
6.1 SGG Operating System Concepts

Chapter 6 in Old Ed:

Chapter 5 in 9th Ed:

Process Synchronization

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

Get processes (threads) to work together in a coordinated manner.

6.2 SGG Operating System Concepts

 Process Synchronization

 Background **

 Problems with concurrent access to

 shared data (Race condition)

 The Critical-Section Problem *****

 Peterson’s Solution *****

 Synchronization mechanisms

 Hardware support: e.g., TestAndSet ***

 Software solution: e.g., Semaphore *****

 Classic Problems of Synchronization ****

 Monitors ***

 Java Synchronization ***

 Synchronization Examples *

 Atomic Transactions (more later)

6.3 SGG Operating System Concepts

Objectives

 To introduce the critical-section problem, whose solutions

can be used to ensure the consistency of shared data

 To present both software and hardware solutions of the

critical-section problem

 To introduce the concept of an atomic transaction and

describe mechanisms to ensure atomicity

6.4 SGG Operating System Concepts

BACKGROUND

Shared data

 at the same logical address space √

 at different address space through messages (later in DS)

6.5 SGG Operating System Concepts

Shared Data

 Concurrent access to shared data may result in data

inconsistency (how/hwy)

 Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating

processes/threads

6.6 SGG Operating System Concepts

Example1:

Concurrent Access to Shared Data

 Two processes/threads A and B have access to a shared

global variable “Balance”

Thread A: Thread B:
Balance = Balance + 100 Balance = Balance - 200

A1. LOAD R1, BALANCE
A2. ADD R1, 100
A3. STORE BALANCE, R1

B1. LOAD R2, BALANCE
B2. SUB R2, 200
B3. STORE BALANCE, R2

.

6.7 SGG Operating System Concepts

What is the problem then?

 Observe: In a time-shared system the exact instruction
execution order cannot be predicted

 Scenario 1:

 A1. LOAD R1, BALANCE

 A2. ADD R1, 100

 A3. STORE BALANCE, R1

 Context Switch!

 B1. LOAD R2, BALANCE

 B2. SUB R2, 200

 B3. STORE BALANCE, R2

 Sequential correct execution

 Balance is effectively

decreased by 100!

 Scenario 2:

 B1. LOAD R2, BALANCE

 B2. SUB R2, 200

 Context Switch!

 A1. LOAD R1, BALANCE

 A2. ADD R1, 100

 A3. STORE BALANCE, R1

 Context Switch!

 B3. STORE BALANCE, R2

 Mixed wrong execution

 Balance is effectively

decreased by 200!

.

6.8 SGG Operating System Concepts

Example2: Consumer-Producer

 Provide a solution to the

consumer-producer

problem that fills all the

buffers.

 Have an integer count

that keeps track of the

number of full buffers.

Initially, count is set to 0.

 It is incremented by the

producer after it produces

a new buffer and is

decremented by the

consumer after it

consumes a buffer.

// Producer
while (count == BSIZE)

 ; // do nothing

 // add an item to the buffer

buffer[in] = item;

in = (in + 1) % BSIZE;
++count;

// Consumer
while (count == 0)

 ; // do nothing

 // remove an item from the

buffer item = buffer[out];

out = (out + 1) % BSIZE;
--count;

6.9 SGG Operating System Concepts

What is the problem then?

 count++ could be implemented as
 register1 = count
 register1 = register1 + 1
 count = register1

 count-- could be implemented as
 register2 = count
 register2 = register2 - 1
 count = register2

 Consider this execution interleaving with “count = 5” initially:

 T0: producer execute register1 = count {register1 = 5}
T1: producer execute register1 = register1 + 1 {register1 = 6}
T2: consumer execute register2 = count {register2 = 5}
T3: consumer execute register2 = register2 – 1 {register2 = 4}
T4: producer execute count = register1 {count = 6 }
T5: consumer execute count = register2 {count = 4}

How many
different
interleaving can
we have?

R
a
c
e
 C

o
n
d
it
io

n
 (

R
C
)

6.10 SGG Operating System Concepts

Race Conditions

 Race Condition (RC): the outcome of an execution

depends on the particular order in which the accesses to

shared data take place

 RC is a serious problem for concurrent systems using

shared variables!

 To solve it, we need to make sure that only one process

executes some high-level code sections (e.g., count++)

known as critical sections (CS)

 In other words, CS must be executed atomically

 Atomic operation means that it completes in its entirety

without worrying about interruption by any other potentially

conflict-causing process

6.11 SGG Operating System Concepts

CRITICAL-SECTION (CS)

PROBLEM

Multiple processes/threads compete to use some shared data

Solutions

SW based (e.g., Peterson’s solution, Semaphores, Monitors) and

HW based (e.g., Locks, disable interrupts, atomic get-and-set instruction)

6.12 SGG Operating System Concepts

Critical-Section (CS) Problem

 Cooperating processes or
threads compete to use
some shared data in a
code segment, called
critical section (CS)

 CS Problem is to ensure
that only one process is
allowed to execute in its
CS (for the same shared data) at
any time

 Each process must
request permission to
enter its CS (allow or wait)

 CS is followed by exit and
remainder sections.

// count++
reg1 = count
reg1 = reg1 + 1
count = reg1

// count- -;
reg2 = count
reg2 = reg2 – 1
count = reg2

6.13 SGG Operating System Concepts

Requirements for the Solutions to

Critical-Section Problem

1. Mutual Exclusion – If process Pi is executing in its critical section,

then no other processes can be executing in their critical sections.
(At most one process is in its critical section at any time.)

2. Progress - If no process is executing in its critical section and

there exist some processes that wish to enter their critical section,

then only the ones that are not busy in their reminder sections

must compete and one should be able to enter its CS (the selection

cannot be postponed indefinitely to wait a process executing in its remainder section).

3. Bounded Waiting - A bound must exist on the number of times

that other processes are allowed to enter their critical sections after

a process has made a request to enter its critical section and

before that request is granted.

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

6.14 SGG Operating System Concepts

Mutual Exclusion

• If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

• At most one process is in its critical section at any time.

6.15 SGG Operating System Concepts

Progress

• If no process is executing in its critical section and there exist

some processes that wish to enter their critical section,

• then only the ones that are not busy in their reminder sections

must compete and one should be able to enter its CS

• the selection cannot be postponed indefinitely to wait a process

executing in its remainder section.

6.16 SGG Operating System Concepts

Bounded Waiting

• A bound must exist on the number of times that other processes

are allowed to enter their critical sections after a process has

made a request to enter its critical section and before that

request is granted.

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

6.17 SGG Operating System Concepts

RC and CS in OS kernel code

 Suppose two processes try to open files at the same time,

to allocate memory etc.

 Two general approach

 Non-preemptive kernel (free from RC, easy to design)

 Preemptive kernel (suffer from RC, hard to design)

 Why, then, would we want non-preemptive kernel

 Real-time systems

 Avoid arbitrarily long kernel processes

 Increase responsiveness

 Later, we will study how various OSes manage

preemption in the kernel

6.18 SGG Operating System Concepts

PETERSON'S SOLUTION

Suppose load and store are atomic!

6.19 SGG Operating System Concepts

Here is a software solution to CS

 Suppose we have two processes/threads and a shared

 variable turn, which is initially set to 0 or 1;

Process 0: Process 1:

--------- ---------

while(TRUE) { while(TRUE) {

 while (turn == 1) ; while (turn == 0) ;

 critical section critical section

 turn = 1; turn = 0;

 remainder section remainder section

} }

Is this correct or incorrect? Why?
Think about mutual exclusion, progress, bounded waiting

Strict alternation

6.20 SGG Operating System Concepts

Process 0: Process 1:

--------- ---------

while(TRUE) { while(TRUE) {

 flag[0] = 1; // I am ready flag[1] = 1;

 turn = 1; turn = 0;

 while (flag[1]==1 && while (flag[0]==1 &&

 turn == 1) ; turn == 0) ;

 critical section critical section

 flag[0] = 0; // I am not ready flag[1] = 0;

 remainder section remainder section

} }

Here is a corrected solution to CS
Known as Peterson's solution

 The variable turn indicates whose turn it is to enter the critical section.

 The flag array is used to indicate if a process is ready to enter the critical
section. flag[i] = true implies that process Pi is ready!

 If I am not ready, the other process can enter CS even if it is not its turn..

 So we avoid strict alternation…. How about bounded waiting?

6.21 SGG Operating System Concepts

Does Peterson’s Solution

Satisfy the Requirements
 Mutual Exclusion

 P0 enters CS only if either flag[1] is false or turn=0

 P1 enters CS only if either flag[0] is false or turn=1

 If both are in CS then both flag should be true, but then turn

can be either 0 or 1 but cannot be both

 Progress

 Bounded-waiting

Process 0: Process 1:

--------- ---------

while(TRUE) { while(TRUE) {

 flag[0] = 1; flag[1] = 1;

 turn = 1; turn = 0;

 while (flag[1]==1 && * while (flag[0]==1 &&

 turn == 1) ; turn == 0) ;

 critical section * critical section

 flag[0] = 0; flag[1] = 0;

 remainder section remainder section

} }

6.22 SGG Operating System Concepts

Peterson’s Solution +/-

 Software solution for two

processes/threads (T0 and T1):

alternate between CS and

remainder codes

 Assume that the LOAD and
STORE instructions are atomic
(cannot be interrupted).

 Otherwise, and actually it
cannot be guaranteed that this
solution will work on modern
architectures

 But still it is a good algorithmic
solution to understand the
synchronization issues such as
mutual exclusion, progress,
bounded waiting

// process i, j=1-i

do {

 flag[i] = true;

 turn = j;

 while (flag[j] &&

 turn == j) ;

 critical section

 flag[i] = false;

 remainder section

} while(1);

6.23 SGG Operating System Concepts

SYNC HARDWARE

Many systems provide hardware support for critical section code

6.24 SGG Operating System Concepts

Solution to Critical-Section Problem

Using Locks

 while (true) {

 acquire lock

 critical section

 release lock

 remainder section

 }

 SW-based solutions are not guaranteed to work on modern

architectures, why?

 In general we need a LOCK mechanism which could be based on

HW (easy and efficient) or SW (quite sophisticated) ….

 So we will now study HW based supports first.

6.25 SGG Operating System Concepts

Synchronization Hardware

 Uniprocessors – could disable
interrupts

 Currently running code would
execute without preemption

 Generally too inefficient on
multiprocessor systems

 Operating systems using this are
not broadly scalable

 Clock updates!

 Modern machines provide special
atomic (non-interruptible)
hardware instructions

 Test memory word and set value

 Swap contents of two memory
words

 Lock the bus not the interrupt, not easy to
implement on multiprocessor systems

do {

 ……

 DISABLE INTERRUPT

 critical section

 ENABLE INTERRUPT

 Remainder statements

} while (1);

do {

 ……

 acquire lock

 critical section

 release lock

 Remainder statements

} while (1);

6.26 SGG Operating System Concepts

Data Structure for Hardware Solutions

//int TestAndSet(int *target)

int GetAndSet(int *target)

{

 int m = *target;

 *target = TRUE;

 return m;

}

void Swap(int *a, int *b)

{

 int temp = *a;

 *a = *b;

 *b = temp:

 }

Suppose these methods
functions are atomic

6.27 SGG Operating System Concepts

Solution using GetAndSet Instruction

lock = FALSE;

while(1) {

 ……

 while (GetAndSet(&lock));

 critical section

 lock = FALSE; //free the lock

 remainder section

}

a) spin-locks busy waiting;

b) Waiting processes loop continuously at the entry point; waste cpu cycles

c) User space threads might not give control to others !

d) Hardware dependent; and NOT Bounded waiting!!

6.28 SGG Operating System Concepts

Solution using Swap Instruction

lock = FALSE

while(1){

 … …

 key = TRUE;

 while (key == TRUE)

 Swap(&lock, &key);

 Critical Section;

 lock = FALSE //release the lock

 remainder section

}

6.29 SGG Operating System Concepts

What is the problem with solutions so far!

 Mutual exclusion √

 Progress √

 Bounded waiting ?

6.30 SGG Operating System Concepts

Exercise

Write a general solution to synchronize n processes

// shared data structures

int waiting[n]={0}; // to enter CS

int lock=0;

// code for P_i

do {

 Entry section

 // CS

 Exit Section

 // Remainder

 // Section

} while(1);

waiting[i] = 1;

key = 1;

while(waiting[i] && key)

 key = GetAndSet(&lock);

waiting[i] = 0;

j = (i+1) % n;

while((j!=i) && !waiting[j])

 j = (j+1) % n;

if (j == i)

 lock=0;

else

 waiting[j] = 0

6.31 SGG Operating System Concepts

SEMAPHORES

Hardware instructions are complicated for programmers and spin-

locks waste CPU time…

Software-based synchronization support to deal with these two

problems

6.32 SGG Operating System Concepts

Semaphore

 Semaphore S – integer variable

 Can only be accessed via two

 indivisible (atomic) operations

 acquire() and release()

 Originally called P() and V(),

 Also called: wait() and signal(); or

 down() and up()

 How can we make wait() and signal() atomic? (We will discuss later)

 First let us focus on their usage

 Easy to generalize, and less complicated for application programmers

 Busy waiting (spinlock) can be avoided by blocking a process

execution until some condition is satisfied

wait(value)

signal(value)

6.33 SGG Operating System Concepts

Semaphore Usage

 Counting semaphore – integer

value can range over an

unrestricted domain

 Can be used to control

access to a given resources

consisting of finite number of

instances

 Binary semaphore – integer

value can range only between

0 and 1; Also known as mutex

locks

mutex = 1

while(1){

 ……

 wait(mutex);

 Critical Section

 signal(mutex);

 remainder section

}

S = number of resources

while(1){

 ……

 wait(S);

 use one of S resource

 signal(S);

 remainder section

}

6.34 SGG Operating System Concepts

Semaphore Usage (cont’d)

 Also used for synchronization

Suppose we require S2 to be executed after S1 is completed

 How can we synchronize these two processes?

 Declare a sync semaphore and initially set it to 0

 // Proc1

…

S1;

Signal(sync);

…

// Proc2

…

wait(sync);

S2;

…

// Proc1

…

S1;

…

// Proc2

…

S2;

…

6.35 SGG Operating System Concepts

Java Example Using Semaphores

criticalSection() {

 Balance = Balance – 100;

}

6.36 SGG Operating System Concepts

Semaphore Implementation

 Main disadvantage of this
implementation is that it requires
busy waiting because of spin lock

 Waste CPU time

 Processes might do context SW but
threads would be in loop for ever

wait(value)

signal(value)

 To overcome busy waiting, we can

 replace spinlock with block process,

 Wait/acquire blocks the process (e.g., places the process in a
queue) if the semaphore value is not positive. And give CPU to
another process

 Signal /release will remove a process from queue and wake it up

 If CS is short, spinlock might be better than this option as it avoids
context SW

6.37 SGG Operating System Concepts

Semaphore Implementation with

no Busy waiting
 With each semaphore there is an

associated waiting queue. Each

entry in a waiting queue has two

data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking

the operation on the appropriate

waiting queue.

 wakeup – remove one of processes

in the waiting queue and place it in

the ready queue.

 Negative semaphore values.

(what does that mean?)

6.38 SGG Operating System Concepts

Semaphore Implementation

 The second major issue is how to implement acquire()/wait()
and release()/signal() in an atomic manner

 Must guarantee that no two processes can execute acquire/wait
and release/signal on the same semaphore at the same time

 In other words, their implementation becomes the critical
section problem where the acquire/wait and release/signal
codes are placed in the critical section.

 Could now have busy waiting in critical section implementation
because these implementation codes are short

 We moved busy waiting from application to here; but, note that
applications may spend lots of time in critical sections and
therefore busy waiting is not a good solution there while OK here.

6.39 SGG Operating System Concepts

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

 Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

Application
programmer
must be
careful!

6.40 SGG Operating System Concepts

Priority Inversion

 L < M < H

 L has resource x

 H wants resource x, but it will wait for this resource

 Now M becomes runnable and preempts L

 M will have higher priority than H !!!!

 (Mars path finder had that problem)

Solutions

 Use only two priorities, but this not flexible

 Priority-inheritance

 L will inherit Highest priority while using resource x. When it is

finished, its priority will be reverted to the original one

6.41 SGG Operating System Concepts

CLASSICAL PROBLEMS OF

SYNCHRONIZATION

Bounded-Buffer (Consumer-Producer) Problem

Readers and Writers Problem

Dining-Philosophers Problem

6.42 SGG Operating System Concepts

 Need to make sure that

 The producer and the consumer do not access the

buffer area and related variables at the same time

 No item is made available to the consumer if all the

buffer slots are empty.

 No slot in the buffer is made available to the

producer if all the buffer slots are full

producer consumer

.

Bounded-Buffer Problem

for consumer-producer application

6.43 SGG Operating System Concepts

What Semaphores are needed?

semaphore mutex, full, empty;

Initially:

mutex = 1 // controlling mutual access to the buffer

full = 0 // The number of full buffer slots

empty = n // The number of empty buffer slots

What are the initial values?

.

6.44 SGG Operating System Concepts

Bounded buffer Codes

44

 wait(empty); // init. n
 wait(mutex);

 add item to buffer

 signal(mutex);
 signal(full);

 wait(full); // 0
 wait(mutex);

 remove an item from buffer

 signal(mutex);
 signal(empty);

 return the item

Insert an item Remove an item
What will
happen if
we change
the order?

.

What will
happen if
we change
the order?

Be careful of the sequence of semaphore operations;

deadlock could happen as shown before;

The general rule: get the easy resource first, and then

difficult; release in reverse order;

6.45 SGG Operating System Concepts

Bounded-Buffer Problem with Java

6.46 SGG Operating System Concepts

Producer and consumer application

6.47 SGG Operating System Concepts

Readers-Writers Problem

 Problem – allow multiple readers to read at the same time; but only

one single writer can access the shared data at the same time

 Shared Data

 Data set

 Integer readerCount initialized to 0

 Semaphore mutex initialized to 1 //for readers to access readerCount

 Semaphore db initialized to 1 //for writer/reader mutual exclusive

A data set is shared
among a number of
concurrent processes

Readers only read
the data set; they do
not perform any
updates, so multiple
readers may access
the shared data
simultaneously

Writers can
both read and
write, so they
must have
exclusive access

6.48 SGG Operating System Concepts

Reader Writer

wait(mutex);

 readerCount++;

 if(readerCount == 1)

 wait(db);

signal(mutex);

 …

reading is performed

 …

wait(mutex);

 readerCount--;

 if(readcount == 0)

 signal(db);

signal(mutex);

wait(db);

…

writing is performed

…

signal(db);

Any problem with
this solution?!

What happens if one
reader gets in first?

.

This solution is generalized as readers-writers lock…
multiple processes acquire r lock but only one can acquire w lock

6.49 SGG Operating System Concepts

Readers-Writers Problem with Java

wait(db);

…

writing isperformed

…

signal(db);

wait(mutex);

 readerCount++;

 if(readerCount == 1)

 wait(db);

signal(mutex);

 …

reading is performed

 …

wait(mutex);

 readerCount--;

 if(readcount == 0)

 signal(db);

signal(mutex);

6.50 SGG Operating System Concepts

Readers-Writers Problem with Java (Cont.)

6.51 SGG Operating System Concepts

Advanced Reader/Writer Problems

 Preferred Reader: original solution favors readers

 Preferred Writer Problem

 If there is a writer in or waiting, no additional reader in

 Alternative Reader/Writer Problem

 Reader/writer take turn to read/write

*

6.52 SGG Operating System Concepts

Preferred Writer: Variables &

Semaphores
 Variables

 readcount: number of readers current reading, init 0

 writecount: number of writers current writing or waiting, init 0

 Semaphores

 rmtx: reader mutex for updating readcount, init 1;

 wmtx: writer mutex for updating writecount, init 1;

 wsem: semaphore for exclusive writers, init 1;

 rsem: semaphore for readers to wait for writers, init 1;

 renter: semaphore for controlling readers getting in;

*

6.53 SGG Operating System Concepts

Preferred Writer: Solutions

wait(wmtx);

 writecount++;

 if (writecount = = 1)

 wait(rsem);

signal(wmtx);

wait(wsem);

WRITING

signal(wsem);

wait(wmtx);

 writecount--;

 if (writecount == 0)

 signal(rsem);

signal(wmtx);

//wait(renter);

wait(rsem);

 wait(rmtx);

 readcount++;

 if (readcount = = 1)

 wait(wsem);

 signal(rmtx);

signal(rsem);

//signal(renter);

READING

wait(rmtx);

 readcount--;

 if (readcount == 0)

 signal(wsem);

signal(rmtx);

Reader Writer

*

6.54 SGG Operating System Concepts

Dining-Philosophers Problem

 Shared data

 Bowl of rice (data set)

 semaphore chopStick[5]; // Initially all set to 1

Five philosophers share a common

circular table. There are five chopsticks

and a bowl of rice (in the middle).

When a philosopher gets hungry, he

tries to pick up the closest chopsticks.

A philosopher may pick up only one

chopstick at a time, and cannot pick up a

chopstick already in use.

When done, he puts down both of his

chopsticks, one after the other.

How to design a deadlock-free and

starvation-free protocol….

0

1

2 3

4

0

1

2

3

4

6.55 SGG Operating System Concepts

Dining-Philosophers Problem (cont.)

 Solution for the i’th
philosopher:

while(1) {

 think; //and become hungry

 wait(chopstick[i]);

 wait(chopstick[(i+1) % 5]);

 eat

 signal(chopstick[i]);

 signal(chopstick[(i+1) % 5]);

 …

}

Agreement:
• First, pick right chopstick
• Then, pick left chopstick

What is the problem?!

*

Deadlock: Each one has one chopstick

Here are some options: allow at most 4 to sit, allow to pick up chopsticks if both
are available, odd ones take left-then-right while even ones take right-then-left

Deadlock-free does not mean starvation-free (how about progress, and bounded waiting)

6.56 SGG Operating System Concepts

MONITORS

Programmers may mistake in the order of wait and signal and

cause deadlock

A high-level abstraction that provides a convenient and effective

mechanism for process synchronization

6.57 SGG Operating System Concepts

What are the problems with Sem?

 Wait/signal should be executed in the

correct order; but, programmers may

make mistake

 To deal with such mistakes, researchers

developed monitors to provide a

convenient and effective mechanism for

process synchronization

 A monitor is a collection of procedures,

variables, and data structures grouped

together

 Only one process may be active within

the monitor at a time

 A monitor is a language construct (e.g.,

synchronized methods in Java)

 The compiler enforces mutual exclusion.

 Semaphores are usually an OS construct

public class SynchronizedCounter

{

 private int c = 0;

 public synchronized void inc(){

 c++;

 }

 public synchronized void dec(){

 c--;

 }

 public synchronized int value()

 {

 return c;

 }

}

6.58 SGG Operating System Concepts

Schematic View of a Monitor

 Monitor construct ensures at

most one process/thread can be

active within the monitor at a

given time.

 Shared data (local variables) of

the monitor can be accessed

only by local procedures.

 So programmer does not need

to code this synchronization

constraints explicitly

 However, this is not sufficiently

powerful , so for tailor-made

synchronization, condition

variable construct is provided

58

*

6.59 SGG Operating System Concepts

Condition Variables

 Condition x, y;

 // a queue of blocked processes

 Two operations

 x.wait () means that the

process invoking this

operation is suspended until

another process invokes

x.signal(); (similar to

processes waiting for I/O to

complete)

 x.signal () resumes exactly

one suspended process (if

any) that invoked x.wait ();

otherwise, no effect.

 Monitor is not a counter

Signal and wait
Signal and continue

Many languages have some support,
We will see Java later

6.60 SGG Operating System Concepts

Solution to Dining Philosophers

 Each philosopher picks
up chopsticks if both
are available

 P_i can set state[i] to
eating if her two neighbors
are not eating

 We need condition self[i]
so P_i can delay herself
when she is hungry but
cannot get chopsticks

 Each P_i invokes the
operations takeForks(i)
and returnForks(i) in the
following sequence:

 dp.takeForks (i)

 EAT

 dp.returnForks (i)

• No deadlocks

• How about Starvation?
• http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html

6.61 SGG Operating System Concepts

Exercise

Producer-Consumer (PC) Monitor

Monitor PC {

 condition full, empty;

 int count;

 void init() {

 count = 0;

 }

 void insert(int item){

if (count==N) full.wait();

 insert_item(item);

count++;

if (count==1) empty.signal();

 }

 int remove(){

 int m;

if (count==0) empty.wait();

m = remove_item();

 count--;

if (count==N–1) full.signal();

 return m;

 }

.

void producer() {

//Producer process

 while (1) {

 item=Produce_Item();

 PC.insert(item);

}

}

void consumer(){

//Consumer process

while (1) {

 item = PC.remove();

 consume_item(item);

 }

}

6.62 SGG Operating System Concepts

Monitor Implementation

 Monitors are implemented by using queues to keep track of the

processes attempting to become active in the monitor.

 To be active, a monitor must obtain a lock to allow it to execute.

 Processes that are blocked are put in a queue of processes

waiting for an unblocking event to occur.

 The entry queue contains processes attempting to call a monitor procedure from

outside the monitor. Each monitor has one entry queue.

 The signaller queue contains processes that have executed a notify operation.

Each monitor has at most one signaller queue. In some implementations, a notify

leaves the process active and no signaller queue is needed.

 The waiting queue contains processes that have been awakened by a notify

operation. Each monitor has one waiting queue.

 Condition variable queues contain processes that have executed a condition

variable wait operation. There is one such queue for each condition variable.

 The relative priorities of these queues determines the operation

of the monitor implementation.

6.63 SGG Operating System Concepts

JAVA SYNCHRONIZATION

http://www.caveofprogramming.com/tag/multithreading/

http://www.caveofprogramming.com/tag/multithreading/

6.64 SGG Operating System Concepts

Recall Bounded Buffer

 Busy waiting loops when buffer is full or empty

 Shared variable count may develop race condition

 We will see how to solve these problems using Java sync

 Busy waiting can be removed by blocking a process

 while(full/empty); vs.

 while(full/empty) Thread.yield();

 Problem: livelock

 (e.g., a process with high priority waits here while another low priority

process tries to update full/empty)

 We will see there is a better alternative than busy waiting or yielding

 Race condition

 Can be solved using synchronized methods (see next page)

6.65 SGG Operating System Concepts

Java Synchronization

 Java provides synchronization at

the language-level.

 Each Java object has an

associated lock.

 This lock is acquired by invoking

a synchronized method.

 This lock is released when

exiting the synchronized

method.

 Threads waiting to acquire the

object lock are placed in the

entry set for the object lock.

6.66 SGG Operating System Concepts

Java Synchronization

 Why the previous solution is incorrect?

 Suppose buffer is full and consumer is sleeping.

 Producer call insert(), gets the lock and then yields.

But it still has the lock,

 So when consumer calls remove(), it will block because

the lock is owned by producer …

 Deadlock

 We can solve this problem using two new Java methods

 When a thread invokes wait():

1. The thread releases the object lock;

2. The state of the thread is set to Blocked;

3. The thread is placed in the wait set for the object.

 When a thread invokes notify():

1. An arbitrary thread T from the wait set is selected;

2. T is moved from the wait to the entry set;

3. The state of T is set to Runnable.

6.67 SGG Operating System Concepts

Java Synchronization - Bounded Buffer

6.68 SGG Operating System Concepts

Bounded-Buffer Problem with Java

6.69 SGG Operating System Concepts

Java Synchronization

 The call to notify() selects an

arbitrary thread from the wait set.

 It is possible the selected thread

is in fact not waiting upon the

condition for which it was notified.

 Consider doWork():

 turn is 3, T1, T2, T4 are in wait

set, and T3 is in doWork()

 What happens when T3 is done?

 The call notifyAll() selects all

threads in the wait set and moves

them to the entry set.

 In general, notifyAll() is a more

conservative strategy than

notify().

notify() may

not notify the

correct thread!

6.70 SGG Operating System Concepts

Java Synchronization - Readers-Writers
using both notify() and notifyAll()

6.71 SGG Operating System Concepts

Java Synchronization
 Block synchronization

 Rather than synchronizing an entire method, Block

synchronization allows blocks of code to be declared as

synchronized

 This will be also necessary if you need more than one

locks to share different resources

6.72 SGG Operating System Concepts

Java Synchronization

 Block synchronization using wait()/notify()

6.73 SGG Operating System Concepts

Concurrency Features in Java 5

 Prior to Java 5, the only concurrency features in

Java were Using synchronized/wait/notify.

 Beginning with Java 5, new features were

added to the API:

 Reentrant Locks

 Semaphores

 Condition Variables

6.74 SGG Operating System Concepts

Concurrency Features in Java 5

 Reentrant Locks

6.75 SGG Operating System Concepts

Concurrency Features in Java 5

 Semaphores

6.76 SGG Operating System Concepts

Concurrency Features in Java 5

 A condition variable is created by first creating a

 ReentrantLock and invoking its newCondition() method:

 Once this is done, it is possible to invoke the

 await() and signal() methods

6.77 SGG Operating System Concepts

Concurrency Features in Java 5

 doWork() method with condition variables

6.78 SGG Operating System Concepts

EXTRAS

6.79 SGG Operating System Concepts

SYNCHRONIZATION

EXAMPLES

Pthreads

Solaris

Windows XP

Linux

Pthread Library
is for reference and self-study

6.80 SGG Operating System Concepts

Pthreads Synchronization

 Pthreads API is OS-independent

 It provides:

 mutex locks

 condition variables

 Non-portable extensions include:

 read-write locks

 spin locks

6.81 SGG Operating System Concepts

Synchronization in Pthread Library

 Mutex variables

 pthread_mutex_t

 Conditional variables

 pthread_cond_t

 All POSIX thread functions have the form:

 pthread[_object] _operation

 Most of the POSIX thread library functions return 0 in

case of success and some non-zero error-number in case

of a failure

*

6.82 SGG Operating System Concepts

Mutex Variables: Mutual Exclusion

 A mutex variable can be either locked or unlocked

 pthread_mutex_t lock; // lock is a mutex variable

 Initialization of a mutex variable by default attributes

 pthread_mutex_init(&lock, NULL);

 Lock operation

 pthread_mutex_lock(&lock) ;

 Unlock operation

 pthread_mutex_unlock(&lock)

*

6.83 SGG Operating System Concepts

Condition Variables

 In a critical section, a thread can suspend itself on a

condition variable if the state of the computation is not

right for it to proceed.

 It will suspend by waiting on a condition variable.

 It will, however, release the critical section lock .

 When that condition variable is signaled, it will become

ready again; it will attempt to reacquire that critical section

lock and only then will be able proceed.

 With POSIX threads, a condition variable can be

associated with only one mutex variable

*

6.84 SGG Operating System Concepts

Condition Variables (cont.)

 pthread_cond_t SpaceAvailable;

 pthread_cond_init (&SpaceAvailable, NULL);

 pthread_cond_wait

 pthread_cond_signal

 unblock one waiting thread on that condition variable

 pthread_cond_broadcast

 unblock all waiting threads on that condition variable

*

6.85 SGG Operating System Concepts

Example: Producer-Consumer Problem

 Producer will produce a sequence of integers, and deposit

each integer in a bounded buffer

 (implemented as an array).

 All integers are positive, 0..999.

 Producer will deposit -1 when finished, and then

 terminate.

 Buffer is of finite size: 5 in this example.

 Consumer will remove integers, one at a time, and print

them.

 It will terminate when it receives -1.

*

6.86 SGG Operating System Concepts

Example: Definitions and Global

#include<pthread.h>

#include<stdio.h>

#include<string.h>

const int N = 5;

int Buffer[5];

int in = 0;

int out = 0;

int count = 0;

pthread_mutex_t lock;

pthread_cond_t SpaceAvailable, ItemAvailable;

*

6.87 SGG Operating System Concepts

Example: Producer Thread

void * producer (void *arg){

 int i;

 for (i = 0; i< 1000; i++) {

 pthread_mutex_lock (&lock); /* Enter critical section */

 while (count == N) /* Make sure that buffer is NOT full */

 pthread_cond_wait (&SpaceAvailable, &lock) ;

 /* Sleep using a condition variable */

 /* now count must be less than N */

 Buffer[in] = i; /* Put item in the buffer using "in" */

 in = (in + 1) % N;

 count++; /* Increment the count of items in the buffer */

*

6.88 SGG Operating System Concepts

Example: Producer Thread (Cont.)

 pthread_mutex_unlock (&lock);

 pthread_cond_signal(&ItemAvailable);

 /* Wakeup consumer, if waiting */

 } /* End of For loop */

 /* Put -1 in the buffer to indicate completion to the consumer */

 pthread_mutex_lock (&lock);

 while (count == N)

 pthread_cond_wait(&SpaceAvailable, &lock) ;

 Buffer[in] = -1; in = (in + 1) % N; count++;

 pthread_mutex_unlock (&lock);

 pthread_cond_signal(&ItemAvailable);

 /* Wakeup consumer, if waiting */

} // End of producer

*

6.89 SGG Operating System Concepts

Example: Consumer Thread

void * consumer (void *arg){

 int i = 0;

 do {

 pthread_mutex_lock (&lock); /* Enter critical section */

 while (count == 0)

 /* Make sure that buffer is NOT empty */

 pthread_cond_wait(&ItemAvailable, &lock) ;

 /* Sleep using a condition variable */

 /* count must be > 0 */

 i = Buffer[out] ; /* Remove item from buffer using "out" */

 out = (out + 1) % N;

 count--; /* Decrement the count of items in the buffer */

*

6.90 SGG Operating System Concepts

Example: Consumer Thread (Cont.)

 printf("Removed %d \n", i);

 pthread_mutex_unlock (&lock); /* exit critical

section */

 pthread_cond_signal(&SpaceAvailable);

 /* Wakeup producer, if waiting */

 } while (i != -1); /* End of Do loop */

} // End of consumer

*

6.91 SGG Operating System Concepts

Example: Main program

main() {

 pthread_t prod, cons; /* thread variables */

 int n;

 pthread_mutex_init(&lock, NULL);

 pthread_cond_init (&SpaceAvailable, NULL);

 pthread_cond_init (&ItemAvailable, NULL);

 /* Create producer thread */

 if (n = pthread_create(&prod, NULL, producer ,NULL)) {

 fprintf(stderr,"pthread_create :%s\n",strerror(n));

 exit(1);

 }

*

6.92 SGG Operating System Concepts

Example: Main Program (Cont.)

 /* Create consumer thread */

 if (n = pthread_create(&cons, NULL, consumer, NULL)) {

 fprintf(stderr,"pthread_create :%s\n",strerror(n));

 exit(1);

 }

 /* Wait for the consumer thread to finish. */

 if (n = pthread_join(cons, NULL)) {

 fprintf(stderr,"pthread_join:%s\n",strerror(n));

 exit(1);

 }

 printf("Finished execution \n");

} // End of main

*

6.93 SGG Operating System Concepts

Solaris Synchronization

 Implements a variety of locks to support multitasking,

multithreading (including real-time threads), and

multiprocessing

 Uses adaptive mutexes for efficiency when protecting

data from short code segments

 Uses condition variables and readers-writers locks

when longer sections of code need access to data

 Uses turnstiles to order the list of threads waiting to

acquire either an adaptive mutex or reader-writer lock

6.94 SGG Operating System Concepts

Windows XP Synchronization

 Uses interrupt masks to protect access to global

resources on uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Also provides dispatcher objects which may act as

either mutexes and semaphores

 Dispatcher objects may also provide events

 An event acts much like a condition variable

6.95 SGG Operating System Concepts

Linux Synchronization

 Linux:

 Prior to kernel Version 2.6, disables interrupts to

implement short critical sections

 Version 2.6 and later, fully preemptive

 Linux provides:

 semaphores

 spin locks

6.96 SGG Operating System Concepts

ATOMIC TRANSACTIONS

System Model

Log-based Recovery

Checkpoints

Concurrent Atomic Transactions

More later in DS

6.97 SGG Operating System Concepts

Transactional Memory

 Memory transaction is a series of read-write operations

that are atomic.

 We replace

 With

 The atomic{S} statement ensures the statements in S

execute as a transaction.

6.98 SGG Operating System Concepts

System Model

 Assures that operations happen as a single logical unit of work, in

its entirety, or not at all

 Related to field of database systems

 Challenge is assuring atomicity despite computer system failures

 Transaction - collection of instructions or operations that

performs single logical function

 Here we are concerned with changes to stable storage – disk

 Transaction is series of read and write operations

 Terminated by commit (transaction successful) or abort

(transaction failed) operation

 Aborted transaction must be rolled back to undo any changes it

performed

6.99 SGG Operating System Concepts

Types of Storage Media

 Volatile storage – information stored here does not survive

system crashes

 Example: main memory, cache

 Nonvolatile storage – Information usually survives crashes

 Example: disk and tape

 Stable storage – Information never lost

 Not actually possible, so approximated via replication or RAID

to devices with independent failure modes

Goal is to assure transaction atomicity where failures cause loss of

information on volatile storage

6.100 SGG Operating System Concepts

Log-Based Recovery

 Record to stable storage information about all

modifications by a transaction

 Most common is write-ahead logging

 Log on stable storage, each log record describes single

transaction write operation, including

 Transaction name

 Data item name

 Old value

 New value

 <Ti starts> written to log when transaction Ti starts

 <Ti commits> written when Ti commits

 Log entry must reach stable storage before operation on

data occurs

6.101 SGG Operating System Concepts

Log-Based Recovery Algorithm

 Using the log, system can handle any volatile memory

errors

 Undo(Ti) restores value of all data updated by Ti

 Redo(Ti) sets values of all data in transaction Ti to new

values

 Undo(Ti) and redo(Ti) must be idempotent

 Multiple executions must have the same result as one

execution

 If system fails, restore state of all updated data via log

 If log contains <Ti starts> without <Ti commits>, undo(Ti)

 If log contains <Ti starts> and <Ti commits>, redo(Ti)

6.102 SGG Operating System Concepts

Checkpoints

 Log could become long, and recovery could take long

 Checkpoints shorten log and recovery time.

 Checkpoint scheme:

1. Output all log records currently in volatile storage to stable

storage

2. Output all modified data from volatile to stable storage

3. Output a log record <checkpoint> to the log on stable

storage

 Now recovery only includes Ti, such that Ti started

executing before the most recent checkpoint, and all

transactions after Ti All other transactions already on

stable storage

6.103 SGG Operating System Concepts

Concurrent Transactions

 Must be equivalent to serial execution – serializability

 Could perform all transactions in critical section

 Inefficient, too restrictive

 Concurrency-control algorithms provide serializability

6.104 SGG Operating System Concepts

Serializability

 Consider two data items A and B

 Consider Transactions T0 and T1

 Execute T0, T1 atomically

 Execution sequence called schedule

 Atomically executed transaction order called serial schedule

 For N transactions, there are N! valid serial schedules

6.105 SGG Operating System Concepts

Schedule 1: T0 then T1

6.106 SGG Operating System Concepts

Nonserial Schedule

 Nonserial schedule allows overlapped execute

 Resulting execution not necessarily incorrect

 Consider schedule S, operations Oi, Oj

 Conflict if access same data item, with at least one write

 If Oi, Oj consecutive and operations of different

transactions & Oi and Oj don’t conflict

 Then S’ with swapped order Oj Oi equivalent to S

 If S can become S’ via swapping nonconflicting

operations

 S is conflict serializable

6.107 SGG Operating System Concepts

Schedule 2: Concurrent Serializable Schedule

6.108 SGG Operating System Concepts

Locking Protocol

 Ensure serializability by associating lock with each data item

 Follow locking protocol for access control

 Locks

 Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q

but not write Q

 Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read

and write Q

 Require every transaction on item Q acquire appropriate lock

 If lock already held, new request may have to wait

 Similar to readers-writers algorithm

6.109 SGG Operating System Concepts

Two-phase Locking Protocol

 Generally ensures conflict serializability

 Each transaction issues lock and unlock requests in two phases

 Growing – obtaining locks

 Shrinking – releasing locks

 Does not prevent deadlock

6.110 SGG Operating System Concepts

Timestamp-based Protocols

 Select order among transactions in advance –

timestamp-ordering

 Transaction Ti associated with timestamp TS(Ti) before Ti

starts

 TS(Ti) < TS(Tj) if Ti entered system before Tj

 TS can be generated from system clock or as logical

counter incremented at each entry of transaction

 Timestamps determine serializability order

 If TS(Ti) < TS(Tj), system must ensure produced schedule

equivalent to serial schedule where Ti appears before Tj

6.111 SGG Operating System Concepts

Timestamp-based Protocol Implementation

 Data item Q gets two timestamps

 W-timestamp(Q) – largest timestamp of any transaction that
executed write(Q) successfully

 R-timestamp(Q) – largest timestamp of successful read(Q)

 Updated whenever read(Q) or write(Q) executed

 Timestamp-ordering protocol assures any conflicting read
and write executed in timestamp order

 Suppose Ti executes read(Q)

 If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that was
already overwritten

 read operation rejected and Ti rolled back

 If TS(Ti) ≥ W-timestamp(Q)

 read executed, R-timestamp(Q) set to max(R-timestamp(Q), TS(Ti))

6.112 SGG Operating System Concepts

Timestamp-ordering Protocol

 Suppose Ti executes write(Q)

 If TS(Ti) < R-timestamp(Q), value Q produced by Ti was needed

previously and Ti assumed it would never be produced

 Write operation rejected, Ti rolled back

 If TS(Ti) < W-tiimestamp(Q), Ti attempting to write obsolete value

of Q

 Write operation rejected and Ti rolled back

 Otherwise, write executed

 Any rolled back transaction Ti is assigned new timestamp and

restarted

 Algorithm ensures conflict serializability and freedom from

deadlock

6.113 SGG Operating System Concepts

 Schedule Possible Under Timestamp Protocol

6.114 SGG Operating System Concepts

End of Chapter 6

