
5.1 SGG Operating System Concepts 

Chapter 5 in Old Ed:   

Chapter 6 in 9th Ed:   

CPU Scheduling 

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

Pick one ‘lucky’ process from ready queue 
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Chapter 5:  CPU Scheduling 

 Basic Concepts    ** 

 Scheduling Criteria    **** 

 Scheduling Algorithms   ***** 
 

 Multiple-Processor Scheduling  *** 
 

 Thread Scheduling   *** 

 Java Scheduling    *** 

 Algorithm Evaluation   ** 
 

 Operating Systems Examples  ** 



5.3 SGG Operating System Concepts  

Objectives 

 To introduce CPU scheduling, which is the basis for 

multiprogrammed operating systems 
 

 To describe various CPU-scheduling algorithms 
 

 To discuss evaluation criteria for selecting a CPU-

scheduling algorithm for a particular system 
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Recall “Schedulers” from Chapter 3 

 Long-term scheduler (or job 

scheduler) – selects which 

processes should be brought 

into the ready queue 

 Less frequent  

 Controls degree of multiprogramming 

 

 Short-term scheduler (or CPU 

scheduler) – selects which 

process should be executed 

next and allocates CPU 

 More frequent (e.g., every 100 ms) 

 Must be fast (if it takes 10ms, then we 

have ~10% performance degradation) 

…
 



5.5 SGG Operating System Concepts  

Basic Concepts 

 Multiprogramming  increases 

CPU utilization 

 CPU ––– I/O Burst Cycle  

 Process execution consists of a 

cycle of CPU execution and I/O wait 

 CPU burst distribution 
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Basic Concepts (cont’d) 

 Bursts of CPU usage alternate with periods of I/O wait 

 CPU-bound: high CPU utilization, interrupts are processed 

slowly 

 I/O-bound: more time is spending on requesting data than 

processing it 

Process 1: 

CPU bound 

Process 

2: 

I/O bound 

CPU bursts I/O waits 

Total CPU usage 

Total CPU usage 

Time 
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Basic Concepts (cont’d) 

 Non-preemptive scheduling:  

 Voluntarily give up CPU 

 Once a process has the CPU: until it finishes or needs I/O 

 Not suitable for time-sharing 

 Only IO or process termination  can cause scheduler action  

 

 Preemptive scheduling 

 Non-voluntarily  give up CPU 

 Process may be taken off CPU (e.g., quantum time expires)  

 Time-sharing systems have to be preemptive! 

7 
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CPU Scheduler 

 Selects from among the processes in memory that are ready 

to execute, and allocates the CPU to one of them (short-term) 
 

 CPU scheduling decisions may take place when a process: 

1. Switches from running to waiting state (e.g., I/O request) 

2. Switches from running to ready state (e.g, quantum time passed) 

3. Switches from waiting to ready (e.g., I/O is complete) 

4. Terminates 
 

 No choice under 1 and 4  

 scheduling is nonpreemptive 
 

 Under 2 and 3,  scheduling  

 is preemptive 
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Dispatcher 

 Dispatcher module gives control of the CPU to the process 

selected by the short-term scheduler; this involves: 

 switching context 

 switching to user mode 

 jumping to the proper location in the user program to restart that 

program 

 Dispatch latency – time it takes for the dispatcher to stop 

one process and start another running (overhead) 
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   Context Switch 

 When CPU switches to another 

process, the system must save the 

state of the old process and load 

the saved state for the new process 

via a context switch 

 Context of a process represented 

in the PCB 

 Context-switch time is overhead; 

the system does no useful work 

while switching 

 Hardware support 

 Multiple set of registers then just change 

pointers 

 Other performance issues/problems 

 Cache content: locality is lost 

 TLB content: may need to flush 
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Representation of Process 

 Model of Process 

 Cycle of (interleaving) CPU and I/O operations 

 CPU bursts 

  The amount of time the process uses CPU before it is no longer 

ready  

 I/O bursts: time to use I/O devices 

11 

8 P1 

8 P2 

2 P3 

(one CPU 
burst) 

6 

4 
(CPU + I/O 
bursts) 

4 
(CPU, I/O, CPU) 
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Models/Assumptions for CPU Scheduling 

 CPU model 

 By default, assume only a single CPU core 

 Exclusive use of CPU: only one process can use CPU 

 

 I/O model 

 Multiple I/O devices 

 Processes can access/request different I/O devices 

 I/O operation time of different processes can overlap 

12 
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An Example: No Multiprogramming 

 Suppose 2 processes, where each process 

 Require 20 seconds of CPU time 

 Wait 10 second for I/O for every 10 seconds execution 

 

 Without multiprogramming: runs one after another 

 Each takes 40 seconds: 20s run+20s wait  total 80 sec 

 CPU utilization is about 40/80*100 = 50% 

13 
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P1 

10 10 

P2 
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An Example: with Multiprogramming 

 Multiprogramming: both processes run together 

 The first process finishes in 40 seconds 

 The second process uses CPU (I/O) alternatively with first one 

and finishes 10 second later  50 seconds 

14 

10 10 
P1 

10 10 P2 

Total time: 50 seconds 

 CPU utilization is about 40/50*100 = 80% 
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SCHEDULING GOALS 

PERFORMANCE CRITERIA 
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Scheduling Goals 

 Select the process that should be executed next  

 All systems 
 Fairness: give each process a fair share of the CPU 

 Balance: keep all parts of the system busy; CPU vs. I/O 

 Enforcement: ensure that the stated policy is carried out 

 Batch systems 
 Throughput: maximize jobs per unit time (hour) 

 Turnaround time: minimize time users wait for jobs 

 CPU utilization: CPU time is precious  keep the CPU as busy as possible 

 Interactive systems (time sharing) 
 Response/wait time: respond quickly to users’ requests 

 Proportionality: meet users’ expectations 

 Real-time systems: correct and in time processing 
 Meet deadlines: deadline miss  system failure! 

 Hard real-time vs. soft real-time: aviation control system vs. DVD player 

 Predictability: timing behaviors is predictable 

 

. 
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Scheduling Criteria 

 CPU utilization  

 What percent of the time the CPU is to run programs?   

 util= (ttotal – tidle – tdispatch) / ttotal 

 Throughput  

 Number of processes that complete their execution per time unit 

 Turnaround time  

 Amount of time to execute a particular process 

 Waiting time 

 Amount of time a process has been waiting in the ready queue 

 Response time  

 Amount of time it takes from when a request was submitted until the 

first response is produced, not output  (for time-sharing environment) 

Max CPU utilization 
Max throughput 
Min turnaround time 
Min waiting time  
Min response time 

Usually NOT possible to 
optimize for all metrics 
with the same 
scheduling algorithm 
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Calculate total, wait, response times 

 Given a process  

 Arrival time:   ta 

 First response time:  tr 

 Finish time:   tf 

 Total CPU burst time:  tcpu 

 Total I/O time:   tio 

 Turnaround time: the process spent in the system 

 Tturn_arround = tf – ta   =  tcpu + tio + twait 

 Waiting time: the process spent in the ready queue 

 twait = (Tturn_arround – tcpu – tio) 

 Response time: the process waited until the first response 

 tresponse = tr – ta 

 

. 
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SCHEDULING ALGORITHMS 

  

Deciding which of the processes in the ready queue is to be selected.  

 

 

FIFO  (First In First Out) : non-preemptive, based on arrival time 

SJF  (Shortest Job First) : preemptive & non-preemptive 

PR  (PRiority-based)  : preemptive & non-preemptive 

RR  (Round-Robin)  : preemptive 
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Scheduling Policy Vs. Mechanism 

 Separate what may be done from how it is done 

 Policy sets what priorities are assigned to processes 

 Mechanism allows 

 Priorities to be assigned to processes 

 CPU to select processes with high priorities 

 Scheduling algorithm parameterized 

 Mechanism in the kernel 

 Priorities assigned in the kernel or by users 

 Parameters may be set by user processes 

 Don’t allow a user process to take over the system! 

 Allow a user process to voluntarily lower its own priority 

 Allow a user process to assign priority to its threads 

. 
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Classical Scheduling Algorithms 

 FIFO or FCFS : non-preemptive, based on arrival time 

 Long jobs delay everyone else  

 SJF   : preemptive & non-preemptive 

 Optimal in term of waiting time 

 PR    : preemptive & non-preemptive 

 Real-time systems: earliest deadline first (EDF) 

 RR    : preemptive 

 Processes take turns with fixed time quantum  e.g., 10ms 

 Multi-level queue (priority classes) 

 System processes > faculty processes > student processes 

 Multi-level feedback queues: change queues 

 short  long quantum 
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FIFO or 

First-Come, First-Served (FCFS) Scheduling 

Suppose the following processes arrive at time t=0 in the given order  

 Process Burst Time  

  P1 24 

  P2  3 

  P3  3  

 The Gantt Chart for the schedule is: 
 

 
 

 
 

 

 Waiting time for P1 = 0; P2 = 24; P3 = 27 
 

 Average waiting time:  (0+24+27)/3=17 

P1 P2 P3 

24 27 30 0 

Problem: long jobs delay every job after them. 
Many processes may wait for a single long job. 

 CPU utilization : 

What percent of the 

time the CPU is used  

 Throughput : 

Number of processes 

that complete their 

execution per time 

unit 

 Turnaround time : 

Amount of time to 

execute a particular 

process 

 Waiting time: 

Amount of time a 

process has been 

waiting in the ready 

queue 

 Response time : 

Amount of time it 

takes from when a 

request was 

submitted until the 

first response is 

produced, not output  

(for time-sharing 

environment) 



5.23 SGG Operating System Concepts  

FCFS Scheduling (Cont.) 

Suppose that the processes arrive in the order: 

   P2 , P3 , P1  

 The Gantt chart for the schedule is: 

 

 

 
 

 Waiting time for P1 = 6; P2 = 0; P3 = 3 
 

 Average waiting time:   (6 + 0 + 3)/3 = 3 
 

 Much better than previous case 
 

 Convoy effect: short process behind long process 

P1 P3 P2 

6 3 30 0 
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Shortest-Job-First (SJF) Scheduling 

 Associate with each process the length of its next CPU 

burst.   

 Use these lengths to schedule the process with the 

shortest time 
 

 SJF is optimal  

 gives minimum average waiting time for a given set of processes 

 The difficulty is how to know the length of the next CPU 

request 

 Long term schedulers might use it based on program size, but 

 Short-term schedulers cannot use this; but, they may try to 

predict it by averaging previous CPU burst times 
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Example of SJF 

  Process Arrival Time Burst Time 

   P1 0.0 6 

   P2  2.0 8 

   P3 4.0 7 

   P4 5.0 3 

 SJF scheduling chart 

 

 

 

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7 

P4 P3 P1 

3 16 0 9 

P2 

24 
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Exercise: SJF 

  Process      Arrival Timeal TBurst Time 

   P1 0 0.0 6 

   P2  210 8 

   P3 4.20 7 

   P4 5.30 3 

 Give Gantt chart under both preemptive and 

nonpreemptive SJF scheduling: 

 

 

 

 Compute Average waiting time? 
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Determining Length of Next CPU Burst 

 Can only estimate the length 
 

 Can be done by using the length of previous CPU 

bursts, using exponential averaging 
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Examples of Exponential Averaging 

  =0 

 n+1 = n 

 Recent history does not count 
 

  =1 

  n+1 =  tn 

 Only the actual last CPU burst counts 
 

 If we expand the formula, we get: 

n+1 =  tn+(1 - ) tn -1 + … 

            +(1 -  )j  tn -j + … 

            +(1 -  )n +1 0 

 

 Since both  and (1 - ) are less than or equal to 1, each 

successive term has less weight than its predecessor 
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Priority (PR) Scheduling 

 A priority number (integer) is  

 associated with each process 

 The CPU is allocated to the process  

 with the highest priority  

 (smallest integer  highest priority) 

 Preemptive 

 Nonpreemptive 

 SJF is a priority scheduling where priority is the predicted next 

CPU burst time 

 Problem  Starvation – low priority processes may never execute 

 Solution  Aging – as time progresses increase the priority of the 

process 

 

Priority 1 

Priority 2 

Priority 3 

Priority 4 

High 

Low 

“Ready” processes 
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Round Robin (RR) 

 Each process gets a small unit of CPU time (time quantum), 

usually 10-100 milliseconds.  After this time has elapsed, the 

process is preempted and added to the end of the ready queue. 

 If there are n processes in the ready queue and the time quantum is 

q, then each process gets 1/n of the CPU time in chunks of at most 

q time units at once.  No process waits more than (n-1)q time units. 
 

 Performance 

 q large  FIFO 

 q small  fluid model 

 q must be large (but not much)  

 with respect to context switch; 

 otherwise, overhead is too high 

A B C D E 

Time 

A 
B 
C 
D 
E 
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Example of RR with Time Quantum = 4 

  Process Burst Time 

  P1 24 

   P2   3 

   P3 3 

   

 The Gantt chart is:  
 
 
 
 
 

 Typically, higher average turnaround than SJF, but better 
response 

P1 P2 P3 P1 P1 P1 P1 P1 

0 4 7 10 14 18 22 26 30 



5.32 SGG Operating System Concepts  

Time Quantum and Context Switch Time 

What’s a good quantum? 
Too short:  
 many context switches hurt efficiency 
Too long:  
 poor response to interactive requests 
Typical length: 10–50 ms 
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Turnaround Time Varies With 

The Time Quantum 
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Exercise: Compute Avg waiting time 
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Multilevel Queue 

 Ready queue is partitioned into separate queues: 
foreground (interactive), background (batch) 
 

 Each queue has its own scheduling algorithm 

 foreground – RR 

 background – FCFS 

 Scheduling must be done between the queues 

 Fixed priority scheduling;  

 Serve all from foreground then from background 

 Possibility of starvation. 

 Time slice   

 Each queue gets a certain amount of CPU time 

which it can schedule among its processes;  

– 80% to foreground in RR 

– 20% to background in FCFS  
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Multilevel Feedback Queue 

 A process can move between the various queues; aging 

can be implemented this way 

 CPU bound  move into low priority queue 

 I/O bound  move into high priority queue 
 

 Multilevel-feedback-queue scheduler defined by the 

following parameters: 

 number of queues 

 scheduling algorithms for each queue 

 method used to determine when to upgrade a process 

 method used to determine when to demote a process 

 method used to determine which queue a process will enter when that 

process needs service 

 Most flexible and general, but hard to configure 
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Example of Multilevel Feedback Queue 

 Three queues:  

 Q0 – RR with time quantum 8 milliseconds 

 Q1 – RR time quantum 16 milliseconds 

 Q2 – FCFS 
 

 Scheduling 

 A new job enters queue Q0 which is served FCFS. When it 

gains CPU, job receives 8 milliseconds.  If it does not finish 

in 8 milliseconds, job is moved to queue Q1. 

 At Q1 job is again served FCFS and receives 16 additional 

milliseconds.  If it still does not complete, it is preempted 

and moved to queue Q2. 

 Processes requiring less than 8 ms will be served quickly… 
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MULTIPLE-PROCESSOR 

SCHEDULING 

Load sharing is possible  

CPU scheduling will be more complex (no single best solution) 

We consider Homogeneous processors (could be heterogeneous too) 
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Approaches to  

Multiple-Processor Scheduling 

 Asymmetric multiprocessing  

 only one processor (master) accesses the system data structures,  

 others (slaves) run user code  

 easy, but single point of failure and could be the bottleneck  

 Symmetric multiprocessing  (SMP)  

 each processor is self-scheduling,  

 all processes in common ready queue, or  

 each has its own private queue of ready processes 

 Modern OSes support this 
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 Processor Affinity 

 What would happen if a process migrates to 
another processor? 

 Clear cash 

 NUMA architecture 

 Slow access 

 A process has affinity             

for processor on which it is currently running 

 This is known as Processor affinity  

 soft affinity 

 hard affinity 
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Load Balancing 

 Keep the load evenly distributed  

 Easy in Asymmetric multiprocessing  (AMP) why? 

 Hard in Symmetric multiprocessing  (SMP)  why? 

 Two Approaches for SMP 

 Push migration 

 Busy CPU checks load on others, and pushes load to them 

 Pull migration 

 Idle CPU pulls load from others 

 Often implemented together 

 Affects processor affinity  

 (have some threshold)  
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Multicore Processors 

 Recent trend to place 

multiple processor cores on 

same physical chip 
 

 Faster and consume less 

power 
 

 Multiple threads per core 

also growing 

 Takes advantage of memory 

stall to make progress on 

another thread while memory 

retrieve happens 
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Virtualization and Scheduling 

 Even a single-CPU system acts like a multiprocessor 

system 

 Host and guest systems could have different 

scheduling  

 But what happens if VM allocates 100ms while host 

allocates 10ms??? 
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THREAD SCHEDULING 
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Thread Scheduling 

 Distinction between  

 user-level threads managed by a thread library in user space 

 kernel-level threads managed by OS scheduler 

 User threads must me mapped to kernel threads 
 

 Many-to-one and many-to-many models, thread library 

schedules user-level threads to run on LWP 

 Known as process-contention scope (PCS) since scheduling 

competition is within the process 
 

 Kernel thread scheduled onto available CPU is system-

contention scope (SCS) – competition among all 

threads in system 
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Pthread Scheduling 

 API allows specifying either PCS or SCS during 

thread creation 

 PTHREAD_SCOPE_PROCESS  

   schedules threads using PCS scheduling 

 PTHREAD_SCOPE_SYSTEM  

   schedules threads using SCS scheduling. 
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Pthread Scheduling API 
#include <pthread.h> 

#include <stdio.h> 

#define NUM THREADS 5 

int main(int argc, char *argv[]) 

{ 

   int i, scope; 

 pthread_t tid[NUM THREADS]; 

 pthread_attr t attr; 

 pthread_attr_init(&attr);  /* get the default attributes */ 

  /* set the scheduling algorithm to PROCESS or SYSTEM */ 

 // if (pthread_attr_getscope(&attr, &scope) !=0) // error 

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); 

  /* set the scheduling policy - FIFO, RT, or OTHER */ 

 pthread_attr_setschedpolicy(&attr, SCHED_OTHER); 

 for (i = 0; i < NUM THREADS; i++) /* create the threads */ 

  pthread_create(&tid[i],&attr, runner, NULL); 

 for (i = 0; i < NUM THREADS; i++) /* now join on each thread */ 

  pthread_join(tid[i], NULL); 

} 

 /* Each thread will begin control in this function */ 

void *runner(void *param) 

{  printf("I am a thread\n"); pthread exit(0); } 
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JAVA SCHEDULING 
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Java Thread Scheduling 

 JVM uses PR Scheduling Algorithm 

 Could be preemptive or not 
 

 If there are multiple threads with the same priority, FIFO 

Queue is used  

 JVM does not specify whether threads are Time-Sliced or 

not 

 JVM schedules a thread to run when: 

1. It exits its run()  

2. It blocks for I/O 

3. Its time quantum expires (if time-sliced) 

4. A higher priority thread enters the Runnable State (if preemptive) 
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Time-Slicing 

 Since the JVM doesn’t ensure Time-Slicing, the yield() 

method may be used to give the CPU to some other 

threads, called cooperative multitasking  
 

 while (true) { 

  // perform CPU-intensive task 

  . . . 

  Thread.yield(); 

 } 
 

 This yields control to another thread of equal priority 
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Thread Priorities 

 

Priority    Comment 

Thread.MIN_PRIORITY  1 Minimum Thread Priority 

Thread.NORM_PRIORITY  5        Default Thread Priority 

Thread.MAX_PRIORITY  10      Maximum Thread Priority 

 

Priorities may be set using setPriority() method: 

 

 Thread.currentThread().setPriority(Thread.NORM_PRIORITY + 2); 
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Rule of Thumb: 

 At any given time, the highest-priority thread is 

running. However, this is not guaranteed.  

 The thread scheduler may choose to run a lower-

priority thread to avoid starvation.  

 For this reason, use thread priority only to affect 

scheduling policy for efficiency purposes;  

 So, 

 Do not rely on it for algorithm correctness.  



5.53 SGG Operating System Concepts  

PERFORMANCE EVALUATION 

Skip the rest 
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Algorithm Evaluation 

 Deterministic modeling – takes a particular predetermined 

workload and defines the performance of each algorithm  

for that workload 
 

 Queueing models 

 Little’s Formula  n =   W   

 n: average queue length,  

 W: average wait time 

  : average arrival rate  
 

 Simulation 

 Random load 

 Implementation 
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Evaluation of CPU schedulers by Simulation 
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OPERATING SYSTEM 

EXAMPLES 

 

Solaris scheduling 
 

Windows XP scheduling 
 

Linux scheduling 
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Solaris scheduling  

Solaris Dispatch Table  
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Solaris 2 Scheduling 
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Windows XP Priorities 
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Linux Scheduling 

 Constant order 
O(1) scheduling 
time 
 

 Two priority ranges: 
time-sharing and 
real-time 
 

 Real-time range 
from 0 to 99 and 
nice value from 
100 to 140 

 

List of Tasks Indexed According to Priorities 

Priorities and Time-slice length 
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End of Chapter 5 


