
7.1 SGG Operating System Concepts 

Chapter 7:  Deadlocks 

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

Wait for someone who waits for you! 
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Chapter 7:  Deadlocks 

 The Deadlock Problem   * 

 System Model     ** 

 Deadlock Characterization   ***** 

 Methods for Handling Deadlocks ***** 

 Deadlock Prevention    ****   

 Deadlock Avoidance    **** 

 Deadlock Detection     *** 

 Deadlock Recovery      ** 
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Chapter Objectives 

 To develop a description of deadlocks, which 

prevent sets of concurrent processes from 

completing their tasks 
 

 To present a number of different methods for 

preventing or avoiding deadlocks in a 

computer system 
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The Deadlock Problem 

 A set of blocked processes each holding a 

resource and waiting to acquire a resource held by 

another process in the set 

 Example 1:  

 System has 2 disk drives 

 P1 and P2 each hold one disk drive  

 and each needs another one 

 Example 2:  

 Semaphores A and B, initialized to 1     

        P0           P1 

     wait (A);  wait(B) 

     wait (B);  wait(A) 

 

P1 

 P2 

 

R1 

R2 
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System Model 

 Resource types R1, R2, . . ., Rm 

CPU cycles, memory space, I/O devices 

 Each resource type Ri has Wi 

instances 

 Each process utilizes a resource 

as follows: 

 Request 
 System calls (e.g., open(), allocate()) 

 if the requested resource is being used by another 

process, block/wait until it is released 

 Use 

 Release 

System calls (e.g., close(), free()) 

 

 

Deadlock 

Resources Processes 
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DEADLOCK 

CHARACTERIZATION 
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Deadlock Characterization 

Deadlock can arise if four conditions hold simultaneously 

 Mutual exclusion:  Only one process can use a resource at 

a time. Other requesting processes must wait.  

 Hold and wait:  A process holding at least one resource is 

waiting to acquire additional resources held by other processes 

 No preemption:  A resource can be released only voluntarily 

by the process holding it, after that process has completed its task 

 Circular wait:  There exists a set {P0, P1, …, Pn} of waiting 

processes such that P0 is waiting for a resource that is held by P1, 

P1 is waiting for a resource that is held by  P2, …, Pn–1 is waiting 

for a resource that is held by Pn, and Pn is waiting for a resource 

that is held by P0 
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Resource-Allocation Graph: G(V, E) 

 V is partitioned into two types: 

 P = {P1, P2, …, Pn}, the set consisting of all the 

processes in the system 

 R = {R1, R2, …, Rm}, the set consisting of all 

resource types in the system.  

 Request edge  

 Directed edge Pi  Rj 

 Pi requests instance of Rj 

 Assignment edge  

 Directed edge Rj  Pi 

 Pi is holding an instance of Rj 

 

Resource Type with 4 instances 

A Process 

Pi 

Rj 

A request edge 

Pi 

Rj 

An assignment edge 
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Basic Facts 

 If graph contains no cycles  no deadlock 
 

 If graph contains a cycle  there might be a deadlock 

 if only one instance per resource type, then deadlock 

 if several instances per resource type, possibility of deadlock 

With A Deadlock Cycle But No Deadlock No Deadlock 
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METHODS FOR HANDLING 

DEADLOCKS 
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Methods for Handling Deadlocks 

 Ensure that the system will never enter 

a deadlock state:  

 Prevention and  

 Avoidance  

 Allow the system to enter a deadlock 

state but then detect and remove it:  

 Detection and Recovery 

 Ignore the problem and pretend that 

deadlocks never occur in the system. 
 Used by most operating systems (e.g., UNIX, Java) 

 - performance degradation  when there is deadlock 

 - manual intervention is needed (e.g., re-start the system)  

 + easy and cheap 

Which  

method  

would  

you  

select? 

and  

why? 
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Java Deadlock Example 
Thread A Thread B 

When there will a deadlock? 
 

threadA  (second)lockY  

threadB  (first)lockX  threadA 

But it might happen if threadA gets both first! 
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Handling Deadlocks in Java 

Up to programmer to write a 
deadlock-free programs! 
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DEADLOCK PREVENTION 

 

Restrain the ways request can be made 
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Deadlock Prevention 

 Mutual Exclusion   
 Non-sharable resources (e.g., printer) must be allocated exclusively 

 Sharable resources (e.g., read only files) can be shared  

 Hold and Wait  
 Require process to request and be allocated all its resources before it begins execution, or allow 

process to request resources only when the process has none 

 No Preemption 
 If a process that is holding some resources requests another resource that cannot be 

immediately allocated to it, then all resources currently being held are released 

 Preempt resources (e.g., cpu) and put process into waiting queue; preempted process will be 

restarted only when it can regain its old resources, as well as the new ones that it is requesting 

 Circular Wait  
 impose a total ordering of all resource types, and require that each process requests resources 

in an increasing order of enumeration (e.g., F(tape)=1, F(disk)=5, F(print)=12) 

- low device utilization, reduce system throughput, starvation possible 

 

Make sure at least one of the four conditions cannot hold 
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DEADLOCK AVOIDANCE 

Single instance of a resource type 

Use a resource-allocation graph 
 

Multiple instances of a resource type 

 Use the banker’s algorithm 
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Deadlock Avoidance 

 Require additional a priori information about how 

resources are to  be requested. 

 Suppose the system knows that  

 P will request first the printer then the tape while  

 Q will request first the tape then the printer 

 Now the system can avoid deadlock by not allowing 

P or Q while the other made some allocation! 

 Solutions/Algorithms differ in how much additional 

information to require! 
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Deadlock Avoidance cont’d 

 Simplest and most useful model requires each 

process to declare the maximum number of 

resources of each type that it may need. 
 

 When a process requests an available resource, 

the deadlock-avoidance algorithm dynamically 

examines the resource-allocation state to ensure 

that there can never be a circular-wait condition 

 In other words, the system must decide if 

immediate allocation leaves the system in a safe 

state.  
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Safe State 

 The system can allocate resources to each process 

in some order and still avoid deadlock 

 System is in safe state if there exists a sequence 

<P1, P2, …, Pi-1, Pi , Pi+1, …, Pn>  such that   

 the resources for Pi can be satisfied by currently available 

resources and resources held by all the Pj, with j < i 

 That is: 

 If Pi resource needs are not immediately available, then 

Pi can wait until all Pj have finished. 

 When Pj is finished, Pi can obtain needed resources, 

execute, return allocated resources, and terminate. 

 When Pi terminates, Pi +1 can obtain its needed 

resources, and so on. 

Otherwise, we have unsafe state.  
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Basic Facts 

 If a system is in safe state  no deadlocks 
 

 If a system is in unsafe state  possibility of 

deadlock 
 

 Avoidance  ensure that a system will never 

enter an unsafe state. 
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Example 

Max number of tapes is 12. 

   Max need Currently holding 

  P0      10   5 

  P1       4   2 

  P2       9   2 

 Does <P1, P0, P2> satisfy safety condition? 

 Suppose P2 gets one more tape,  
  P0      10   5 

  P1       4   2 

  P2       9   3 

 Are we still in safe state? Why or why not? 

 Don’t allow P2 get the 3rd tape to avoid deadlock 
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Resource-Allocation Graph Scheme 
Single instance of a resource type 

 Claim resources a priori in the system 

 Add Claim edge Pi  Rj  
 Process Pi may request resource Rj (represented by a dashed line) 

 Claim  Request  Assignment edges 
 

 Suppose that process P2 requests the 

resource R2, can we grant this request? 
 If we grant it, there will be cycle (unsafe state) 

 The request can be granted only if 

converting the request edge to an 

assignment edge does not result in    

the formation of a cycle 

 Cycle-detection algorithm (e.g., DFS) 
Adjacency list O(N + E), or adjacency matrix O(N2).  
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Recall: Resource-Allocation Graph: G(V, E) 

 V is partitioned into two types: 

 P = {P1, P2, …, Pn}, the set consisting of all the 

processes in the system 

 R = {R1, R2, …, Rm}, the set consisting of all 

resource types in the system.  

 Request edge  

 Directed edge Pi  Rj 

 Pi requests instance of Rj 

 Assignment edge  

 Directed edge Rj  Pi 

 Pi is holding an instance of Rj 

 

Resource Type with 4 instances 

A Process 

Pi 

Rj 

A request edge 

Pi 

Rj 

An assignment edge 
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Banker’s Algorithm 
Multiple instances of a resource type 

 Each new process must a priori declare 

maximum number of resources it may use 
 

 The system determines if the system will be 

safe if all requested resources are allocated 

 If yes, then allocate resources 

 Otherwise, the new process must wait until more 

resources are released by others    

 When a process gets all its resources, it must 

return them in a finite amount of time 
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Data Structures for the Banker’s Algorithm  

 Available[j] = k,   

 There are k instances of resource type Rj  available  

 Max[i,j] = k,  

 Pi may request at most k instances of resource type Rj 

 Allocation[i,j] = k,   

 Pi is currently allocated k instances of Rj 

 Need[i,j] = k,  

 Pi may need k more instances of Rj to complete its task 

 Need[i,j] = Max[i,j] – Allocation[i,j] 

Let n = number of processes, and m = number of resources types.  

j=0,1, 2, … m-1 
 
 

i=0,1,2,…, n-1 
j=0,1, 2, … m-1 
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Safety Algorithm 
Find out if the system is safe or not 

1. Initialize Work and Finish    

   Work[j] = Available[j]  for  j=0,1, 2, … m-1 

     Finish[i] = false   for  i = 0, 1, …, n- 1 

2. Find an index i such that both:  

 Finish[i] == false 

 Need[i,j] Work[j]   for  j=0,1, 2, … m-1 

 If no such i exists, go to step 4 

3. Work[j] = Work[j] + Allocation[i,j]    for  j=0,1, 2, … m-1  

Finish[i] = true 
go to step 2 

4. If Finish[i] == true for all i, then the system is in a 
safe state else not 

Complexity  

O(m  n2)  

Work is like tmp Available 
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Resource-Request Algorithm for Process Pi 
Determine if the request can be safely granted 

Request[i,j] = k,  Pi wants k instances of resource type Rj 

1. If Requesti  Needi, go to step 2.   

 Otherwise, raise error condition, since process has exceeded its maximum claim 

2. If Requesti  Available, go to step 3.   

 Otherwise Pi  must wait, since resources are not available 

3. Pretend to allocate requested resources to Pi by 

modifying the state as follows: 
  Available = Available  – Requesti; 

  Allocationi = Allocationi + Requesti; 

  Needi = Needi – Requesti; 

Call the safety algorithm 

 If safe  the resources are allocated to Pi 

 If unsafe  Pi must wait, and restore the old resource-allocation 
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Example of Banker’s Algorithm 

 5 processes P0  through P4;  

 3 resource types: A (10 instances),  B (5), and C (7) 

 Snapshot at time T0: 

 Allocation    Max    Finish  Available 

   A B C    A B C                       A B C 

 P0  0 1 0    7 5 3   f                  3 3 2 

 P1  2 0 0        3 2 2       f 

 P2  3 0 2       9 0 2        f 

 P3  2 1 1       2 2 2        f 

 P4  0 0 2       4 3 3        f   

Max-Allocation  

  Need 

  A B C 

   7 4 3  

  1 2 2  

   6 0 0  

   0 1 1 

   4 3 1  

 Is the system in a safe state? 

 Yes, < P1, P3, P4, P2, P0> satisfies safety criteria 

Work= 

5 3 2 t 

7 4 3 t 

7 4 5 t 

10 4 7 t 

10 5 7 t 
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Example (Cont.):  P1 Request (1,0,2) 

 Check Request  Needi, i.e., (1,0,2)  (1,2,2)  true 

 Check Request  Available, i.e. (1,0,2)  (3,3,2)  true 

 Pretend to allocate and update the state 

             Allocation Need  Available 

             A B C   A B C A B C  

     P0    0 1 0             7 4 3  2 3 0 

     P1    3 0 2             0 2 0   

      P2    3 0 1             6 0 0  

     P3    2 1 1   0 1 1 

     P4    0 0 2   4 3 1  

 Execute safety algorithm  

 < P1, P3, P4, P0, P2> satisfies safety requirement 
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Example (Cont.): Exercise 

 Can request for (3,3,0) by P4 be granted? 

 No because resources are not available 
 

 Can request for (0,2,0) by P0 be granted? 

 No. Actually, resources are available but they 

cannot be granted since the resulting state would 

be unsafe! 
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DEADLOCK DETECTION 

Allow system to enter deadlock state  
 

 Detection algorithm (same as safety algorithm) 
 

 Recovery scheme 
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Single Instance of Each Resource Type 

 Maintain wait-for graph 

 Nodes are processes 

 Pi  Pj   if Pi is waiting for Pj 
 

 Periodically invoke an algorithm that 

searches for a cycle in the graph.  

 If there is a cycle, there exists a deadlock 

 An algorithm to detect a cycle in a graph 

requires an order of n2 operations, where n is 

the number of vertices in the graph 



7.34 SGG Operating System Concepts 

Resource-Allocation Graph and  

Wait-for Graph 

Resource-Allocation Graph Corresponding wait-for graph 
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Several Instances of a Resource Type 

 Available:  A vector of length m indicates the 

number of available resources of each type. 
 

 Allocation:  An n x m matrix defines the number 

of resources of each type currently allocated to 

each process. 
 

 Request:  An n x m matrix indicates the current 

request  of each process.  If Request[i,j] = k, then 

process Pi is requesting k more instances of 

resource type. Rj. 
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Detection Algorithm  
(recall safety algorithm) 

1. Initialize Work and Finish: 
 Work[j] = Available[j]   for  j=0,1, 2, … m-1 

 if Allocationi  0,     for  i=0,1, 2, … n-1 

   then Finish[i] = false  

   else Finish[i] = true 

2. Find an index i such that both: 
 Finish[i] == false 

 Requesti  Work 

     If no such i exists, go to step 4 

3. Work = Work + Allocationi 
Finish[i] = true 
go to step 2 

4. If Finish[i] == true for all i, then no deadlock; 
otherwise, the system is in deadlock state.  

  

Algorithm 

requires an 

order of 

O(m x n2) 

operations 

 

If Finish[i]==false, then 
Pi is deadlocked 
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Example of Detection Algorithm 

 Five processes P0 through P4;  

 Three resource types A (7 instances), B (2), C (6) 

 Snapshot at time T0: 
  Allocation   Request   Available 

  A B C  A B C   A B C 

 P0 0 1 0  0 0 0   0 0 0 

 P1  2 0 0      2 0 2 

 P2 3 0 3     0 0 0  

 P3  2 1 1   1 0 0  

 P4    0 0 2   0 0 2 
 

 <P0, P2, P3, P1, P4> will result in Finish[i] = true for 

all i, so no deadlock 
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Example (Cont.) 

 P2 requests an additional instance of type C 

        Request 

           A B C 

   P0     0 0 0 

   P1     2 0 2 

   P2     0 0 1 

   P3     1 0 0  

   P4     0 0 2 

 State of system? 

 Can reclaim resources held by process P0, but insufficient 

resources to fulfill other processes’ requests 

 Deadlock exists, consisting of processes P1,  P2, P3, and P4 
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Detection-Algorithm Usage 

 When, and how often, to invoke  

 depends on: 
 How often a deadlock is likely to occur? 

 How many processes will need to be rolled back? 
one for each disjoint cycle 

 If detection algorithm is invoked frequently 

 Performance overhead 

 If invoked at rather wide intervals, 

 There may be many cycles in the resource graph 

and so we would not be able to tell which of the 

many deadlocked processes “caused” the 

deadlock. 
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RECOVERY FROM DEADLOCK  

 

Process Termination 

Resource Preemption 
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Recovery from Deadlock:   

Process Termination 

 Abort all deadlocked processes 
 

 Abort one process at a time until the deadlock 

cycle is eliminated 
 

 In which order should we choose to abort? 

 Priority of the process 

 How long process has computed, and how much longer 

to completion 

 Resources the process has used 

 Resources the process needs to complete 

 How many processes will need to be terminated 

 Is process interactive or batch? 
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Recovery from Deadlock:  

Resource Preemption 

 Selecting a victim – minimize cost 
 

 Rollback – return to some safe state, restart 

process for that state 
 

 Starvation –  same process may always be 

picked as victim, include number of rollback 

in cost factor 
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End of Chapter 7 

None of the basic approaches alone is enough, but they 
can be combined for different types of resources! 


