a
decent respect to the
opinions of mankind requires
that they should declare the
causes which impel them to
the separation.

We hold these truths to be
self-evident, that all men are
created equal, that they are
endowed by their Creator
with certain unalienable
Rights, that among these are
Life, Liberty and the pursuit
of Happiness.--That to
secure these rights,
Governments are instituted
among Men, deriving their
just powers from the consent
of the governed, --That
whenever any Form of
Government becomes

destructive of these ends, it
is the Right of the People to
alter or to abolish it, and to
institute new Government,
laying its foundation on such
principles and organizing its
powers in such form, as to
them shall seem most likely
to effect their Safety and
Happiness. Prudence,
indeed, will dictate that
Governments long
established should not be
changed for light and
transient causes; and
accordingly all

.

4.6 SGG Operating System Concepts

Another Example: Web servers

4.7 SGG Operating System Concepts

Thread vs. Process

 Processes

 Independent execution units use

their own states, address spaces,

and interact with each other via IPC

 Traditional Processes have single

flow of control (thread)

 Thread

 Flow of control (activity) within a

process

 A single process on a modern OS

may have multiple threads

 All threads share the code, data,

and files while having some

separated resources

 Threads directly interact with each

other using shared resources

Both are methods for Concurrency and Parallelism

Concurrency vs. Parallelism?

4.8 SGG Operating System Concepts

Benefits

 Responsiveness

 Interactive application

 Resource sharing

 Address space and other

resources

 Economy: less overhead

 Solaris: process creation 30X

overhead than thread;

 Context switching threads

within a process 5X faster

 Scalability

 Better utilization of

multiprocessor/multicore

systems

Concurrent
Execution on a

Single-core
System

Parallel
Execution on
a Multicore

System

4.9 SGG Operating System Concepts

Multicore Programming

 Multithreaded programming provides a mechanism for

efficient use of multicore systems

 Programmers face new challenges

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Multicore programming will require entirely new approach to

design SW

4.10 SGG Operating System Concepts

MULTI-THREADING MODELS

4.11 SGG Operating System Concepts

Thread Implementations: Issues

 Process usually starts with a single thread and creates others

 Thread management operations (similar to process management)

 Creation: procedure/method for the new thread to run

 Scheduling: runtime properties/attributes

 Destruction: release resources

 Thread Synchronization

 join, wait, etc.

 Who manages threads and where

 User space: managed by applications using some libraries

 Kernel space: managed by OS

 all modern OSes have kernel level support (more efficient)

.

4.12 SGG Operating System Concepts

User-Level Threads

 User threads: thread library at the user level

 Run-time system provides support for thread creation,

scheduling and management

Thread

Process Table

Kernel

Process
Run-time system

Thread table

User

Space

Kernel

Space

Kernel has
NO

knowledge of
threads!

.

4.13 SGG Operating System Concepts

User-Level Threads (cont.)

 Each process needs its own

private thread table to keep

track of the threads in that

process.

 The thread-table keeps track of

the per-thread items (program counter,

stack pointer, register, state..)

 When a thread does something

that may cause it to become

blocked locally (e.g. wait for another thread),

it calls a run-time system

procedure.

 If the thread must be put into

blocked state, the procedure

performs thread switching

.

 Advantages

 Fast thread switching: no

kernel activity involved

 Customized/flexible thread

scheduling algorithm

 Application portability:

different machines with library

 Problems/disadvantages:

 Kernel only knows process

 Blocking system calls:

kernel blocks process, so

one thread blocks all

activities (many-to-one mapping)

 All threads share one CPU,

so cannot use multi-

proc./core

4.14 SGG Operating System Concepts

Kernel-Level Threads

Supported directly by OS

Kernel performs thread creation, scheduling & management in kernel space

Thread

Process Table

Process

Thread table

User

Space

Kernel

Space

.

4.15 SGG Operating System Concepts

Kernel-Level Threads (cont.)

 Advantages

 User activity/thread with blocking I/O does NOT block other

activities/threads from the same user

 When a thread blocks, the kernel may choose another thread from

the same or different process

 Multi-activities in applications can use multi-proc/cores

 Problems/disadvantages

 Thread management could be relatively costly:

 all methods that might block a thread are implemented as system calls

 Non-flexible scheduling policy

 Non-portability: application can only run on same type of machine

.

What is the relationship between user level
and kernel level threads?

How to map user level threads to kernel

level threads?

4.16 SGG Operating System Concepts

Mapping: User  Kernel Threads

 Many-to-one

 Many user threads  one kernel

thread (-/+ are same as in user-level threads)

 Examples: Solaris Green Threads, GNU Portable Threads

 One-to-One

 One user thread  one kernel thread;

 + more concurrency

 - limited number of kernel threads
Examples: Windows NT/XP/2000, Linux, Solaris 9 and later

 Many-to-Many

 Many user threads  many kernel

threads

 + no limit on the number of user

threads

 - not true concurrency because kernel

has limited number of threads
 Examples: Solaris prior to version 9, Windows NT/2000 with the

ThreadFiber package

4.17 SGG Operating System Concepts

Two-level Model

 Similar to M:M, except that it allows a user thread to be

bound to kernel thread

 Examples
 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

4.18 SGG Operating System Concepts

Hybrid Implementation

 Use kernel-level threads, and then multiplex user-level

threads onto some or all of the kernel threads.

*

combine the best of both approaches

4.19 SGG Operating System Concepts

Light-Weight Process (LWP)

 Lightweight process (LWP): intermediate data structure

 For user-level threads, LWP is a Virtual processor

 Each LWP attaches to a kernel thread

 Multiple user-level threads  a single LWP

 Normally from the same process

 A process may be assigned multiple LWPs

 Typically, an LWP for each blocking system call

 OS schedules kernel threads (hence, LWPs) on the CPU

.

4.20 SGG Operating System Concepts

LWP: Advantages and Disadvantages

 + User level threads are

easy to

create/destroy/sync

 + A blocking call will not

suspend the process if

we have enough LWP

 + Application does not

need to know about

LWP

 +LWP can be executed

on different CPUs,

hiding multiprocessing

 Occasionally, we still

need to create/destroy

LWP (as expensive as

kernel threads)

 Makes up calls

(scheduler activation)

 + simplifies LWP

management

 - Violates the

layered structure

4.21 SGG Operating System Concepts

THREAD LIBRARIES

Provide programmers with API for creating and managing threads

4.22 SGG Operating System Concepts

Thread Libraries

 Two primary ways of implementing

 User-level library

 Entirely in user space

 Everything is done using function calls (no system calls)

 Kernel-level library supported by the OS

 Code and data structures for kernels are in kernel space

 Function calls result in system calls to kernel

 Three primary thread libraries:

 POSIX Threads Pthread (either a user-level or kernel-level)

 Win32 threads (kernel-level)

 Java threads (JVM manages threads by using host system threads)

 Threads are fundamental model of prog exec,

 Java provides rich set of features for thread creation and mng.

4.23 SGG Operating System Concepts

POSIX Threads: Pthread

 POSIX

 Portable Operating System Interface [for Unix]

 Standardized programming interface

 Pthread

 A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

 API specifies behavior of the thread library, implementation is up to

development of the library (Defined as a set of C types and procedure calls)

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

 Implementations

 User-level vs. kernel-level

https://computing.llnl.gov/tutorials/pthreads/

4.24 SGG Operating System Concepts

Pthread APIs: Four Groups

 Thread management
 Routines for creating, detaching, joining, etc.

 Routines for setting/querying thread attributes

 Mutexes: abbreviation for "mutual

exclusion"
 Routines for creating, destroying,

locking/unlocking

 Functions to set or modify attributes with

mutexes.

 Conditional variables
 Communications for threads that share a mutex

 Functions to create, destroy, wait and signal

based on specified variable values

 Functions to set/query condition variable

attributes

 Synchronization
 Routines that manage read/write locks and

barriers

.

C
h
a
p
t
e
r

6

Thread Call Description

pthread_create Create a new thread in the

caller’s address space

pthread_exit Terminate the calling

thread

pthread_join Wait for a thread to

terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition

variable

pthread_cond_wait Wait on a condition

variable

pthread_cond_signal Release one thread waiting

on a condition variable

4.25 SGG Operating System Concepts

Thread Creation

pthread_t threadID;

pthread_create (&threadID, *attr, methodName, *para);

 1st argument is the ID of the new thread

 2nd argument is a pointer to pthread_attr_t

 3rd argument is thread (function/method) name

 4th argument is a pointer to the arguments for the thread’s

method/function

.

4.26 SGG Operating System Concepts

Thread: Join and Exit

 Join with a non-detached thread by using

 pthread_join (pthread_t thread, void **status)

 (All threads are created non-detached by default, so they are “joinable” by default)

 Exit from threads:

 If threads use exit(), process terminates.

 A thread (main, or another thread) can exit by calling

pthread_exit(), this does not terminate the process.

 More information about Pthread programming

 https://computing.llnl.gov/tutorials/pthreads/

.

https://computing.llnl.gov/tutorials/pthreads/

4.27 SGG Operating System Concepts

An Example: testthread.c
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid){
 long tid;
 tid = (long)threadid;
 printf("Hello World! It's me, thread #%ld!\n", tid);
 pthread_exit(NULL);
}
int main(int argc, char *argv[]){
 pthread_t threads[NUM_THREADS];
 int rc;
 long t;
 for(t=0;t<NUM_THREADS;t++){
 printf("In main: creating thread %ld\n", t);
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
 if (rc){
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }
 // for(t=0;t<NUM_THREADS;t++)
 // pthread_join(threads[t], NULL); // wait for other threads
 pthread_exit(NULL); //to return value;
}

.

To compile, link with the pthread library.

> gcc testthread.c -o test –lpthread

> test
In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0!
In main: creating thread 2
Hello World! It's me, thread #1!
In main: creating thread 3
Hello World! It's me, thread #2!
In main: creating thread 4
Hello World! It's me, thread #3!
Hello World! It's me, thread #4!

4.28 SGG Operating System Concepts

JAVA THREADS

Threads are fundamental model of program execution in Java. So,

Java provides a rich set of features for thread creation and management

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

4.29 SGG Operating System Concepts

How to Create Threads in Java (1)

There are two ways in Java:

1. Create a class MyTh that directly

extends Thread class

 The code in MyTh.run() will be the

new thread

 Then in a driver program

 MyTh th = new MyTh(…);

 th.start();

 Not recommended (why?)

 A bad habit for industrial strength

development

 The methods of the worker class and the

Thread class get all tangled up

 Makes it hard to migrate to Thread Pools

and other more efficient approaches

public class MyTh

 extends Thread {

 public MyTh(…){

 …

 }

 public void run() {

//overwrite this …

 }

}

public class Thread {

…

public String getName();

public void interrupt();

public boolean isAlive();

public void join();

public void setDaemon(boolean on);

public void setName(String name);

public void setPriority(int level);

public static Thread currentThread();

public static void sleep(long ms);

public static void yield();

}

4.30 SGG Operating System Concepts

How to Create Threads in Java (2)

2. Define a class MyTh that implements Runnable interface

 The code in MyTh.run() will be the new thread

 Then in a driver program

 Thread th = new Tread(new MyTh(…));

 th.start();

public class MyTh

 implements Runnable {

 public MyTh(…){

 …

 }

 public void run() {

//overwrite this …

 }

}

4.31 SGG Operating System Concepts

Example 1: Extend Thread Class
public class SimpleThread extends Thread {

 String msg;

 int repetition;

 public SimpleTread(String msg, int r){

 this.msg = msg;

 this.repetition = r;

 }

 public void run() {

 //overwrite run method

 for (int i = 0; i < repetition; i++)

 System.out.println("[" + i + "]" + msg);

 }

}

.

public class SimpleThreadMain {

 public static void main(String[] args) {

 SimpleThread t1 = new SimpleThread("T1", 100);

 t1.start();

 SimpleThread t2 = new SimpleThread("T2", 100);

 t2.start();

 }

}

4.32 SGG Operating System Concepts

Example 2: Implement Runnable interface
public class SimpleRunnable implements Runnable {

 String msg;

 int repetition;

 public SimpleRunnable(String msg, int r) {

 this.msg = msg;

 this.repetition = r;

 }

 public void run() {

 //overwrite run method

 for (int i = 0; i < repetition; i++)

 System.out.println("[" + i + "]" + msg);

 }

}

.

[0]T1
[0]T2
[1]T1
[1]T2
[2]T1
[2]T2
[3]T1
[3]T2
[4]T1
…

public class SimpleRunnableMain {

 public static void main(String[] args) {

 SimpleRunnable r1 = new SimpleRunnable("T1", 100);

 Thread t1 = new Thread(r1);

 t1.start();

 SimpleRunnable r2 = new SimpleRunnable("T2", 100);

 Thread t2 = new Thread(r2);
 t2.start();

 }

}

4.33 SGG Operating System Concepts

Use join() to wait for a thread to finish

 …

 try {

 t1.join();

 t1.join();

 } catch (InterruptedException e) {}

 System.out.println("Both are done ");

.

The join method of Thread throws InterruptedException
and must be placed in a try-catch.

main
[0]T1
[0]T2
[1]T1
main
[1]T2
[2]T1
[2]T2
[3]T1
main
[3]T2
[4]T1
……
Both are done

[0]T1
[0]T2
[1]T1
[1]T2
[2]T1
[2]T2
[3]T1
[3]T2
[4]T1
……
main
main
main
……
Both are done

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

 for (int i = 0; i < 100; i++)

 System.out.println(“main”);

4.34 SGG Operating System Concepts

Java Thread Example - Output

public class ThreadExample implements Runnable {

 public void run() {

 for (int i = 0; i < 3; i++)

 System.out.println(i);

 }

 public static void main(String[] args) {

 new Thread(new ThreadExample()).start();

 new Thread(new ThreadExample()).start();

 System.out.println("Done");

 }

}

What are the possible outputs?

0,1,2,0,1,2,Done // thread 1, thread 2, main()

0,1,2,Done,0,1,2 // thread 1, main(), thread 2

Done,0,1,2,0,1,2 // main(), thread 1, thread 2

0,0,1,1,2,Done,2 // main() & threads interleaved

Why doesn’t the
program quit as
soon as “Done”
is printed?

JVM shuts down when all non-daemon threads terminate!

4.35 SGG Operating System Concepts

Life-Time of Java Threads

 A thread object exists when it is constructed, but it doesn't start

running until the start method is called.

 A thread completes (or dies) when its run method finishes or

when it throws an exception. The object representing this

thread can still be accessed.

 When are the thread objects

created?

 When do they run?

 When does the program finish?

4.36 SGG Operating System Concepts

Transitions between Threads

 Transitions between states caused by
 Invoking methods in class Thread

 start(), yield(), sleep(), wait(), join()

 The join, wait, and sleep methods of Thread throw

InterruptedException and must be placed in a try-catch.

 Other (external) events
 Scheduler, I/O, returning from run()…

 Scheduler (ch5)
 Determines which runnable threads to run

 Part of OS or Java Virtual Machine (JVM)

 Many computers can run multiple threads simultaneously (or

nearly so)

4.37 SGG Operating System Concepts

Another Example: Java Threads
Define a class that implements Runnable interface

4.38 SGG Operating System Concepts

Another Example: Producer-Consumer
Define a class that implements Runnable interface

4.39 SGG Operating System Concepts

THREADING ISSUES

Semantics of fork() and exec() system calls

Thread cancellation of target thread

Signal handling

Thread pools

Thread-specific data

Scheduler activations

4.40 SGG Operating System Concepts

Semantics of fork() and exec()

 What will happen if one thread in a process call fork() to

create a new process?

 Does fork() duplicate only the calling thread or all threads?

 How many threads in the new process?

 Duplicate only the invoking thread

 exec(): will load another program

 Everything will be replaced anyway

 Duplicate all threads

 If exec() is not the next step after forking

 What about threads performed blocking system call?!

4.41 SGG Operating System Concepts

Thread Cancellation

 Terminating a thread before it has finished

 Examples

 Threads search in parallel of database:

one finds  others stop

 Stop fetching web contents (images)

 Two general approaches:

 Asynchronous cancellation terminates the target thread

immediately

 - Thread resources and data consistency

 Deferred cancellation allows the target thread to periodically

check if it should be cancelled

 + Wait for self cleanup  cancellation safety points

4.42 SGG Operating System Concepts

Signal Handling

 Signals are used in UNIX systems to notify a process that a

particular event has occurred.

 Depending on the source, we can classify them as

 Synchronously [Running prog generates it] (e.g., div by 0, memory access)

 Asynchronously [External src generates it] (e.g., ready of I/O or Ctrl+C)

 Which threads to notify?

 All threads (Ctrl-C)

 Single thread to which the signal applies (illegal memory, div by 0)

 Subset of threads: thread set what it wants (mask)

 Thread handler: kernel default or user-defined

 Unix allows threads to specify which one to block or accept

 Windows has no support for signals but it can be emulated

1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

4.43 SGG Operating System Concepts

Thread Pool

 Recall web server example,

 We created a thread for every request

 This is better than creating a process, but still time consuming

 No limit is put on the number of threads

 Pool of threads

 Create some number of treads at the startup

 These threads will wait to work and put back into pool

 Advantages:

 Usually slightly faster to service a request with an existing thread

than create a new thread

 Allows the number of threads in the application(s) to be bound to the

size of the pool

 Adjust thread number in pool

 According to usage pattern and system load

4.44 SGG Operating System Concepts

Thread Pool Example: Web server

Kernel

Network

connection

Dispatcher

thread

Worker

thread

Web page

cache

while(TRUE) {

 getNextRequest(&buf);

 handoffWork(&buf);

}

while(TRUE) {

 waitForWork(&buf);

 lookForPageInCache(&buf,&page);

 if(pageNotInCache(&page)) {

 readPageFromDisk(&buf,&page);

 }

 returnPage(&page);

}

.

4.45 SGG Operating System Concepts

Java thread pool example

Possible problems

 Deadlock

 Resource thrashing

 Thread leakage

 Overload

.

class Task implements Runnable

{

 public void run() {

 System.out.println("I am working on a task.");

 }

}

import java.util.concurrent.*;

public class TPExample

{

 public static void main(String[] args) {

 int numTasks = Integer.parseInt(args[0].trim());

 // create the thread pool

 ExecutorService pool =

 Executors.newCachedThreadPool();

 // run each task using a thread in the pool

 for (int i = 0; i < 5; i++)

 pool.execute(new Task());

 // sleep for 5 seconds

 try { Thread.sleep(5000); }

 catch (InterruptedException ie) { }

 pool.shutdown();

 }

}

 Work queue

 Fixed number of threads

4.46 SGG Operating System Concepts

Thread Specific Data

 Allows each thread to have its own copy of data

 We may not want to share all data

 Thread libraries have support for this

 Useful when you do not have control over the thread

creation process (i.e., when using a thread pool)

4.47 SGG Operating System Concepts

Scheduler Activations

 Both M:M and Two-level models require communication

to maintain the appropriate number of kernel threads

allocated to the application

 Scheduler activations provide upcalls - a communication

mechanism from the kernel to the thread library

 Events to invoke upcall

 A thread make a blocking system calls

 A blocking system call complete returns

 To ask user-level thread scheduler (runtime systems) to select

the next runnable thread

 This communication allows an application to maintain the

correct number of kernel threads

4.48 SGG Operating System Concepts

OPERATING SYSTEM

EXAMPLES

SKIP

Windows XP Threads

Linux Thread

4.49 SGG Operating System Concepts

Windows XP Threads

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known

as the context of the threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

4.50 SGG Operating System Concepts

Windows XP Threads

4.51 SGG Operating System Concepts

Linux Threads

 Linux uses the term task (rather than process or thread)

when referring to a flow of control

 Linux provides clone() system call to create threads

 A set of flags, passed as arguments to the clone() system call

determine how much sharing is involved (e.g. open files,

memory space, etc.)

 Linux: 1-to-1 thread mapping

 NPTL (Native POSIX Thread Library)

51

*

4.52 SGG Operating System Concepts

Linux Threads

4.53 SGG Operating System Concepts

End of Chapter 4

