
6.1 SGG Operating System Concepts 

 

 

Chapter 6 in Old Ed:   

Chapter 5 in 9th Ed:  

Process Synchronization 

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

Get processes (threads) to work together in a coordinated manner. 
 



6.2 SGG Operating System Concepts 

 Process Synchronization 

 Background      ** 

 Problems with concurrent access to  

 shared data (Race condition)  

 The Critical-Section Problem   ***** 

 Peterson’s Solution    ***** 

 Synchronization mechanisms     

 Hardware support: e.g., TestAndSet  *** 

 Software solution: e.g., Semaphore   ***** 

 Classic Problems of Synchronization  **** 

 Monitors      *** 

 Java Synchronization     *** 

 Synchronization Examples    * 

 Atomic Transactions    (more later) 
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Objectives 

 To introduce the critical-section problem, whose solutions 

can be used to ensure the consistency of shared data 
 

 To present both software and hardware solutions of the 

critical-section problem 
 

 To introduce the concept of an atomic transaction and 

describe mechanisms to ensure atomicity 
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BACKGROUND 

Shared data 

 at the same logical address space √ 

 at different address space through messages (later in DS) 
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Shared Data 

 Concurrent access to shared data may result in data 

inconsistency (how/hwy) 
 

 Maintaining data consistency requires mechanisms to 

ensure the orderly execution of cooperating 

processes/threads 
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Example1:  

Concurrent Access to Shared Data 

 Two processes/threads A and B have access to a shared 

global variable “Balance”  

Thread A:                         Thread B: 
Balance = Balance + 100       Balance = Balance - 200 

A1. LOAD R1, BALANCE  
A2. ADD R1, 100                 
A3. STORE BALANCE, R1 

B1. LOAD R2, BALANCE  
B2. SUB R2, 200                 
B3. STORE BALANCE, R2 

. 
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What is the problem then? 

 Observe:  In a time-shared system the exact instruction 
execution order cannot be predicted 

 Scenario 1:  

     A1. LOAD R1, BALANCE   

     A2. ADD R1, 100 

 A3. STORE BALANCE, R1 

 Context Switch! 

     B1. LOAD R2, BALANCE   

     B2. SUB R2, 200                 

     B3. STORE BALANCE, R2 

   

 Sequential correct execution 

 Balance is effectively 

decreased by 100!  

 Scenario 2:  

  B1. LOAD R2, BALANCE   

     B2. SUB R2, 200                 

     Context Switch! 

 A1. LOAD R1, BALANCE   

     A2. ADD R1, 100 

 A3. STORE BALANCE, R1 

     Context Switch! 

     B3. STORE BALANCE, R2  

 Mixed wrong execution 

 Balance is effectively 

decreased by 200!  

. 



6.8 SGG Operating System Concepts 

Example2: Consumer-Producer  

 Provide a solution to the 

consumer-producer 

problem that fills all the 

buffers.  

 Have an integer count 

that keeps track of the 

number of full buffers.  

Initially, count is set to 0.  

 It is incremented by the 

producer after it produces 

a new buffer and is 

decremented by the 

consumer after it 

consumes a buffer. 

 

// Producer 
while (count == BSIZE) 

  ; // do nothing 

 

  // add an item to the buffer 

buffer[in] = item; 

in = (in + 1) % BSIZE; 
++count; 

// Consumer 
while (count == 0) 

  ; // do nothing 

 

  // remove an item from the 

buffer item = buffer[out]; 

out = (out + 1) % BSIZE; 
--count; 
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What is the problem then? 

 count++ could be implemented as 
       register1 = count 
      register1 = register1 + 1 
      count = register1 

 count-- could be implemented as 
    register2 = count 
      register2 = register2 - 1 
      count = register2 

 Consider this execution interleaving with “count = 5” initially: 

 T0: producer execute register1 = count      {register1 = 5} 
T1: producer execute register1 = register1 + 1  {register1 = 6}  
T2: consumer execute register2 = count      {register2 = 5}  
T3: consumer execute register2 = register2 – 1   {register2 = 4}  
T4: producer execute count = register1       {count = 6 }  
T5: consumer execute count = register2       {count = 4} 

 

How many 
different 
interleaving can 
we have? 
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Race Conditions 

 Race Condition (RC): the outcome of an execution 

depends on the particular order in which the accesses to 

shared data take place 

 RC is a serious problem for concurrent systems using 

shared variables!  

 To solve it, we need to make sure that only one process 

executes some high-level code sections (e.g., count++) 

known as critical sections (CS) 

 In other words, CS must be executed atomically 

 Atomic operation means that it completes in its entirety 

without worrying about interruption by any other potentially 

conflict-causing process 
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CRITICAL-SECTION (CS) 

PROBLEM 

Multiple processes/threads compete to use some shared data 

 

Solutions 

SW based (e.g., Peterson’s solution, Semaphores, Monitors) and  

HW based (e.g., Locks, disable interrupts, atomic get-and-set instruction ) 
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Critical-Section (CS) Problem 

 Cooperating processes or 
threads compete to use 
some shared data in a 
code segment, called 
critical section (CS)  

 CS Problem is to ensure 
that only one process is 
allowed to execute in its 
CS (for the same shared data) at 
any time 

 Each process must 
request permission to 
enter its CS (allow or wait) 

 CS is followed by exit and 
remainder sections.  

// count++   
reg1  = count 
reg1  = reg1 + 1 
count = reg1 

// count- -; 
reg2  = count 
reg2  = reg2 – 1 
count = reg2 
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Requirements for the Solutions to 

Critical-Section Problem 

1. Mutual Exclusion – If process Pi is executing in its critical section, 

then no other processes can be executing in their critical sections. 
(At most one process is in its critical section at any time.) 

2. Progress - If no process is executing in its critical section and 

there exist some processes that wish to enter their critical section, 

then only the ones that are not busy in their reminder sections 

must compete and one should be able to enter its CS (the selection 

cannot be postponed indefinitely to wait a process executing in its remainder section). 

3. Bounded Waiting -  A bound must exist on the number of times 

that other processes are allowed to enter their critical sections after 

a process has made a request to enter its critical section and 

before that request is granted. 

 Assume that each process executes at a nonzero speed  

 No assumption concerning relative speed of the N processes 



6.14 SGG Operating System Concepts 

Mutual Exclusion 

• If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections.  

• At most one process is in its critical section at any time. 
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Progress 

• If no process is executing in its critical section and there exist 

some processes that wish to enter their critical section,  

• then only the ones that are not busy in their reminder sections 

must compete and one should be able to enter its CS  

• the selection cannot be postponed indefinitely to wait a process 

executing in its remainder section. 



6.16 SGG Operating System Concepts 

Bounded Waiting 

• A bound must exist on the number of times that other processes 

are allowed to enter their critical sections after a process has 

made a request to enter its critical section and before that 

request is granted. 

 Assume that each process executes at a nonzero speed  

 No assumption concerning relative speed of the N processes 
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RC and CS in OS kernel code 

 Suppose two processes try to open files at the same time, 

to allocate memory etc. 

 Two general approach 

 Non-preemptive kernel (free from RC, easy to design) 

 Preemptive kernel (suffer from  RC, hard to design) 

 Why, then, would we want non-preemptive kernel 

 Real-time systems 

 Avoid arbitrarily long kernel processes 

 Increase responsiveness   

 Later, we will study how various OSes manage 

preemption in the kernel 
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PETERSON'S SOLUTION 

Suppose load and store are atomic! 
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Here is a software solution to CS 

 Suppose we have two processes/threads and a shared  

 variable turn, which is initially set to 0 or 1; 

Process 0:       Process 1:  

---------       ---------  

while(TRUE) {      while(TRUE) {  

  while (turn == 1) ;        while (turn == 0) ;  

     critical section          critical section  

  turn = 1;         turn = 0;  

     remainder section           remainder section  

}        } 

Is this correct or incorrect? Why? 
Think about mutual exclusion, progress, bounded waiting 

Strict alternation  
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Process 0:      Process 1:  

---------      ---------  

while(TRUE) {     while(TRUE) {  

  flag[0] = 1;  // I am ready    flag[1] = 1; 

  turn = 1;       turn = 0; 

  while (flag[1]==1 &&     while (flag[0]==1 &&  

      turn == 1) ;        turn == 0) ;  

     critical section       critical section  

  flag[0] = 0; // I am not ready flag[1] = 0;  

     remainder section        remainder section  

}       } 

Here is a corrected solution to CS 
Known as Peterson's solution 

 The variable turn indicates whose turn it is to enter the critical section.   

 The flag array is used to indicate if a process is ready to enter the critical 
section. flag[i] = true implies that process Pi is ready! 

 If I am not ready, the other process can enter CS even if it is not its turn.. 

 So we avoid strict alternation…. How about bounded waiting? 
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Does Peterson’s Solution  

Satisfy the Requirements 
 Mutual Exclusion  

 P0 enters CS only if either flag[1] is false or turn=0 

 P1 enters CS only if either flag[0] is false or turn=1 

 If both are in CS then both flag should be true, but then turn 

can be either 0 or 1 but cannot be both 

 Progress 

 Bounded-waiting  

 

 

Process 0:     Process 1:  

---------     ---------  

while(TRUE) {    while(TRUE) {  

  flag[0] = 1;      flag[1] = 1; 

  turn = 1;      turn = 0; 

  while (flag[1]==1 &&   * while (flag[0]==1 &&    

      turn == 1) ;       turn == 0) ;  

     critical section *       critical section  

  flag[0] = 0;      flag[1] = 0;  

     remainder section        remainder section  

}      } 
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Peterson’s Solution +/-  

 Software solution for two 

processes/threads (T0 and T1): 

alternate between CS and 

remainder codes 

 Assume that the LOAD and 
STORE instructions are atomic 
(cannot be interrupted). 

 Otherwise, and actually it 
cannot be guaranteed that this 
solution will work on modern 
architectures 

 But still it is a good algorithmic 
solution to understand the 
synchronization issues such as 
mutual exclusion, progress, 
bounded waiting 

// process i,   j=1-i 

do { 

 flag[i] = true;  

 turn = j;  

 while (flag[j] &&  

         turn == j)  ;  
 

     critical section  

  flag[i] = false;  

           remainder section  

} while(1);   
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SYNC HARDWARE 

Many systems provide hardware support for critical section code 

 



6.24 SGG Operating System Concepts 

Solution to Critical-Section Problem 

Using Locks 

 while (true) { 

    acquire lock  

  critical section  

    release lock  

  remainder section  

 } 

 SW-based solutions are not guaranteed to work on modern 

architectures, why? 

 In general we need a LOCK mechanism which could be based on 

HW (easy and efficient) or SW (quite sophisticated) ….  

 So we will now study HW based supports first. 
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Synchronization Hardware 
 

 Uniprocessors – could disable 
interrupts 

 Currently running code would 
execute without preemption 

 Generally too inefficient on 
multiprocessor systems 

 Operating systems using this are 
not broadly scalable 

 Clock updates! 

 Modern machines provide special 
atomic (non-interruptible) 
hardware instructions 

 Test memory word and set value 

 Swap contents of two memory 
words 

 Lock the bus not the interrupt, not easy to 
implement on multiprocessor systems 

do { 

  …… 

  DISABLE INTERRUPT 

     critical section 

  ENABLE INTERRUPT 

     Remainder statements 

} while (1); 

do { 

  …… 

  acquire lock  

     critical section 

  release lock  

     Remainder statements 

} while (1); 
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Data Structure for Hardware Solutions 

//int TestAndSet(int *target)  

int GetAndSet(int *target)  

{ 

   int m = *target; 

   *target = TRUE; 

   return m; 

} 

void Swap(int *a, int *b) 

{ 

 int temp = *a; 

   *a = *b; 

   *b = temp: 

 } 

Suppose these methods 
functions are atomic 
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Solution using GetAndSet Instruction 

 

lock = FALSE; 

 

while(1) { 

   ……  

   while (GetAndSet(&lock)); 

     

     critical section 

    

   lock = FALSE; //free the lock 

 

     remainder section 

 

} 

a) spin-locks  busy waiting;  

b) Waiting processes loop continuously at the entry point; waste cpu cycles 

c) User space threads might not give control to others ! 

d) Hardware dependent;  and  NOT Bounded waiting!! 
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Solution using Swap Instruction 

lock = FALSE 

while(1){ 

   … …  

   key = TRUE; 

   while (key == TRUE)  

      Swap(&lock, &key ); 

 

       Critical Section; 

 

   lock = FALSE //release the lock 

 

      remainder section 

 

} 
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What is the problem with solutions so far! 

 Mutual exclusion  √ 

 Progress √ 

 Bounded waiting ?  
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Exercise 

Write a general solution to synchronize n processes   

// shared data structures 

int waiting[n]={0}; // to enter CS 

int lock=0; 

// code for P_i 

do { 

   Entry section 

      // CS 

   Exit Section 

      // Remainder  

      // Section 

} while(1); 

waiting[i] = 1; 

key = 1; 

while(waiting[i] && key) 

   key = GetAndSet(&lock); 

waiting[i] = 0; 

j = (i+1) % n; 

while((j!=i) && !waiting[j]) 

    j = (j+1) % n; 

if (j == i)  

   lock=0; 

else 

   waiting[j] = 0 
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SEMAPHORES 

Hardware instructions are complicated for programmers and spin-

locks waste CPU time… 

Software-based synchronization support to deal with these two 

problems 
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Semaphore 

 

 Semaphore S – integer variable 
 

 Can only be accessed via two  

 indivisible (atomic) operations 

 acquire() and release() 

 Originally called P() and V(),  

 Also called: wait() and signal(); or 

      down() and up() 
 

 How can we make wait() and signal() atomic? (We will discuss later) 

 First let us focus on their usage 

 Easy to generalize, and less complicated for application programmers 

 Busy waiting (spinlock) can be avoided by blocking a process 

execution until some condition is satisfied 

 

wait(value) 

signal(value) 
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Semaphore Usage 

 Counting semaphore – integer 

value can range over an 

unrestricted domain 

 Can be used to control 

access to a given resources 

consisting of finite number of 

instances  

 Binary semaphore – integer 

value can range only between 

0 and 1; Also known as mutex 

locks 

 

mutex = 1 

while(1){ 

   ……  

   wait(mutex);  

 

       Critical Section 

 

   signal(mutex); 

 

      remainder section 

} 

S = number of resources 

while(1){ 

  ……  

  wait(S);  

    use one of S resource  

  signal(S); 

    remainder section 

} 
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Semaphore Usage (cont’d) 

 Also used for synchronization 

Suppose we require S2 to be executed after S1 is completed 

 

 

 

 How can we synchronize these two processes? 

 Declare a sync semaphore and initially set it to 0 

 // Proc1 

… 

S1;  

Signal(sync); 

…  

// Proc2 

… 

wait(sync); 

S2;  

…  

// Proc1 

… 

S1;  

…  

// Proc2 

… 

S2;  

…  
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Java Example Using Semaphores 

criticalSection() {  

  Balance = Balance – 100;  

} 
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Semaphore Implementation 

 Main disadvantage of this 
implementation is that it requires 
busy waiting because of spin lock 

 Waste CPU time 

 Processes might do context SW but 
threads would be in loop for ever 

wait(value) 

signal(value) 

 To overcome busy waiting, we can  

 replace spinlock with block process,  

 Wait/acquire blocks the process (e.g., places the process in a 
queue) if the semaphore value is not positive. And give CPU to 
another process 

 Signal /release will remove a process from queue and wake it up 

 If CS is short, spinlock might be better than this option as it avoids 
context SW 
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Semaphore Implementation with  

no Busy waiting  
 With each semaphore there is an 

associated waiting queue. Each 

entry in a waiting queue has two 

data items: 

  value (of type integer) 

  pointer to next record in the list 

 Two operations: 

 block – place the process invoking 

the operation on the appropriate 

waiting queue. 

 wakeup – remove one of processes 

in the waiting queue and place it in 

the ready queue. 

 Negative semaphore values. 

                         

(what does that mean?) 
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Semaphore Implementation 

 The second major issue is how to implement  acquire()/wait() 
and release()/signal() in an atomic manner 

 Must guarantee that no two processes can execute acquire/wait 
and release/signal on the same semaphore at the same time 

 In other words, their implementation becomes the critical 
section problem where the acquire/wait and release/signal 
codes are placed in the critical section. 

 Could now have busy waiting in critical section implementation 
because these implementation codes are short  

 We moved busy waiting from application to here; but, note that 
applications may spend lots of time in critical sections and 
therefore busy waiting is not a good solution there while OK here. 
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Deadlock and Starvation 

 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes 

 Let S and Q be two semaphores initialized to 1 

   

 

 

 

 

 

 

 

 Starvation  – indefinite blocking.  A process may never be 
removed from the semaphore queue in which it is suspended. 

Application 
programmer 
must be 
careful!  
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Priority Inversion 

 L < M < H 

 L has resource x 

 H wants resource x, but it will wait for this resource 

 Now M becomes runnable and preempts L 

 M will have higher priority than H !!!!  

     (Mars path finder had that problem) 

Solutions 

 Use only two priorities, but this not flexible  

 Priority-inheritance  

 L will inherit Highest priority while using resource x. When it is 

finished, its priority will be reverted to the original one 
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CLASSICAL PROBLEMS OF 

SYNCHRONIZATION 

Bounded-Buffer (Consumer-Producer) Problem 
 

Readers and Writers Problem 
 

Dining-Philosophers Problem 
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 Need to make sure that 

 The producer and the consumer do not access the 

buffer area and related variables at the same time 

 No item is made available to the consumer if all the 

buffer slots are  empty. 

 No slot in the buffer is made available to the 

producer  if all the  buffer slots are full 

producer consumer 

  

. 

Bounded-Buffer Problem 

for consumer-producer application 
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What Semaphores are needed? 

semaphore mutex, full, empty; 

Initially: 

 

mutex = 1  // controlling mutual access to the buffer  

 

full = 0  // The number of full buffer slots  

 

empty = n   // The number of empty buffer slots  

 

What are the initial values? 

. 
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Bounded buffer Codes 

44 

  
  wait(empty); // init. n 
  wait(mutex); 
 
  add item to buffer 
 
  signal(mutex); 
  signal(full); 
 
  

 
   wait(full); // 0 
   wait(mutex); 
 
   remove an item from buffer   
 
  signal(mutex); 
  signal(empty); 
 
   return the item 

Insert an item Remove an item 
What will  
happen if  
we change  
the order? 

. 

What will  
happen if  
we change  
the order? 

Be careful of the sequence of semaphore operations;  

deadlock could happen as shown before;  

 

The general rule: get the easy resource first, and then 

difficult; release in reverse order; 
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Bounded-Buffer Problem with Java 



6.46 SGG Operating System Concepts 

Producer and consumer application 
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Readers-Writers Problem 

 Problem – allow multiple readers to read at the same time; but only 

one single writer can access the shared data at the same time 

 Shared Data 

 Data set 

 Integer readerCount initialized to 0 

 Semaphore mutex initialized to 1    //for readers to access readerCount 

 Semaphore db initialized to 1  //for writer/reader mutual exclusive 

 

A data set is shared 
among a number of 
concurrent processes 

Readers only read 
the data set; they do 
not perform any 
updates, so multiple 
readers may access 
the shared data 
simultaneously  

Writers can 
both read and 
write, so they 
must have 
exclusive access  
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Reader             Writer 

wait(mutex); 

   readerCount++;  

   if(readerCount == 1) 

 wait(db); 

signal(mutex); 

 … 

reading is performed 

 … 

wait(mutex); 

   readerCount--; 

   if(readcount == 0) 

 signal(db); 

signal(mutex); 

wait(db); 

… 

writing is performed 

… 

signal(db); 

Any problem with  
this solution?! 

What happens if one 
reader gets in first? 

. 

This solution is generalized as readers-writers lock…  
multiple processes acquire r lock but only one can acquire w lock 
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Readers-Writers Problem with Java 

wait(db); 

… 

writing isperformed 

… 

signal(db); 

wait(mutex); 

   readerCount++;  

   if(readerCount == 1) 

 wait(db); 

signal(mutex); 

 … 

reading is performed 

 … 

wait(mutex); 

   readerCount--; 

   if(readcount == 0) 

 signal(db); 

signal(mutex); 
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Readers-Writers Problem with Java (Cont.) 
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Advanced Reader/Writer Problems 

 Preferred Reader: original solution favors readers 

 

 Preferred Writer Problem 

 If there is a writer in or waiting, no additional reader in 

 

 Alternative Reader/Writer Problem 

 Reader/writer take turn to read/write 

* 
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Preferred Writer: Variables & 

Semaphores 
 Variables 

 readcount: number of readers current reading, init 0 

 writecount: number of writers current writing or waiting, init 0 

 

 Semaphores 

 rmtx: reader mutex for updating readcount, init 1; 

 wmtx: writer mutex for updating writecount, init 1; 

 

 wsem: semaphore for exclusive writers, init 1; 

 rsem: semaphore for readers to wait for writers, init 1; 

 renter: semaphore for controlling readers getting in; 

* 
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Preferred Writer: Solutions 

wait(wmtx); 

  writecount++;  

  if (writecount = = 1) 

 wait(rsem); 

signal(wmtx); 

 

wait(wsem); 

WRITING  

signal(wsem); 

 

wait(wmtx); 

  writecount--; 

  if (writecount == 0) 

 signal(rsem); 

signal(wmtx); 

//wait(renter); 

wait(rsem); 

  wait(rmtx); 

    readcount++; 

    if (readcount = = 1) 

 wait(wsem); 

  signal(rmtx); 

signal(rsem); 

//signal(renter); 

READING  

wait(rmtx); 

  readcount--; 

  if (readcount == 0) 

 signal(wsem); 

signal(rmtx); 

Reader Writer 

* 
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Dining-Philosophers Problem 

 Shared data  

 Bowl of rice (data set) 

 semaphore chopStick[5]; // Initially all set to 1 

Five philosophers share a common 

circular table.  There are five chopsticks 

and a bowl of rice (in the middle).   

When a philosopher gets hungry, he 

tries to pick up the closest chopsticks. 

A philosopher may pick up only one 

chopstick at a time, and cannot pick up a 

chopstick already in use.  

When done, he puts down both of his 

chopsticks, one after the other. 

How to design a deadlock-free and 

starvation-free protocol…. 

 

0 

1 

2 3 

4 

0 

1 

2 

3 

4 
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Dining-Philosophers Problem (cont.) 

 Solution for the i’th 
philosopher: 

while(1) { 

 think; //and become hungry   

 

 wait(chopstick[i]); 

 wait(chopstick[(i+1) % 5]); 

 eat 

 signal(chopstick[i]); 

 signal(chopstick[(i+1) % 5]); 

  … 

} 

Agreement: 
• First, pick right chopstick  
• Then, pick left chopstick 

What is the problem?! 

* 

Deadlock: Each one has one chopstick  
 

Here are some options: allow at most 4 to sit, allow to pick up chopsticks if both 
are available, odd ones take left-then-right while even ones take right-then-left 

Deadlock-free does not mean starvation-free (how about progress, and bounded waiting) 
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MONITORS 

Programmers may mistake in the order of wait and signal and 

cause deadlock 
 

A high-level abstraction that provides a convenient and effective 

mechanism for process synchronization 
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What are the problems with Sem? 

 Wait/signal should be executed in the 

correct order; but, programmers may 

make mistake 

 To deal with such mistakes, researchers 

developed monitors  to provide a 

convenient and effective mechanism for 

process synchronization 

 A monitor is a collection of procedures, 

variables, and data structures grouped 

together 

 Only one process may be active within 

the monitor at a time 

 A monitor is a language construct (e.g., 

synchronized methods in Java) 

 The compiler enforces mutual exclusion. 

 Semaphores are usually an OS construct 

 

public class SynchronizedCounter 

{ 

  private int c = 0;  

  public synchronized void inc(){  

     c++;  

  }  

  public synchronized void dec(){  

     c--;  

  }  

  public synchronized int value()  

  {  

     return c;  

  }  

} 
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Schematic View of a Monitor 

 Monitor construct ensures at 

most one process/thread can be 

active within the monitor at a 

given time. 

 Shared data (local variables) of 

the monitor can be accessed 

only by local procedures. 

 So programmer does not need 

to code  this synchronization 

constraints explicitly  

 However, this is not sufficiently 

powerful , so for tailor-made 

synchronization, condition 

variable construct is provided 

58 

* 
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Condition Variables 

 Condition x, y;  

 // a queue of blocked processes 
 

 Two operations  

 x.wait () means that the 

process invoking this 

operation is suspended until 

another process invokes 

x.signal(); (similar to 

processes waiting for I/O to 

complete) 

 x.signal () resumes exactly 

one suspended process (if 

any) that invoked x.wait (); 

otherwise, no effect.  

 Monitor is not a counter  

Signal and wait 
Signal and continue 
 
Many languages have some support,  
We will see Java later 
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Solution to Dining Philosophers 

 Each philosopher picks 
up chopsticks if both 
are available  

 P_i can set state[i] to 
eating if her two neighbors 
are not eating 

 We need condition self[i] 
so P_i can delay herself 
when she is hungry but 
cannot get chopsticks 

 Each P_i invokes the 
operations takeForks(i)  
and returnForks(i) in the 
following sequence: 

      dp.takeForks (i) 

           EAT 

       dp.returnForks (i) 

• No deadlocks 

• How about Starvation? 
• http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html 
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Exercise  

Producer-Consumer (PC) Monitor 

Monitor PC { 

  condition full, empty; 

  int count; 

 

  void init() { 

    count = 0;  

  } 

 

  void insert(int item){ 

if (count==N) full.wait(); 

   insert_item(item);  

count++; 

if (count==1) empty.signal();  

 } 

 

 int remove(){ 

 int m; 

if (count==0)  empty.wait(); 

m = remove_item();  

 count--; 

if (count==N–1) full.signal(); 

   return m;   

 } 

. 

void producer()  {   

//Producer process 

  while (1) { 

   item=Produce_Item(); 

    PC.insert(item); 

} 

} 

void consumer(){  

//Consumer process  

while (1) { 

    item = PC.remove(); 

    consume_item(item); 

 } 

} 
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Monitor Implementation 

 Monitors are implemented by using queues to keep track of the 

processes attempting to become active in the monitor. 

 To be active, a monitor must obtain a lock to allow it to execute. 

 Processes that are blocked are put in a queue of processes 

waiting for an unblocking event to occur.  

 The entry queue contains processes attempting to call a monitor procedure from 

outside the monitor. Each monitor has one entry queue. 

 The signaller queue contains processes that have executed a notify operation. 

Each monitor has at most one signaller queue. In some implementations, a notify 

leaves the process active and no signaller queue is needed. 

 The waiting queue contains processes that have been awakened by a notify 

operation. Each monitor has one waiting queue. 

 Condition variable queues contain processes that have executed a condition 

variable wait operation. There is one such queue for each condition variable. 

 The relative priorities of these queues determines the operation 

of the monitor implementation. 
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JAVA SYNCHRONIZATION  

http://www.caveofprogramming.com/tag/multithreading/  

http://www.caveofprogramming.com/tag/multithreading/
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Recall Bounded Buffer  

 Busy waiting loops when buffer is full or empty 

 Shared variable count may develop race condition 

 We will see how to solve these problems using Java sync 

 Busy waiting can be removed by blocking a process  

 while(full/empty); vs. 

 while(full/empty) Thread.yield();  

 Problem: livelock  

 (e.g., a process with high priority waits here while another low priority 

process tries to update full/empty) 

 We will see there is a better alternative than busy waiting or yielding 

 Race condition 

 Can be solved using synchronized methods (see next page) 
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Java Synchronization 

 Java provides synchronization at 

the language-level. 

 Each Java object has an 

associated lock. 

 This lock is acquired by invoking 

a synchronized method. 

 This lock is released when 

exiting the synchronized 

method. 

 Threads waiting to acquire the 

object lock are placed in the 

entry set for the object lock. 
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Java Synchronization 

 Why the previous solution is incorrect? 

 Suppose buffer is full and consumer is sleeping. 

 Producer call insert(), gets the lock and then yields. 

But it still has the lock, 

 So when consumer calls remove(), it will block because 

the lock is owned by producer …  

 Deadlock 

 We can solve this problem using two new Java methods 

 When a thread invokes wait(): 

1. The thread releases the object lock; 

2. The state of the thread is set to Blocked;  

3. The thread is placed in the wait set for the object. 

 When a thread invokes notify(): 

1. An arbitrary thread T from the wait set is selected; 

2. T is moved from the wait to the entry set; 

3. The state of T is set to Runnable. 
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Java Synchronization - Bounded Buffer 
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Bounded-Buffer Problem with Java 
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Java Synchronization 

 The call to notify() selects an 

arbitrary thread from the wait set.  

 It is possible the selected thread 

is in fact not waiting upon the 

condition for which it was notified. 

 Consider doWork():  

 turn is 3, T1, T2, T4 are in wait 

set, and T3 is in doWork() 

 What happens when T3 is done? 
 

 The call notifyAll() selects all 

threads in the wait set and moves 

them to the entry set.  
 

 In general, notifyAll() is a more 

conservative strategy than 

notify(). 

notify() may 

not notify the 

correct thread! 
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Java Synchronization - Readers-Writers 
using both notify() and notifyAll() 
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Java Synchronization 
 Block synchronization  

  Rather than synchronizing an entire method, Block 

synchronization allows blocks of code to be declared as 

synchronized 

 This will be also necessary if you need more than one 

locks to share different resources  
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Java Synchronization 

   Block synchronization using wait()/notify() 
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Concurrency Features in Java 5 

 Prior to Java 5, the only concurrency features in 

Java were Using synchronized/wait/notify. 
 

 Beginning with Java 5, new features were 

added to the API: 

   Reentrant Locks 

   Semaphores 

   Condition Variables 
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Concurrency Features in Java 5 

   Reentrant Locks 
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Concurrency Features in Java 5 

   Semaphores 



6.76 SGG Operating System Concepts 

Concurrency Features in Java 5 

   A condition variable is created by first creating a 

      ReentrantLock and invoking its newCondition() method: 

 

   Once this is done, it is possible to invoke the 

      await() and signal() methods 
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Concurrency Features in Java 5 

   doWork() method with condition variables 
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EXTRAS 
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SYNCHRONIZATION 

EXAMPLES 

Pthreads 

Solaris 

Windows XP 

Linux 

Pthread Library  
is for reference and self-study 
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Pthreads Synchronization 

 Pthreads API is OS-independent 
 

 It provides: 

 mutex locks 

 condition variables 
 

 Non-portable extensions include: 

 read-write locks 

 spin locks 
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Synchronization in Pthread Library 

 Mutex variables 

 pthread_mutex_t 

 Conditional variables 

 pthread_cond_t 

 

 All POSIX thread functions have the form: 

              pthread[ _object ] _operation 

 Most of the POSIX thread library functions return 0 in 

case of success and some non-zero error-number in case 

of a failure 

* 
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Mutex Variables: Mutual Exclusion 

 A mutex variable can be either locked  or unlocked 

 pthread_mutex_t lock; // lock is a mutex variable 

 

 Initialization of a mutex variable by default attributes 

 pthread_mutex_init( &lock, NULL ); 

 

 Lock operation 

 pthread_mutex_lock( &lock ) ; 

 

 Unlock operation 

 pthread_mutex_unlock( &lock ) 

* 
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Condition Variables 

 In a critical section, a thread can suspend itself on a 

condition variable if the state of the computation is not 

right for it to proceed. 

 It will suspend by waiting on a condition variable. 

 It will, however, release the critical section lock . 

 When that condition variable is signaled,  it will become 

ready again; it will attempt to reacquire that critical section 

lock and only then  will be able proceed. 

 

 With POSIX threads, a condition variable can be  

associated with only one mutex variable 

* 
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Condition Variables (cont.) 

 pthread_cond_t   SpaceAvailable; 

 pthread_cond_init (&SpaceAvailable, NULL ); 

    

 pthread_cond_wait 

 pthread_cond_signal 

 unblock  one waiting thread on that condition variable 

 

 pthread_cond_broadcast 

 unblock all waiting threads on that condition variable 

* 
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Example: Producer-Consumer Problem 

 Producer will produce a sequence of integers, and deposit 

each integer in a bounded buffer 

    (implemented as an array). 

 All integers are positive, 0..999. 

 Producer will deposit -1 when finished, and then 

     terminate. 

 Buffer is of finite size: 5 in this example. 

 Consumer will remove integers, one at a time, and print 

them. 

 It will terminate when it receives -1. 

* 
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Example: Definitions and Global 

#include<pthread.h> 

#include<stdio.h> 

#include<string.h> 

const int N = 5; 

int Buffer[5]; 

int in = 0; 

int out = 0; 

int count = 0; 

pthread_mutex_t lock; 

pthread_cond_t SpaceAvailable, ItemAvailable; 

* 
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Example: Producer Thread 

void * producer (void *arg){  

 int i; 

     for ( i = 0; i< 1000; i++) { 

        pthread_mutex_lock ( &lock); /* Enter critical section */ 

        while ( count == N ) /* Make sure that buffer is NOT full */ 

           pthread_cond_wait ( &SpaceAvailable, &lock) ; 

  /* Sleep using a condition variable */ 

  /* now  count must be less than N */ 

        Buffer[in] = i; /* Put item in the buffer using "in" */ 

        in = (in + 1) % N; 

        count++; /* Increment the count of items in the buffer */ 

* 
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Example: Producer Thread (Cont.) 

  pthread_mutex_unlock ( &lock); 

  pthread_cond_signal( &ItemAvailable ); 

  /* Wakeup consumer, if waiting */ 

 }  /* End of For loop */ 

 /* Put -1 in the buffer to indicate completion to the consumer */ 

 pthread_mutex_lock ( &lock); 

 while ( count == N ) 

     pthread_cond_wait( &SpaceAvailable, &lock) ; 

 Buffer[in] = -1; in = (in + 1) % N; count++; 

 pthread_mutex_unlock ( &lock ); 

 pthread_cond_signal( &ItemAvailable ); 

 /* Wakeup consumer, if waiting */ 

} // End of producer 

* 
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Example: Consumer Thread 

void * consumer (void *arg){  

 int i = 0; 

 do { 

  pthread_mutex_lock ( &lock); /* Enter critical section */ 

  while ( count == 0 ) 

  /* Make sure that buffer is NOT empty */ 

       pthread_cond_wait( &ItemAvailable, &lock) ; 

   /* Sleep using a condition variable */ 

  /* count must be > 0 */ 

  i = Buffer[out] ; /* Remove item from buffer using "out" */ 

  out = (out + 1) % N; 

  count--; /* Decrement the count of items in the buffer */ 

* 
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Example: Consumer Thread (Cont.) 

  printf( "Removed %d \n", i); 

  pthread_mutex_unlock ( &lock); /* exit critical 

section */ 

  pthread_cond_signal( &SpaceAvailable); 

  /* Wakeup producer, if waiting */ 

 } while ( i != -1 );  /* End of Do loop */ 

} // End of consumer 

* 
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Example: Main program  

main( ) { 

 pthread_t    prod, cons; /* thread variables */ 

 int   n; 

 pthread_mutex_init( &lock, NULL); 

 pthread_cond_init (&SpaceAvailable, NULL); 

 pthread_cond_init (&ItemAvailable, NULL); 

 /* Create producer thread */ 

 if ( n = pthread_create(&prod, NULL, producer ,NULL)) { 

  fprintf(stderr,"pthread_create :%s\n",strerror(n)); 

  exit(1); 

  } 

* 
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Example: Main Program (Cont.) 

 /* Create consumer thread */ 

 if ( n = pthread_create(&cons, NULL, consumer, NULL) ) { 

  fprintf(stderr,"pthread_create :%s\n",strerror(n)); 

  exit(1); 

    } 

 /* Wait for the consumer thread to finish. */ 

 if ( n = pthread_join(cons, NULL) ) { 

  fprintf(stderr,"pthread_join:%s\n",strerror(n)); 

  exit(1); 

     } 

 printf("Finished execution \n" ); 

} // End of main 

* 
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Solaris Synchronization 

 Implements a variety of locks to support multitasking, 

multithreading (including real-time threads), and 

multiprocessing 
 

 Uses adaptive mutexes for efficiency when protecting 

data from short code segments 
 

 Uses condition variables and readers-writers locks 

when longer sections of code need access to data 
 

 Uses turnstiles to order the list of threads waiting to 

acquire either an adaptive mutex or reader-writer lock 
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Windows XP Synchronization 

 Uses interrupt masks to protect access to global 

resources on uniprocessor systems 
 

 Uses spinlocks on multiprocessor systems 
 

 Also provides dispatcher objects which may act as 

either mutexes and semaphores 
 

 Dispatcher objects may also provide events 

 An event acts much like a condition variable 
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Linux Synchronization 

 Linux: 

 Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections 

 Version 2.6 and later, fully preemptive 
 

 Linux provides: 

 semaphores 

 spin locks 
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ATOMIC TRANSACTIONS 

 

System Model 

Log-based Recovery 

Checkpoints 

Concurrent Atomic Transactions 

More later in DS 
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Transactional Memory 

 Memory transaction is a series of read-write operations 

that are atomic. 

 We replace 

 

 

 

 

 With 

 

 

 

 

 The atomic{S} statement ensures the statements in S 

execute as a transaction. 
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System Model 

 Assures that operations happen as a single logical unit of work, in 

its entirety, or not at all 
 

 Related to field of database systems 
 

 Challenge is assuring atomicity  despite computer system failures 
 

 Transaction - collection of instructions or operations that 

performs single logical function 

 Here we are concerned with changes to stable storage – disk 

 Transaction is series of read and write operations 

 Terminated by commit  (transaction successful) or abort 

(transaction failed) operation 

 Aborted transaction must be rolled back to undo any changes it 

performed 
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Types of Storage Media 

 Volatile storage – information stored here does not survive 

system crashes 

 Example:  main memory, cache 
 

 Nonvolatile storage – Information usually survives crashes 

 Example:  disk and tape 
 

 Stable storage – Information never lost 

 Not actually possible, so approximated via replication or RAID 

to devices with independent failure modes 

Goal is to assure transaction atomicity where failures cause loss of 

information on volatile storage 
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Log-Based Recovery 

 Record to stable storage information about all 

modifications by a transaction 
 

 Most common is write-ahead logging 

 Log on stable storage, each log record describes single 

transaction write operation, including 

 Transaction name 

 Data item name 

 Old value 

 New value 

 <Ti starts> written to log when transaction Ti starts 

 <Ti commits> written when Ti commits 
 

 Log entry must reach stable storage before operation on 

data occurs 
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Log-Based Recovery Algorithm 

 Using the log, system can handle any volatile memory 

errors 

 Undo(Ti) restores value of all data updated by Ti 

 Redo(Ti) sets values of all data in transaction Ti to new 

values 
 

 Undo(Ti) and redo(Ti) must be idempotent 

 Multiple executions must have the same result as one 

execution 
 

 If system fails, restore state of all updated data via log 

 If log contains <Ti starts> without <Ti commits>, undo(Ti) 

 If log contains <Ti starts> and <Ti commits>, redo(Ti) 
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Checkpoints 

 Log could become long, and recovery could take long 
 

 Checkpoints shorten log and recovery time. 
 

 Checkpoint scheme: 

1. Output all log records currently in volatile storage to stable 

storage 

2. Output all modified data from volatile to stable storage 

3. Output a log record <checkpoint> to the log on stable 

storage 
 

 Now recovery only includes Ti, such that Ti started 

executing before the most recent checkpoint, and all 

transactions after Ti All other transactions already on 

stable storage 
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Concurrent Transactions 

 Must be equivalent to serial execution – serializability 
 

 Could perform all transactions in critical section 

 Inefficient, too restrictive 
 

 Concurrency-control algorithms provide serializability 
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Serializability 

 Consider two data items A and B 
 

 Consider Transactions T0 and T1 
 

 Execute T0, T1 atomically 
 

 Execution sequence called schedule 
 

 Atomically executed transaction order called serial schedule 
 

 For N transactions, there are N! valid serial schedules 
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Schedule 1: T0 then T1 
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Nonserial Schedule 

 Nonserial schedule allows overlapped execute 

 Resulting execution not necessarily incorrect 
 

 Consider schedule S, operations Oi, Oj 

 Conflict if access same data item, with at least one write 
 

 If Oi, Oj consecutive and operations of different 

transactions & Oi and Oj don’t conflict 

 Then S’ with swapped order Oj Oi equivalent to S 
 

 If S can become S’ via swapping nonconflicting 

operations 

 S is conflict serializable 
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Schedule 2: Concurrent Serializable Schedule 
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Locking Protocol 

 Ensure serializability by associating lock with each data item 

 Follow locking protocol for access control 
 

 Locks 

 Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q 

but not write Q 

 Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read 

and write Q 
 

 Require every transaction on item Q acquire appropriate lock 
 

 If lock already held, new request may have to wait 

 Similar to readers-writers algorithm 
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Two-phase Locking Protocol 

 Generally ensures conflict serializability 
 

 Each transaction issues lock and unlock requests in two phases 

 Growing – obtaining locks 

 Shrinking – releasing locks 
 

 Does not prevent deadlock 
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Timestamp-based Protocols 

 Select order among transactions in advance – 

timestamp-ordering 
 

 Transaction Ti associated with timestamp TS(Ti) before Ti 

starts 

 TS(Ti) < TS(Tj) if Ti entered system before Tj 

 TS can be generated from system clock or as logical 

counter incremented at each entry of transaction 
 

 Timestamps determine serializability order 

 If TS(Ti) < TS(Tj), system must ensure produced schedule 

equivalent to serial schedule where Ti appears before Tj 

 

 



6.111 SGG Operating System Concepts 

Timestamp-based Protocol Implementation 

 Data item Q gets two timestamps 

 W-timestamp(Q) – largest timestamp of any transaction that 
executed write(Q) successfully 

 R-timestamp(Q) – largest timestamp of successful read(Q) 

 Updated whenever read(Q) or write(Q) executed 
 

 Timestamp-ordering protocol assures any conflicting read 
and write executed in timestamp order 
 

 Suppose Ti executes read(Q) 

 If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that was 
already overwritten 

 read operation rejected and Ti rolled back 

 If TS(Ti) ≥ W-timestamp(Q) 

 read executed, R-timestamp(Q) set to max(R-timestamp(Q), TS(Ti)) 
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Timestamp-ordering Protocol 

 Suppose Ti executes write(Q) 

 If TS(Ti) < R-timestamp(Q), value Q produced by Ti was needed 

previously and Ti assumed it would never be produced 

 Write operation rejected, Ti rolled back 

 If TS(Ti) < W-tiimestamp(Q), Ti attempting to write obsolete value 

of Q 

 Write operation rejected and Ti rolled back 

 Otherwise, write executed 
 

 Any rolled back transaction Ti is assigned new timestamp and 

restarted 
 

 Algorithm ensures conflict serializability and freedom from 

deadlock 
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 Schedule Possible Under Timestamp Protocol 
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End of Chapter 6 


