
7.1 SGG Operating System Concepts

Chapter 7: Deadlocks

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

Wait for someone who waits for you!

7.2 SGG Operating System Concepts

Chapter 7: Deadlocks

 The Deadlock Problem *

 System Model **

 Deadlock Characterization *****

 Methods for Handling Deadlocks *****

 Deadlock Prevention ****

 Deadlock Avoidance ****

 Deadlock Detection ***

 Deadlock Recovery **

7.3 SGG Operating System Concepts

Chapter Objectives

 To develop a description of deadlocks, which

prevent sets of concurrent processes from

completing their tasks

 To present a number of different methods for

preventing or avoiding deadlocks in a

computer system

7.4 SGG Operating System Concepts

The Deadlock Problem

 A set of blocked processes each holding a

resource and waiting to acquire a resource held by

another process in the set

 Example 1:

 System has 2 disk drives

 P1 and P2 each hold one disk drive

 and each needs another one

 Example 2:

 Semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B)

 wait (B); wait(A)

P1

 P2

R1

R2

7.6 SGG Operating System Concepts

System Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi

instances

 Each process utilizes a resource

as follows:

 Request
 System calls (e.g., open(), allocate())

 if the requested resource is being used by another

process, block/wait until it is released

 Use

 Release

System calls (e.g., close(), free())

Deadlock

Resources Processes

7.7 SGG Operating System Concepts

DEADLOCK

CHARACTERIZATION

7.8 SGG Operating System Concepts

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously

 Mutual exclusion: Only one process can use a resource at

a time. Other requesting processes must wait.

 Hold and wait: A process holding at least one resource is

waiting to acquire additional resources held by other processes

 No preemption: A resource can be released only voluntarily

by the process holding it, after that process has completed its task

 Circular wait: There exists a set {P0, P1, …, Pn} of waiting

processes such that P0 is waiting for a resource that is held by P1,

P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting

for a resource that is held by Pn, and Pn is waiting for a resource

that is held by P0

7.9 SGG Operating System Concepts

Resource-Allocation Graph: G(V, E)

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

 R = {R1, R2, …, Rm}, the set consisting of all

resource types in the system.

 Request edge

 Directed edge Pi Rj

 Pi requests instance of Rj

 Assignment edge

 Directed edge Rj Pi

 Pi is holding an instance of Rj

Resource Type with 4 instances

A Process

Pi

Rj

A request edge

Pi

Rj

An assignment edge

7.10 SGG Operating System Concepts

Basic Facts

 If graph contains no cycles no deadlock

 If graph contains a cycle there might be a deadlock

 if only one instance per resource type, then deadlock

 if several instances per resource type, possibility of deadlock

With A Deadlock Cycle But No Deadlock No Deadlock

7.11 SGG Operating System Concepts

METHODS FOR HANDLING

DEADLOCKS

7.12 SGG Operating System Concepts

Methods for Handling Deadlocks

 Ensure that the system will never enter

a deadlock state:

 Prevention and

 Avoidance

 Allow the system to enter a deadlock

state but then detect and remove it:

 Detection and Recovery

 Ignore the problem and pretend that

deadlocks never occur in the system.
 Used by most operating systems (e.g., UNIX, Java)

 - performance degradation when there is deadlock

 - manual intervention is needed (e.g., re-start the system)

 + easy and cheap

Which

method

would

you

select?

and

why?

7.13 SGG Operating System Concepts

Java Deadlock Example
Thread A Thread B

When there will a deadlock?

threadA (second)lockY

threadB (first)lockX threadA

But it might happen if threadA gets both first!

7.14 SGG Operating System Concepts

Handling Deadlocks in Java

Up to programmer to write a
deadlock-free programs!

7.15 SGG Operating System Concepts

DEADLOCK PREVENTION

Restrain the ways request can be made

7.16 SGG Operating System Concepts

Deadlock Prevention

 Mutual Exclusion
 Non-sharable resources (e.g., printer) must be allocated exclusively

 Sharable resources (e.g., read only files) can be shared

 Hold and Wait
 Require process to request and be allocated all its resources before it begins execution, or allow

process to request resources only when the process has none

 No Preemption
 If a process that is holding some resources requests another resource that cannot be

immediately allocated to it, then all resources currently being held are released

 Preempt resources (e.g., cpu) and put process into waiting queue; preempted process will be

restarted only when it can regain its old resources, as well as the new ones that it is requesting

 Circular Wait
 impose a total ordering of all resource types, and require that each process requests resources

in an increasing order of enumeration (e.g., F(tape)=1, F(disk)=5, F(print)=12)

- low device utilization, reduce system throughput, starvation possible

Make sure at least one of the four conditions cannot hold

7.17 SGG Operating System Concepts

DEADLOCK AVOIDANCE

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource type

 Use the banker’s algorithm

7.18 SGG Operating System Concepts

Deadlock Avoidance

 Require additional a priori information about how

resources are to be requested.

 Suppose the system knows that

 P will request first the printer then the tape while

 Q will request first the tape then the printer

 Now the system can avoid deadlock by not allowing

P or Q while the other made some allocation!

 Solutions/Algorithms differ in how much additional

information to require!

7.19 SGG Operating System Concepts

Deadlock Avoidance cont’d

 Simplest and most useful model requires each

process to declare the maximum number of

resources of each type that it may need.

 When a process requests an available resource,

the deadlock-avoidance algorithm dynamically

examines the resource-allocation state to ensure

that there can never be a circular-wait condition

 In other words, the system must decide if

immediate allocation leaves the system in a safe

state.

7.20 SGG Operating System Concepts

Safe State

 The system can allocate resources to each process

in some order and still avoid deadlock

 System is in safe state if there exists a sequence

<P1, P2, …, Pi-1, Pi , Pi+1, …, Pn> such that

 the resources for Pi can be satisfied by currently available

resources and resources held by all the Pj, with j < i

 That is:

 If Pi resource needs are not immediately available, then

Pi can wait until all Pj have finished.

 When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate.

 When Pi terminates, Pi +1 can obtain its needed

resources, and so on.

Otherwise, we have unsafe state.

7.21 SGG Operating System Concepts

Basic Facts

 If a system is in safe state no deadlocks

 If a system is in unsafe state possibility of

deadlock

 Avoidance ensure that a system will never

enter an unsafe state.

7.22 SGG Operating System Concepts

Example

Max number of tapes is 12.

 Max need Currently holding

 P0 10 5

 P1 4 2

 P2 9 2

 Does <P1, P0, P2> satisfy safety condition?

 Suppose P2 gets one more tape,
 P0 10 5

 P1 4 2

 P2 9 3

 Are we still in safe state? Why or why not?

 Don’t allow P2 get the 3rd tape to avoid deadlock

7.23 SGG Operating System Concepts

Resource-Allocation Graph Scheme
Single instance of a resource type

 Claim resources a priori in the system

 Add Claim edge Pi Rj
 Process Pi may request resource Rj (represented by a dashed line)

 Claim Request Assignment edges

 Suppose that process P2 requests the

resource R2, can we grant this request?
 If we grant it, there will be cycle (unsafe state)

 The request can be granted only if

converting the request edge to an

assignment edge does not result in

the formation of a cycle

 Cycle-detection algorithm (e.g., DFS)
Adjacency list O(N + E), or adjacency matrix O(N2).

7.24 SGG Operating System Concepts

Recall: Resource-Allocation Graph: G(V, E)

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

 R = {R1, R2, …, Rm}, the set consisting of all

resource types in the system.

 Request edge

 Directed edge Pi Rj

 Pi requests instance of Rj

 Assignment edge

 Directed edge Rj Pi

 Pi is holding an instance of Rj

Resource Type with 4 instances

A Process

Pi

Rj

A request edge

Pi

Rj

An assignment edge

7.25 SGG Operating System Concepts

Banker’s Algorithm
Multiple instances of a resource type

 Each new process must a priori declare

maximum number of resources it may use

 The system determines if the system will be

safe if all requested resources are allocated

 If yes, then allocate resources

 Otherwise, the new process must wait until more

resources are released by others

 When a process gets all its resources, it must

return them in a finite amount of time

7.26 SGG Operating System Concepts

Data Structures for the Banker’s Algorithm

 Available[j] = k,

 There are k instances of resource type Rj available

 Max[i,j] = k,

 Pi may request at most k instances of resource type Rj

 Allocation[i,j] = k,

 Pi is currently allocated k instances of Rj

 Need[i,j] = k,

 Pi may need k more instances of Rj to complete its task

 Need[i,j] = Max[i,j] – Allocation[i,j]

Let n = number of processes, and m = number of resources types.

j=0,1, 2, … m-1

i=0,1,2,…, n-1
j=0,1, 2, … m-1

7.27 SGG Operating System Concepts

Safety Algorithm
Find out if the system is safe or not

1. Initialize Work and Finish

 Work[j] = Available[j] for j=0,1, 2, … m-1

 Finish[i] = false for i = 0, 1, …, n- 1

2. Find an index i such that both:

 Finish[i] == false

 Need[i,j] Work[j] for j=0,1, 2, … m-1

 If no such i exists, go to step 4

3. Work[j] = Work[j] + Allocation[i,j] for j=0,1, 2, … m-1

Finish[i] = true
go to step 2

4. If Finish[i] == true for all i, then the system is in a
safe state else not

Complexity

O(m n2)

Work is like tmp Available

7.28 SGG Operating System Concepts

Resource-Request Algorithm for Process Pi
Determine if the request can be safely granted

Request[i,j] = k, Pi wants k instances of resource type Rj

1. If Requesti Needi, go to step 2.

 Otherwise, raise error condition, since process has exceeded its maximum claim

2. If Requesti Available, go to step 3.

 Otherwise Pi must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by

modifying the state as follows:
 Available = Available – Requesti;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

Call the safety algorithm

 If safe the resources are allocated to Pi

 If unsafe Pi must wait, and restore the old resource-allocation

7.29 SGG Operating System Concepts

Example of Banker’s Algorithm

 5 processes P0 through P4;

 3 resource types: A (10 instances), B (5), and C (7)

 Snapshot at time T0:

 Allocation Max Finish Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 f 3 3 2

 P1 2 0 0 3 2 2 f

 P2 3 0 2 9 0 2 f

 P3 2 1 1 2 2 2 f

 P4 0 0 2 4 3 3 f

Max-Allocation

 Need

 A B C

 7 4 3

 1 2 2

 6 0 0

 0 1 1

 4 3 1

 Is the system in a safe state?

 Yes, < P1, P3, P4, P2, P0> satisfies safety criteria

Work=

5 3 2 t

7 4 3 t

7 4 5 t

10 4 7 t

10 5 7 t

7.30 SGG Operating System Concepts

Example (Cont.): P1 Request (1,0,2)

 Check Request Needi, i.e., (1,0,2) (1,2,2) true

 Check Request Available, i.e. (1,0,2) (3,3,2) true

 Pretend to allocate and update the state

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 1 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

 Execute safety algorithm

 < P1, P3, P4, P0, P2> satisfies safety requirement

7.31 SGG Operating System Concepts

Example (Cont.): Exercise

 Can request for (3,3,0) by P4 be granted?

 No because resources are not available

 Can request for (0,2,0) by P0 be granted?

 No. Actually, resources are available but they

cannot be granted since the resulting state would

be unsafe!

7.32 SGG Operating System Concepts

DEADLOCK DETECTION

Allow system to enter deadlock state

 Detection algorithm (same as safety algorithm)

 Recovery scheme

7.33 SGG Operating System Concepts

Single Instance of Each Resource Type

 Maintain wait-for graph

 Nodes are processes

 Pi Pj if Pi is waiting for Pj

 Periodically invoke an algorithm that

searches for a cycle in the graph.

 If there is a cycle, there exists a deadlock

 An algorithm to detect a cycle in a graph

requires an order of n2 operations, where n is

the number of vertices in the graph

7.34 SGG Operating System Concepts

Resource-Allocation Graph and

Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

7.35 SGG Operating System Concepts

Several Instances of a Resource Type

 Available: A vector of length m indicates the

number of available resources of each type.

 Allocation: An n x m matrix defines the number

of resources of each type currently allocated to

each process.

 Request: An n x m matrix indicates the current

request of each process. If Request[i,j] = k, then

process Pi is requesting k more instances of

resource type. Rj.

7.36 SGG Operating System Concepts

Detection Algorithm
(recall safety algorithm)

1. Initialize Work and Finish:
 Work[j] = Available[j] for j=0,1, 2, … m-1

 if Allocationi 0, for i=0,1, 2, … n-1

 then Finish[i] = false

 else Finish[i] = true

2. Find an index i such that both:
 Finish[i] == false

 Requesti Work

 If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == true for all i, then no deadlock;
otherwise, the system is in deadlock state.

Algorithm

requires an

order of

O(m x n2)

operations

If Finish[i]==false, then
Pi is deadlocked

7.37 SGG Operating System Concepts

Example of Detection Algorithm

 Five processes P0 through P4;

 Three resource types A (7 instances), B (2), C (6)

 Snapshot at time T0:
 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

 <P0, P2, P3, P1, P4> will result in Finish[i] = true for

all i, so no deadlock

7.38 SGG Operating System Concepts

Example (Cont.)

 P2 requests an additional instance of type C

 Request

 A B C

 P0 0 0 0

 P1 2 0 2

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes’ requests

 Deadlock exists, consisting of processes P1, P2, P3, and P4

7.39 SGG Operating System Concepts

Detection-Algorithm Usage

 When, and how often, to invoke

 depends on:
 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?
one for each disjoint cycle

 If detection algorithm is invoked frequently

 Performance overhead

 If invoked at rather wide intervals,

 There may be many cycles in the resource graph

and so we would not be able to tell which of the

many deadlocked processes “caused” the

deadlock.

7.40 SGG Operating System Concepts

RECOVERY FROM DEADLOCK

Process Termination

Resource Preemption

7.41 SGG Operating System Concepts

Recovery from Deadlock:

Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock

cycle is eliminated

 In which order should we choose to abort?

 Priority of the process

 How long process has computed, and how much longer

to completion

 Resources the process has used

 Resources the process needs to complete

 How many processes will need to be terminated

 Is process interactive or batch?

7.42 SGG Operating System Concepts

Recovery from Deadlock:

Resource Preemption

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart

process for that state

 Starvation – same process may always be

picked as victim, include number of rollback

in cost factor

7.43 SGG Operating System Concepts

End of Chapter 7

None of the basic approaches alone is enough, but they
can be combined for different types of resources!

