
5.1 SGG Operating System Concepts

Chapter 5 in Old Ed:

Chapter 6 in 9th Ed:

CPU Scheduling

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

Pick one ‘lucky’ process from ready queue

5.2 SGG Operating System Concepts

Chapter 5: CPU Scheduling

 Basic Concepts **

 Scheduling Criteria ****

 Scheduling Algorithms *****

 Multiple-Processor Scheduling ***

 Thread Scheduling ***

 Java Scheduling ***

 Algorithm Evaluation **

 Operating Systems Examples **

5.3 SGG Operating System Concepts

Objectives

 To introduce CPU scheduling, which is the basis for

multiprogrammed operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-

scheduling algorithm for a particular system

5.4 SGG Operating System Concepts

Recall “Schedulers” from Chapter 3

 Long-term scheduler (or job

scheduler) – selects which

processes should be brought

into the ready queue

 Less frequent

 Controls degree of multiprogramming

 Short-term scheduler (or CPU

scheduler) – selects which

process should be executed

next and allocates CPU

 More frequent (e.g., every 100 ms)

 Must be fast (if it takes 10ms, then we

have ~10% performance degradation)

…

5.5 SGG Operating System Concepts

Basic Concepts

 Multiprogramming increases

CPU utilization

 CPU ––– I/O Burst Cycle

 Process execution consists of a

cycle of CPU execution and I/O wait

 CPU burst distribution

5.6 SGG Operating System Concepts

Basic Concepts (cont’d)

 Bursts of CPU usage alternate with periods of I/O wait

 CPU-bound: high CPU utilization, interrupts are processed

slowly

 I/O-bound: more time is spending on requesting data than

processing it

Process 1:

CPU bound

Process

2:

I/O bound

CPU bursts I/O waits

Total CPU usage

Total CPU usage

Time

5.7 SGG Operating System Concepts

Basic Concepts (cont’d)

 Non-preemptive scheduling:

 Voluntarily give up CPU

 Once a process has the CPU: until it finishes or needs I/O

 Not suitable for time-sharing

 Only IO or process termination can cause scheduler action

 Preemptive scheduling

 Non-voluntarily give up CPU

 Process may be taken off CPU (e.g., quantum time expires)

 Time-sharing systems have to be preemptive!

7

5.8 SGG Operating System Concepts

CPU Scheduler

 Selects from among the processes in memory that are ready

to execute, and allocates the CPU to one of them (short-term)

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state (e.g., I/O request)

2. Switches from running to ready state (e.g, quantum time passed)

3. Switches from waiting to ready (e.g., I/O is complete)

4. Terminates

 No choice under 1 and 4

 scheduling is nonpreemptive

 Under 2 and 3, scheduling

 is preemptive

5.9 SGG Operating System Concepts

Dispatcher

 Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that

program

 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running (overhead)

5.10 SGG Operating System Concepts

 Context Switch

 When CPU switches to another

process, the system must save the

state of the old process and load

the saved state for the new process

via a context switch

 Context of a process represented

in the PCB

 Context-switch time is overhead;

the system does no useful work

while switching

 Hardware support

 Multiple set of registers then just change

pointers

 Other performance issues/problems

 Cache content: locality is lost

 TLB content: may need to flush

5.11 SGG Operating System Concepts

Representation of Process

 Model of Process

 Cycle of (interleaving) CPU and I/O operations

 CPU bursts

 The amount of time the process uses CPU before it is no longer

ready

 I/O bursts: time to use I/O devices

11

8 P1

8 P2

2 P3

(one CPU
burst)

6

4
(CPU + I/O
bursts)

4
(CPU, I/O, CPU)

5.12 SGG Operating System Concepts

Models/Assumptions for CPU Scheduling

 CPU model

 By default, assume only a single CPU core

 Exclusive use of CPU: only one process can use CPU

 I/O model

 Multiple I/O devices

 Processes can access/request different I/O devices

 I/O operation time of different processes can overlap

12

8 P2

6 2 P3

4

4
wait

5.13 SGG Operating System Concepts

An Example: No Multiprogramming

 Suppose 2 processes, where each process

 Require 20 seconds of CPU time

 Wait 10 second for I/O for every 10 seconds execution

 Without multiprogramming: runs one after another

 Each takes 40 seconds: 20s run+20s wait  total 80 sec

 CPU utilization is about 40/80*100 = 50%

13

10 10

P1

10 10

P2

5.14 SGG Operating System Concepts

An Example: with Multiprogramming

 Multiprogramming: both processes run together

 The first process finishes in 40 seconds

 The second process uses CPU (I/O) alternatively with first one

and finishes 10 second later  50 seconds

14

10 10
P1

10 10 P2

Total time: 50 seconds

 CPU utilization is about 40/50*100 = 80%

5.15 SGG Operating System Concepts

SCHEDULING GOALS

PERFORMANCE CRITERIA

5.16 SGG Operating System Concepts

Scheduling Goals

 Select the process that should be executed next

 All systems
 Fairness: give each process a fair share of the CPU

 Balance: keep all parts of the system busy; CPU vs. I/O

 Enforcement: ensure that the stated policy is carried out

 Batch systems
 Throughput: maximize jobs per unit time (hour)

 Turnaround time: minimize time users wait for jobs

 CPU utilization: CPU time is precious  keep the CPU as busy as possible

 Interactive systems (time sharing)
 Response/wait time: respond quickly to users’ requests

 Proportionality: meet users’ expectations

 Real-time systems: correct and in time processing
 Meet deadlines: deadline miss  system failure!

 Hard real-time vs. soft real-time: aviation control system vs. DVD player

 Predictability: timing behaviors is predictable

.

5.17 SGG Operating System Concepts

Scheduling Criteria

 CPU utilization

 What percent of the time the CPU is to run programs?

 util= (ttotal – tidle – tdispatch) / ttotal

 Throughput

 Number of processes that complete their execution per time unit

 Turnaround time

 Amount of time to execute a particular process

 Waiting time

 Amount of time a process has been waiting in the ready queue

 Response time

 Amount of time it takes from when a request was submitted until the

first response is produced, not output (for time-sharing environment)

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time
Min response time

Usually NOT possible to
optimize for all metrics
with the same
scheduling algorithm

5.18 SGG Operating System Concepts

Calculate total, wait, response times

 Given a process

 Arrival time: ta

 First response time: tr

 Finish time: tf

 Total CPU burst time: tcpu

 Total I/O time: tio

 Turnaround time: the process spent in the system

 Tturn_arround = tf – ta = tcpu + tio + twait

 Waiting time: the process spent in the ready queue

 twait = (Tturn_arround – tcpu – tio)

 Response time: the process waited until the first response

 tresponse = tr – ta

.

5.19 SGG Operating System Concepts

SCHEDULING ALGORITHMS

Deciding which of the processes in the ready queue is to be selected.

FIFO (First In First Out) : non-preemptive, based on arrival time

SJF (Shortest Job First) : preemptive & non-preemptive

PR (PRiority-based) : preemptive & non-preemptive

RR (Round-Robin) : preemptive

5.20 SGG Operating System Concepts

Scheduling Policy Vs. Mechanism

 Separate what may be done from how it is done

 Policy sets what priorities are assigned to processes

 Mechanism allows

 Priorities to be assigned to processes

 CPU to select processes with high priorities

 Scheduling algorithm parameterized

 Mechanism in the kernel

 Priorities assigned in the kernel or by users

 Parameters may be set by user processes

 Don’t allow a user process to take over the system!

 Allow a user process to voluntarily lower its own priority

 Allow a user process to assign priority to its threads

.

5.21 SGG Operating System Concepts

Classical Scheduling Algorithms

 FIFO or FCFS : non-preemptive, based on arrival time

 Long jobs delay everyone else

 SJF : preemptive & non-preemptive

 Optimal in term of waiting time

 PR : preemptive & non-preemptive

 Real-time systems: earliest deadline first (EDF)

 RR : preemptive

 Processes take turns with fixed time quantum e.g., 10ms

 Multi-level queue (priority classes)

 System processes > faculty processes > student processes

 Multi-level feedback queues: change queues

 short  long quantum

5.22 SGG Operating System Concepts

FIFO or

First-Come, First-Served (FCFS) Scheduling

Suppose the following processes arrive at time t=0 in the given order

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0+24+27)/3=17

P1 P2 P3

24 27 30 0

Problem: long jobs delay every job after them.
Many processes may wait for a single long job.

 CPU utilization :

What percent of the

time the CPU is used

 Throughput :

Number of processes

that complete their

execution per time

unit

 Turnaround time :

Amount of time to

execute a particular

process

 Waiting time:

Amount of time a

process has been

waiting in the ready

queue

 Response time :

Amount of time it

takes from when a

request was

submitted until the

first response is

produced, not output

(for time-sharing

environment)

5.23 SGG Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect: short process behind long process

P1 P3 P2

6 3 30 0

5.24 SGG Operating System Concepts

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU

burst.

 Use these lengths to schedule the process with the

shortest time

 SJF is optimal

 gives minimum average waiting time for a given set of processes

 The difficulty is how to know the length of the next CPU

request

 Long term schedulers might use it based on program size, but

 Short-term schedulers cannot use this; but, they may try to

predict it by averaging previous CPU burst times

5.25 SGG Operating System Concepts

Example of SJF

 Process Arrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3 P1

3 16 0 9

P2

24

5.26 SGG Operating System Concepts

Exercise: SJF

 Process Arrival Timeal TBurst Time

 P1 0 0.0 6

 P2 210 8

 P3 4.20 7

 P4 5.30 3

 Give Gantt chart under both preemptive and

nonpreemptive SJF scheduling:

 Compute Average waiting time?

5.27 SGG Operating System Concepts

Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU

bursts, using exponential averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

  .1
1 nnn

t  


5.28 SGG Operating System Concepts

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

 +(1 - )j  tn -j + …

 +(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each

successive term has less weight than its predecessor

5.29 SGG Operating System Concepts

Priority (PR) Scheduling

 A priority number (integer) is

 associated with each process

 The CPU is allocated to the process

 with the highest priority

 (smallest integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is a priority scheduling where priority is the predicted next

CPU burst time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the

process

Priority 1

Priority 2

Priority 3

Priority 4

High

Low

“Ready” processes

5.30 SGG Operating System Concepts

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is

q, then each process gets 1/n of the CPU time in chunks of at most

q time units at once. No process waits more than (n-1)q time units.

 Performance

 q large  FIFO

 q small  fluid model

 q must be large (but not much)

 with respect to context switch;

 otherwise, overhead is too high

A B C D E

Time

A
B
C
D
E

5.31 SGG Operating System Concepts

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

5.32 SGG Operating System Concepts

Time Quantum and Context Switch Time

What’s a good quantum?
Too short:
 many context switches hurt efficiency
Too long:
 poor response to interactive requests
Typical length: 10–50 ms

5.33 SGG Operating System Concepts

Turnaround Time Varies With

The Time Quantum

5.34 SGG Operating System Concepts

Exercise: Compute Avg waiting time

5.35 SGG Operating System Concepts

Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive), background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling;

 Serve all from foreground then from background

 Possibility of starvation.

 Time slice

 Each queue gets a certain amount of CPU time

which it can schedule among its processes;

– 80% to foreground in RR

– 20% to background in FCFS

5.36 SGG Operating System Concepts

Multilevel Feedback Queue

 A process can move between the various queues; aging

can be implemented this way

 CPU bound  move into low priority queue

 I/O bound  move into high priority queue

 Multilevel-feedback-queue scheduler defined by the

following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter when that

process needs service

 Most flexible and general, but hard to configure

5.37 SGG Operating System Concepts

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish

in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted

and moved to queue Q2.

 Processes requiring less than 8 ms will be served quickly…

5.38 SGG Operating System Concepts

MULTIPLE-PROCESSOR

SCHEDULING

Load sharing is possible

CPU scheduling will be more complex (no single best solution)

We consider Homogeneous processors (could be heterogeneous too)

5.39 SGG Operating System Concepts

Approaches to

Multiple-Processor Scheduling

 Asymmetric multiprocessing

 only one processor (master) accesses the system data structures,

 others (slaves) run user code

 easy, but single point of failure and could be the bottleneck

 Symmetric multiprocessing (SMP)

 each processor is self-scheduling,

 all processes in common ready queue, or

 each has its own private queue of ready processes

 Modern OSes support this

5.40 SGG Operating System Concepts

 Processor Affinity

 What would happen if a process migrates to
another processor?

 Clear cash

 NUMA architecture

 Slow access

 A process has affinity

for processor on which it is currently running

 This is known as Processor affinity

 soft affinity

 hard affinity

5.41 SGG Operating System Concepts

Load Balancing

 Keep the load evenly distributed

 Easy in Asymmetric multiprocessing (AMP) why?

 Hard in Symmetric multiprocessing (SMP) why?

 Two Approaches for SMP

 Push migration

 Busy CPU checks load on others, and pushes load to them

 Pull migration

 Idle CPU pulls load from others

 Often implemented together

 Affects processor affinity

 (have some threshold)

5.42 SGG Operating System Concepts

Multicore Processors

 Recent trend to place

multiple processor cores on

same physical chip

 Faster and consume less

power

 Multiple threads per core

also growing

 Takes advantage of memory

stall to make progress on

another thread while memory

retrieve happens

5.43 SGG Operating System Concepts

Virtualization and Scheduling

 Even a single-CPU system acts like a multiprocessor

system

 Host and guest systems could have different

scheduling

 But what happens if VM allocates 100ms while host

allocates 10ms???

5.44 SGG Operating System Concepts

THREAD SCHEDULING

5.45 SGG Operating System Concepts

Thread Scheduling

 Distinction between

 user-level threads managed by a thread library in user space

 kernel-level threads managed by OS scheduler

 User threads must me mapped to kernel threads

 Many-to-one and many-to-many models, thread library

schedules user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Kernel thread scheduled onto available CPU is system-

contention scope (SCS) – competition among all

threads in system

5.46 SGG Operating System Concepts

Pthread Scheduling

 API allows specifying either PCS or SCS during

thread creation

 PTHREAD_SCOPE_PROCESS

 schedules threads using PCS scheduling

 PTHREAD_SCOPE_SYSTEM

 schedules threads using SCS scheduling.

5.47 SGG Operating System Concepts

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argv[])

{

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr t attr;

 pthread_attr_init(&attr); /* get the default attributes */

 /* set the scheduling algorithm to PROCESS or SYSTEM */

 // if (pthread_attr_getscope(&attr, &scope) !=0) // error

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* set the scheduling policy - FIFO, RT, or OTHER */

 pthread_attr_setschedpolicy(&attr, SCHED_OTHER);

 for (i = 0; i < NUM THREADS; i++) /* create the threads */

 pthread_create(&tid[i],&attr, runner, NULL);

 for (i = 0; i < NUM THREADS; i++) /* now join on each thread */

 pthread_join(tid[i], NULL);

}

 /* Each thread will begin control in this function */

void *runner(void *param)

{ printf("I am a thread\n"); pthread exit(0); }

5.48 SGG Operating System Concepts

JAVA SCHEDULING

5.49 SGG Operating System Concepts

Java Thread Scheduling

 JVM uses PR Scheduling Algorithm

 Could be preemptive or not

 If there are multiple threads with the same priority, FIFO

Queue is used

 JVM does not specify whether threads are Time-Sliced or

not

 JVM schedules a thread to run when:

1. It exits its run()

2. It blocks for I/O

3. Its time quantum expires (if time-sliced)

4. A higher priority thread enters the Runnable State (if preemptive)

5.50 SGG Operating System Concepts

Time-Slicing

 Since the JVM doesn’t ensure Time-Slicing, the yield()

method may be used to give the CPU to some other

threads, called cooperative multitasking

 while (true) {

 // perform CPU-intensive task

 . . .

 Thread.yield();

 }

 This yields control to another thread of equal priority

5.51 SGG Operating System Concepts

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY 1 Minimum Thread Priority

Thread.NORM_PRIORITY 5 Default Thread Priority

Thread.MAX_PRIORITY 10 Maximum Thread Priority

Priorities may be set using setPriority() method:

 Thread.currentThread().setPriority(Thread.NORM_PRIORITY + 2);

5.52 SGG Operating System Concepts

Rule of Thumb:

 At any given time, the highest-priority thread is

running. However, this is not guaranteed.

 The thread scheduler may choose to run a lower-

priority thread to avoid starvation.

 For this reason, use thread priority only to affect

scheduling policy for efficiency purposes;

 So,

 Do not rely on it for algorithm correctness.

5.53 SGG Operating System Concepts

PERFORMANCE EVALUATION

Skip the rest

5.54 SGG Operating System Concepts

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined

workload and defines the performance of each algorithm

for that workload

 Queueing models

 Little’s Formula n =   W

 n: average queue length,

 W: average wait time

  : average arrival rate

 Simulation

 Random load

 Implementation

5.55 SGG Operating System Concepts

Evaluation of CPU schedulers by Simulation

5.56 SGG Operating System Concepts

OPERATING SYSTEM

EXAMPLES

Solaris scheduling

Windows XP scheduling

Linux scheduling

5.57 SGG Operating System Concepts

Solaris scheduling

Solaris Dispatch Table

5.58 SGG Operating System Concepts

Solaris 2 Scheduling

5.59 SGG Operating System Concepts

Windows XP Priorities

5.60 SGG Operating System Concepts

Linux Scheduling

 Constant order
O(1) scheduling
time

 Two priority ranges:
time-sharing and
real-time

 Real-time range
from 0 to 99 and
nice value from
100 to 140

List of Tasks Indexed According to Priorities

Priorities and Time-slice length

5.61 SGG Operating System Concepts

End of Chapter 5

