
5.1 SGG Operating System Concepts

Chapter 5 in Old Ed:

Chapter 6 in 9th Ed:

CPU Scheduling

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

Pick one ‘lucky’ process from ready queue

5.2 SGG Operating System Concepts

Chapter 5: CPU Scheduling

 Basic Concepts **

 Scheduling Criteria ****

 Scheduling Algorithms *****

 Multiple-Processor Scheduling ***

 Thread Scheduling ***

 Java Scheduling ***

 Algorithm Evaluation **

 Operating Systems Examples **

5.3 SGG Operating System Concepts

Objectives

 To introduce CPU scheduling, which is the basis for

multiprogrammed operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-

scheduling algorithm for a particular system

5.4 SGG Operating System Concepts

Recall “Schedulers” from Chapter 3

 Long-term scheduler (or job

scheduler) – selects which

processes should be brought

into the ready queue

 Less frequent

 Controls degree of multiprogramming

 Short-term scheduler (or CPU

scheduler) – selects which

process should be executed

next and allocates CPU

 More frequent (e.g., every 100 ms)

 Must be fast (if it takes 10ms, then we

have ~10% performance degradation)

…

5.5 SGG Operating System Concepts

Basic Concepts

 Multiprogramming increases

CPU utilization

 CPU ––– I/O Burst Cycle

 Process execution consists of a

cycle of CPU execution and I/O wait

 CPU burst distribution

5.6 SGG Operating System Concepts

Basic Concepts (cont’d)

 Bursts of CPU usage alternate with periods of I/O wait

 CPU-bound: high CPU utilization, interrupts are processed

slowly

 I/O-bound: more time is spending on requesting data than

processing it

Process 1:

CPU bound

Process

2:

I/O bound

CPU bursts I/O waits

Total CPU usage

Total CPU usage

Time

5.7 SGG Operating System Concepts

Basic Concepts (cont’d)

 Non-preemptive scheduling:

 Voluntarily give up CPU

 Once a process has the CPU: until it finishes or needs I/O

 Not suitable for time-sharing

 Only IO or process termination can cause scheduler action

 Preemptive scheduling

 Non-voluntarily give up CPU

 Process may be taken off CPU (e.g., quantum time expires)

 Time-sharing systems have to be preemptive!

7

5.8 SGG Operating System Concepts

CPU Scheduler

 Selects from among the processes in memory that are ready

to execute, and allocates the CPU to one of them (short-term)

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state (e.g., I/O request)

2. Switches from running to ready state (e.g, quantum time passed)

3. Switches from waiting to ready (e.g., I/O is complete)

4. Terminates

 No choice under 1 and 4

 scheduling is nonpreemptive

 Under 2 and 3, scheduling

 is preemptive

5.9 SGG Operating System Concepts

Dispatcher

 Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that

program

 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running (overhead)

5.10 SGG Operating System Concepts

 Context Switch

 When CPU switches to another

process, the system must save the

state of the old process and load

the saved state for the new process

via a context switch

 Context of a process represented

in the PCB

 Context-switch time is overhead;

the system does no useful work

while switching

 Hardware support

 Multiple set of registers then just change

pointers

 Other performance issues/problems

 Cache content: locality is lost

 TLB content: may need to flush

5.11 SGG Operating System Concepts

Representation of Process

 Model of Process

 Cycle of (interleaving) CPU and I/O operations

 CPU bursts

 The amount of time the process uses CPU before it is no longer

ready

 I/O bursts: time to use I/O devices

11

8 P1

8 P2

2 P3

(one CPU
burst)

6

4
(CPU + I/O
bursts)

4
(CPU, I/O, CPU)

5.12 SGG Operating System Concepts

Models/Assumptions for CPU Scheduling

 CPU model

 By default, assume only a single CPU core

 Exclusive use of CPU: only one process can use CPU

 I/O model

 Multiple I/O devices

 Processes can access/request different I/O devices

 I/O operation time of different processes can overlap

12

8 P2

6 2 P3

4

4
wait

5.13 SGG Operating System Concepts

An Example: No Multiprogramming

 Suppose 2 processes, where each process

 Require 20 seconds of CPU time

 Wait 10 second for I/O for every 10 seconds execution

 Without multiprogramming: runs one after another

 Each takes 40 seconds: 20s run+20s wait total 80 sec

 CPU utilization is about 40/80*100 = 50%

13

10 10

P1

10 10

P2

5.14 SGG Operating System Concepts

An Example: with Multiprogramming

 Multiprogramming: both processes run together

 The first process finishes in 40 seconds

 The second process uses CPU (I/O) alternatively with first one

and finishes 10 second later 50 seconds

14

10 10
P1

10 10 P2

Total time: 50 seconds

 CPU utilization is about 40/50*100 = 80%

5.15 SGG Operating System Concepts

SCHEDULING GOALS

PERFORMANCE CRITERIA

5.16 SGG Operating System Concepts

Scheduling Goals

 Select the process that should be executed next

 All systems
 Fairness: give each process a fair share of the CPU

 Balance: keep all parts of the system busy; CPU vs. I/O

 Enforcement: ensure that the stated policy is carried out

 Batch systems
 Throughput: maximize jobs per unit time (hour)

 Turnaround time: minimize time users wait for jobs

 CPU utilization: CPU time is precious keep the CPU as busy as possible

 Interactive systems (time sharing)
 Response/wait time: respond quickly to users’ requests

 Proportionality: meet users’ expectations

 Real-time systems: correct and in time processing
 Meet deadlines: deadline miss system failure!

 Hard real-time vs. soft real-time: aviation control system vs. DVD player

 Predictability: timing behaviors is predictable

.

5.17 SGG Operating System Concepts

Scheduling Criteria

 CPU utilization

 What percent of the time the CPU is to run programs?

 util= (ttotal – tidle – tdispatch) / ttotal

 Throughput

 Number of processes that complete their execution per time unit

 Turnaround time

 Amount of time to execute a particular process

 Waiting time

 Amount of time a process has been waiting in the ready queue

 Response time

 Amount of time it takes from when a request was submitted until the

first response is produced, not output (for time-sharing environment)

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time
Min response time

Usually NOT possible to
optimize for all metrics
with the same
scheduling algorithm

5.18 SGG Operating System Concepts

Calculate total, wait, response times

 Given a process

 Arrival time: ta

 First response time: tr

 Finish time: tf

 Total CPU burst time: tcpu

 Total I/O time: tio

 Turnaround time: the process spent in the system

 Tturn_arround = tf – ta = tcpu + tio + twait

 Waiting time: the process spent in the ready queue

 twait = (Tturn_arround – tcpu – tio)

 Response time: the process waited until the first response

 tresponse = tr – ta

.

5.19 SGG Operating System Concepts

SCHEDULING ALGORITHMS

Deciding which of the processes in the ready queue is to be selected.

FIFO (First In First Out) : non-preemptive, based on arrival time

SJF (Shortest Job First) : preemptive & non-preemptive

PR (PRiority-based) : preemptive & non-preemptive

RR (Round-Robin) : preemptive

5.20 SGG Operating System Concepts

Scheduling Policy Vs. Mechanism

 Separate what may be done from how it is done

 Policy sets what priorities are assigned to processes

 Mechanism allows

 Priorities to be assigned to processes

 CPU to select processes with high priorities

 Scheduling algorithm parameterized

 Mechanism in the kernel

 Priorities assigned in the kernel or by users

 Parameters may be set by user processes

 Don’t allow a user process to take over the system!

 Allow a user process to voluntarily lower its own priority

 Allow a user process to assign priority to its threads

.

5.21 SGG Operating System Concepts

Classical Scheduling Algorithms

 FIFO or FCFS : non-preemptive, based on arrival time

 Long jobs delay everyone else

 SJF : preemptive & non-preemptive

 Optimal in term of waiting time

 PR : preemptive & non-preemptive

 Real-time systems: earliest deadline first (EDF)

 RR : preemptive

 Processes take turns with fixed time quantum e.g., 10ms

 Multi-level queue (priority classes)

 System processes > faculty processes > student processes

 Multi-level feedback queues: change queues

 short long quantum

5.22 SGG Operating System Concepts

FIFO or

First-Come, First-Served (FCFS) Scheduling

Suppose the following processes arrive at time t=0 in the given order

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0+24+27)/3=17

P1 P2 P3

24 27 30 0

Problem: long jobs delay every job after them.
Many processes may wait for a single long job.

 CPU utilization :

What percent of the

time the CPU is used

 Throughput :

Number of processes

that complete their

execution per time

unit

 Turnaround time :

Amount of time to

execute a particular

process

 Waiting time:

Amount of time a

process has been

waiting in the ready

queue

 Response time :

Amount of time it

takes from when a

request was

submitted until the

first response is

produced, not output

(for time-sharing

environment)

5.23 SGG Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect: short process behind long process

P1 P3 P2

6 3 30 0

5.24 SGG Operating System Concepts

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU

burst.

 Use these lengths to schedule the process with the

shortest time

 SJF is optimal

 gives minimum average waiting time for a given set of processes

 The difficulty is how to know the length of the next CPU

request

 Long term schedulers might use it based on program size, but

 Short-term schedulers cannot use this; but, they may try to

predict it by averaging previous CPU burst times

5.25 SGG Operating System Concepts

Example of SJF

 Process Arrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3 P1

3 16 0 9

P2

24

5.26 SGG Operating System Concepts

Exercise: SJF

 Process Arrival Timeal TBurst Time

 P1 0 0.0 6

 P2 210 8

 P3 4.20 7

 P4 5.30 3

 Give Gantt chart under both preemptive and

nonpreemptive SJF scheduling:

 Compute Average waiting time?

5.27 SGG Operating System Concepts

Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU

bursts, using exponential averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1
1 nnn

t

5.28 SGG Operating System Concepts

Examples of Exponential Averaging

 =0

 n+1 = n

 Recent history does not count

 =1

 n+1 = tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

 +(1 -)j tn -j + …

 +(1 -)n +1 0

 Since both and (1 -) are less than or equal to 1, each

successive term has less weight than its predecessor

5.29 SGG Operating System Concepts

Priority (PR) Scheduling

 A priority number (integer) is

 associated with each process

 The CPU is allocated to the process

 with the highest priority

 (smallest integer highest priority)

 Preemptive

 Nonpreemptive

 SJF is a priority scheduling where priority is the predicted next

CPU burst time

 Problem Starvation – low priority processes may never execute

 Solution Aging – as time progresses increase the priority of the

process

Priority 1

Priority 2

Priority 3

Priority 4

High

Low

“Ready” processes

5.30 SGG Operating System Concepts

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is

q, then each process gets 1/n of the CPU time in chunks of at most

q time units at once. No process waits more than (n-1)q time units.

 Performance

 q large FIFO

 q small fluid model

 q must be large (but not much)

 with respect to context switch;

 otherwise, overhead is too high

A B C D E

Time

A
B
C
D
E

5.31 SGG Operating System Concepts

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

5.32 SGG Operating System Concepts

Time Quantum and Context Switch Time

What’s a good quantum?
Too short:
 many context switches hurt efficiency
Too long:
 poor response to interactive requests
Typical length: 10–50 ms

5.33 SGG Operating System Concepts

Turnaround Time Varies With

The Time Quantum

5.34 SGG Operating System Concepts

Exercise: Compute Avg waiting time

5.35 SGG Operating System Concepts

Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive), background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling;

 Serve all from foreground then from background

 Possibility of starvation.

 Time slice

 Each queue gets a certain amount of CPU time

which it can schedule among its processes;

– 80% to foreground in RR

– 20% to background in FCFS

5.36 SGG Operating System Concepts

Multilevel Feedback Queue

 A process can move between the various queues; aging

can be implemented this way

 CPU bound move into low priority queue

 I/O bound move into high priority queue

 Multilevel-feedback-queue scheduler defined by the

following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter when that

process needs service

 Most flexible and general, but hard to configure

5.37 SGG Operating System Concepts

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish

in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted

and moved to queue Q2.

 Processes requiring less than 8 ms will be served quickly…

5.38 SGG Operating System Concepts

MULTIPLE-PROCESSOR

SCHEDULING

Load sharing is possible

CPU scheduling will be more complex (no single best solution)

We consider Homogeneous processors (could be heterogeneous too)

5.39 SGG Operating System Concepts

Approaches to

Multiple-Processor Scheduling

 Asymmetric multiprocessing

 only one processor (master) accesses the system data structures,

 others (slaves) run user code

 easy, but single point of failure and could be the bottleneck

 Symmetric multiprocessing (SMP)

 each processor is self-scheduling,

 all processes in common ready queue, or

 each has its own private queue of ready processes

 Modern OSes support this

5.40 SGG Operating System Concepts

 Processor Affinity

 What would happen if a process migrates to
another processor?

 Clear cash

 NUMA architecture

 Slow access

 A process has affinity

for processor on which it is currently running

 This is known as Processor affinity

 soft affinity

 hard affinity

5.41 SGG Operating System Concepts

Load Balancing

 Keep the load evenly distributed

 Easy in Asymmetric multiprocessing (AMP) why?

 Hard in Symmetric multiprocessing (SMP) why?

 Two Approaches for SMP

 Push migration

 Busy CPU checks load on others, and pushes load to them

 Pull migration

 Idle CPU pulls load from others

 Often implemented together

 Affects processor affinity

 (have some threshold)

5.42 SGG Operating System Concepts

Multicore Processors

 Recent trend to place

multiple processor cores on

same physical chip

 Faster and consume less

power

 Multiple threads per core

also growing

 Takes advantage of memory

stall to make progress on

another thread while memory

retrieve happens

5.43 SGG Operating System Concepts

Virtualization and Scheduling

 Even a single-CPU system acts like a multiprocessor

system

 Host and guest systems could have different

scheduling

 But what happens if VM allocates 100ms while host

allocates 10ms???

5.44 SGG Operating System Concepts

THREAD SCHEDULING

5.45 SGG Operating System Concepts

Thread Scheduling

 Distinction between

 user-level threads managed by a thread library in user space

 kernel-level threads managed by OS scheduler

 User threads must me mapped to kernel threads

 Many-to-one and many-to-many models, thread library

schedules user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Kernel thread scheduled onto available CPU is system-

contention scope (SCS) – competition among all

threads in system

5.46 SGG Operating System Concepts

Pthread Scheduling

 API allows specifying either PCS or SCS during

thread creation

 PTHREAD_SCOPE_PROCESS

 schedules threads using PCS scheduling

 PTHREAD_SCOPE_SYSTEM

 schedules threads using SCS scheduling.

5.47 SGG Operating System Concepts

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argv[])

{

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr t attr;

 pthread_attr_init(&attr); /* get the default attributes */

 /* set the scheduling algorithm to PROCESS or SYSTEM */

 // if (pthread_attr_getscope(&attr, &scope) !=0) // error

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* set the scheduling policy - FIFO, RT, or OTHER */

 pthread_attr_setschedpolicy(&attr, SCHED_OTHER);

 for (i = 0; i < NUM THREADS; i++) /* create the threads */

 pthread_create(&tid[i],&attr, runner, NULL);

 for (i = 0; i < NUM THREADS; i++) /* now join on each thread */

 pthread_join(tid[i], NULL);

}

 /* Each thread will begin control in this function */

void *runner(void *param)

{ printf("I am a thread\n"); pthread exit(0); }

5.48 SGG Operating System Concepts

JAVA SCHEDULING

5.49 SGG Operating System Concepts

Java Thread Scheduling

 JVM uses PR Scheduling Algorithm

 Could be preemptive or not

 If there are multiple threads with the same priority, FIFO

Queue is used

 JVM does not specify whether threads are Time-Sliced or

not

 JVM schedules a thread to run when:

1. It exits its run()

2. It blocks for I/O

3. Its time quantum expires (if time-sliced)

4. A higher priority thread enters the Runnable State (if preemptive)

5.50 SGG Operating System Concepts

Time-Slicing

 Since the JVM doesn’t ensure Time-Slicing, the yield()

method may be used to give the CPU to some other

threads, called cooperative multitasking

 while (true) {

 // perform CPU-intensive task

 . . .

 Thread.yield();

 }

 This yields control to another thread of equal priority

5.51 SGG Operating System Concepts

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY 1 Minimum Thread Priority

Thread.NORM_PRIORITY 5 Default Thread Priority

Thread.MAX_PRIORITY 10 Maximum Thread Priority

Priorities may be set using setPriority() method:

 Thread.currentThread().setPriority(Thread.NORM_PRIORITY + 2);

5.52 SGG Operating System Concepts

Rule of Thumb:

 At any given time, the highest-priority thread is

running. However, this is not guaranteed.

 The thread scheduler may choose to run a lower-

priority thread to avoid starvation.

 For this reason, use thread priority only to affect

scheduling policy for efficiency purposes;

 So,

 Do not rely on it for algorithm correctness.

5.53 SGG Operating System Concepts

PERFORMANCE EVALUATION

Skip the rest

5.54 SGG Operating System Concepts

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined

workload and defines the performance of each algorithm

for that workload

 Queueing models

 Little’s Formula n = W

 n: average queue length,

 W: average wait time

 : average arrival rate

 Simulation

 Random load

 Implementation

5.55 SGG Operating System Concepts

Evaluation of CPU schedulers by Simulation

5.56 SGG Operating System Concepts

OPERATING SYSTEM

EXAMPLES

Solaris scheduling

Windows XP scheduling

Linux scheduling

5.57 SGG Operating System Concepts

Solaris scheduling

Solaris Dispatch Table

5.58 SGG Operating System Concepts

Solaris 2 Scheduling

5.59 SGG Operating System Concepts

Windows XP Priorities

5.60 SGG Operating System Concepts

Linux Scheduling

 Constant order
O(1) scheduling
time

 Two priority ranges:
time-sharing and
real-time

 Real-time range
from 0 to 99 and
nice value from
100 to 140

List of Tasks Indexed According to Priorities

Priorities and Time-slice length

5.61 SGG Operating System Concepts

End of Chapter 5

