
7.1 SGG Operating System Concepts

Chapter 7: Deadlocks

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

Wait for someone who waits for you!

7.2 SGG Operating System Concepts

Chapter 7: Deadlocks

 The Deadlock Problem *

 System Model **

 Deadlock Characterization *****

 Methods for Handling Deadlocks *****

 Deadlock Prevention ****

 Deadlock Avoidance ****

 Deadlock Detection ***

 Deadlock Recovery **

7.3 SGG Operating System Concepts

Chapter Objectives

 To develop a description of deadlocks, which

prevent sets of concurrent processes from

completing their tasks

 To present a number of different methods for

preventing or avoiding deadlocks in a

computer system

7.4 SGG Operating System Concepts

The Deadlock Problem

 A set of blocked processes each holding a

resource and waiting to acquire a resource held by

another process in the set

 Example 1:

 System has 2 disk drives

 P1 and P2 each hold one disk drive

 and each needs another one

 Example 2:

 Semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B)

 wait (B); wait(A)

P1

 P2

R1

R2

7.6 SGG Operating System Concepts

System Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi

instances

 Each process utilizes a resource

as follows:

 Request
 System calls (e.g., open(), allocate())

 if the requested resource is being used by another

process, block/wait until it is released

 Use

 Release

System calls (e.g., close(), free())

Deadlock

Resources Processes

7.7 SGG Operating System Concepts

DEADLOCK

CHARACTERIZATION

7.8 SGG Operating System Concepts

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously

 Mutual exclusion: Only one process can use a resource at

a time. Other requesting processes must wait.

 Hold and wait: A process holding at least one resource is

waiting to acquire additional resources held by other processes

 No preemption: A resource can be released only voluntarily

by the process holding it, after that process has completed its task

 Circular wait: There exists a set {P0, P1, …, Pn} of waiting

processes such that P0 is waiting for a resource that is held by P1,

P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting

for a resource that is held by Pn, and Pn is waiting for a resource

that is held by P0

7.9 SGG Operating System Concepts

Resource-Allocation Graph: G(V, E)

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

 R = {R1, R2, …, Rm}, the set consisting of all

resource types in the system.

 Request edge

 Directed edge Pi  Rj

 Pi requests instance of Rj

 Assignment edge

 Directed edge Rj  Pi

 Pi is holding an instance of Rj

Resource Type with 4 instances

A Process

Pi

Rj

A request edge

Pi

Rj

An assignment edge

7.10 SGG Operating System Concepts

Basic Facts

 If graph contains no cycles  no deadlock

 If graph contains a cycle  there might be a deadlock

 if only one instance per resource type, then deadlock

 if several instances per resource type, possibility of deadlock

With A Deadlock Cycle But No Deadlock No Deadlock

7.11 SGG Operating System Concepts

METHODS FOR HANDLING

DEADLOCKS

7.12 SGG Operating System Concepts

Methods for Handling Deadlocks

 Ensure that the system will never enter

a deadlock state:

 Prevention and

 Avoidance

 Allow the system to enter a deadlock

state but then detect and remove it:

 Detection and Recovery

 Ignore the problem and pretend that

deadlocks never occur in the system.
 Used by most operating systems (e.g., UNIX, Java)

 - performance degradation when there is deadlock

 - manual intervention is needed (e.g., re-start the system)

 + easy and cheap

Which

method

would

you

select?

and

why?

7.13 SGG Operating System Concepts

Java Deadlock Example
Thread A Thread B

When there will a deadlock?

threadA  (second)lockY 

threadB  (first)lockX  threadA

But it might happen if threadA gets both first!

7.14 SGG Operating System Concepts

Handling Deadlocks in Java

Up to programmer to write a
deadlock-free programs!

7.15 SGG Operating System Concepts

DEADLOCK PREVENTION

Restrain the ways request can be made

7.16 SGG Operating System Concepts

Deadlock Prevention

 Mutual Exclusion
 Non-sharable resources (e.g., printer) must be allocated exclusively

 Sharable resources (e.g., read only files) can be shared

 Hold and Wait
 Require process to request and be allocated all its resources before it begins execution, or allow

process to request resources only when the process has none

 No Preemption
 If a process that is holding some resources requests another resource that cannot be

immediately allocated to it, then all resources currently being held are released

 Preempt resources (e.g., cpu) and put process into waiting queue; preempted process will be

restarted only when it can regain its old resources, as well as the new ones that it is requesting

 Circular Wait
 impose a total ordering of all resource types, and require that each process requests resources

in an increasing order of enumeration (e.g., F(tape)=1, F(disk)=5, F(print)=12)

- low device utilization, reduce system throughput, starvation possible

Make sure at least one of the four conditions cannot hold

7.17 SGG Operating System Concepts

DEADLOCK AVOIDANCE

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource type

 Use the banker’s algorithm

7.18 SGG Operating System Concepts

Deadlock Avoidance

 Require additional a priori information about how

resources are to be requested.

 Suppose the system knows that

 P will request first the printer then the tape while

 Q will request first the tape then the printer

 Now the system can avoid deadlock by not allowing

P or Q while the other made some allocation!

 Solutions/Algorithms differ in how much additional

information to require!

7.19 SGG Operating System Concepts

Deadlock Avoidance cont’d

 Simplest and most useful model requires each

process to declare the maximum number of

resources of each type that it may need.

 When a process requests an available resource,

the deadlock-avoidance algorithm dynamically

examines the resource-allocation state to ensure

that there can never be a circular-wait condition

 In other words, the system must decide if

immediate allocation leaves the system in a safe

state.

7.20 SGG Operating System Concepts

Safe State

 The system can allocate resources to each process

in some order and still avoid deadlock

 System is in safe state if there exists a sequence

<P1, P2, …, Pi-1, Pi , Pi+1, …, Pn> such that

 the resources for Pi can be satisfied by currently available

resources and resources held by all the Pj, with j < i

 That is:

 If Pi resource needs are not immediately available, then

Pi can wait until all Pj have finished.

 When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate.

 When Pi terminates, Pi +1 can obtain its needed

resources, and so on.

Otherwise, we have unsafe state.

7.21 SGG Operating System Concepts

Basic Facts

 If a system is in safe state  no deadlocks

 If a system is in unsafe state  possibility of

deadlock

 Avoidance  ensure that a system will never

enter an unsafe state.

7.22 SGG Operating System Concepts

Example

Max number of tapes is 12.

 Max need Currently holding

 P0 10 5

 P1 4 2

 P2 9 2

 Does <P1, P0, P2> satisfy safety condition?

 Suppose P2 gets one more tape,
 P0 10 5

 P1 4 2

 P2 9 3

 Are we still in safe state? Why or why not?

 Don’t allow P2 get the 3rd tape to avoid deadlock

7.23 SGG Operating System Concepts

Resource-Allocation Graph Scheme
Single instance of a resource type

 Claim resources a priori in the system

 Add Claim edge Pi  Rj
 Process Pi may request resource Rj (represented by a dashed line)

 Claim  Request  Assignment edges

 Suppose that process P2 requests the

resource R2, can we grant this request?
 If we grant it, there will be cycle (unsafe state)

 The request can be granted only if

converting the request edge to an

assignment edge does not result in

the formation of a cycle

 Cycle-detection algorithm (e.g., DFS)
Adjacency list O(N + E), or adjacency matrix O(N2).

7.24 SGG Operating System Concepts

Recall: Resource-Allocation Graph: G(V, E)

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

 R = {R1, R2, …, Rm}, the set consisting of all

resource types in the system.

 Request edge

 Directed edge Pi  Rj

 Pi requests instance of Rj

 Assignment edge

 Directed edge Rj  Pi

 Pi is holding an instance of Rj

Resource Type with 4 instances

A Process

Pi

Rj

A request edge

Pi

Rj

An assignment edge

7.25 SGG Operating System Concepts

Banker’s Algorithm
Multiple instances of a resource type

 Each new process must a priori declare

maximum number of resources it may use

 The system determines if the system will be

safe if all requested resources are allocated

 If yes, then allocate resources

 Otherwise, the new process must wait until more

resources are released by others

 When a process gets all its resources, it must

return them in a finite amount of time

7.26 SGG Operating System Concepts

Data Structures for the Banker’s Algorithm

 Available[j] = k,

 There are k instances of resource type Rj available

 Max[i,j] = k,

 Pi may request at most k instances of resource type Rj

 Allocation[i,j] = k,

 Pi is currently allocated k instances of Rj

 Need[i,j] = k,

 Pi may need k more instances of Rj to complete its task

 Need[i,j] = Max[i,j] – Allocation[i,j]

Let n = number of processes, and m = number of resources types.

j=0,1, 2, … m-1

i=0,1,2,…, n-1
j=0,1, 2, … m-1

7.27 SGG Operating System Concepts

Safety Algorithm
Find out if the system is safe or not

1. Initialize Work and Finish

 Work[j] = Available[j] for j=0,1, 2, … m-1

 Finish[i] = false for i = 0, 1, …, n- 1

2. Find an index i such that both:

 Finish[i] == false

 Need[i,j] Work[j] for j=0,1, 2, … m-1

 If no such i exists, go to step 4

3. Work[j] = Work[j] + Allocation[i,j] for j=0,1, 2, … m-1

Finish[i] = true
go to step 2

4. If Finish[i] == true for all i, then the system is in a
safe state else not

Complexity

O(m  n2)

Work is like tmp Available

7.28 SGG Operating System Concepts

Resource-Request Algorithm for Process Pi
Determine if the request can be safely granted

Request[i,j] = k, Pi wants k instances of resource type Rj

1. If Requesti  Needi, go to step 2.

 Otherwise, raise error condition, since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3.

 Otherwise Pi must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by

modifying the state as follows:
 Available = Available – Requesti;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

Call the safety algorithm

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and restore the old resource-allocation

7.29 SGG Operating System Concepts

Example of Banker’s Algorithm

 5 processes P0 through P4;

 3 resource types: A (10 instances), B (5), and C (7)

 Snapshot at time T0:

 Allocation Max Finish Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 f 3 3 2

 P1 2 0 0 3 2 2 f

 P2 3 0 2 9 0 2 f

 P3 2 1 1 2 2 2 f

 P4 0 0 2 4 3 3 f

Max-Allocation

 Need

 A B C

 7 4 3

 1 2 2

 6 0 0

 0 1 1

 4 3 1

 Is the system in a safe state?

 Yes, < P1, P3, P4, P2, P0> satisfies safety criteria

Work=

5 3 2 t

7 4 3 t

7 4 5 t

10 4 7 t

10 5 7 t

7.30 SGG Operating System Concepts

Example (Cont.): P1 Request (1,0,2)

 Check Request  Needi, i.e., (1,0,2)  (1,2,2)  true

 Check Request  Available, i.e. (1,0,2)  (3,3,2)  true

 Pretend to allocate and update the state

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 1 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

 Execute safety algorithm

 < P1, P3, P4, P0, P2> satisfies safety requirement

7.31 SGG Operating System Concepts

Example (Cont.): Exercise

 Can request for (3,3,0) by P4 be granted?

 No because resources are not available

 Can request for (0,2,0) by P0 be granted?

 No. Actually, resources are available but they

cannot be granted since the resulting state would

be unsafe!

7.32 SGG Operating System Concepts

DEADLOCK DETECTION

Allow system to enter deadlock state

 Detection algorithm (same as safety algorithm)

 Recovery scheme

7.33 SGG Operating System Concepts

Single Instance of Each Resource Type

 Maintain wait-for graph

 Nodes are processes

 Pi  Pj if Pi is waiting for Pj

 Periodically invoke an algorithm that

searches for a cycle in the graph.

 If there is a cycle, there exists a deadlock

 An algorithm to detect a cycle in a graph

requires an order of n2 operations, where n is

the number of vertices in the graph

7.34 SGG Operating System Concepts

Resource-Allocation Graph and

Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

7.35 SGG Operating System Concepts

Several Instances of a Resource Type

 Available: A vector of length m indicates the

number of available resources of each type.

 Allocation: An n x m matrix defines the number

of resources of each type currently allocated to

each process.

 Request: An n x m matrix indicates the current

request of each process. If Request[i,j] = k, then

process Pi is requesting k more instances of

resource type. Rj.

7.36 SGG Operating System Concepts

Detection Algorithm
(recall safety algorithm)

1. Initialize Work and Finish:
 Work[j] = Available[j] for j=0,1, 2, … m-1

 if Allocationi  0, for i=0,1, 2, … n-1

 then Finish[i] = false

 else Finish[i] = true

2. Find an index i such that both:
 Finish[i] == false

 Requesti  Work

 If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == true for all i, then no deadlock;
otherwise, the system is in deadlock state.

Algorithm

requires an

order of

O(m x n2)

operations

If Finish[i]==false, then
Pi is deadlocked

7.37 SGG Operating System Concepts

Example of Detection Algorithm

 Five processes P0 through P4;

 Three resource types A (7 instances), B (2), C (6)

 Snapshot at time T0:
 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

 <P0, P2, P3, P1, P4> will result in Finish[i] = true for

all i, so no deadlock

7.38 SGG Operating System Concepts

Example (Cont.)

 P2 requests an additional instance of type C

 Request

 A B C

 P0 0 0 0

 P1 2 0 2

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes’ requests

 Deadlock exists, consisting of processes P1, P2, P3, and P4

7.39 SGG Operating System Concepts

Detection-Algorithm Usage

 When, and how often, to invoke

 depends on:
 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?
one for each disjoint cycle

 If detection algorithm is invoked frequently

 Performance overhead

 If invoked at rather wide intervals,

 There may be many cycles in the resource graph

and so we would not be able to tell which of the

many deadlocked processes “caused” the

deadlock.

7.40 SGG Operating System Concepts

RECOVERY FROM DEADLOCK

Process Termination

Resource Preemption

7.41 SGG Operating System Concepts

Recovery from Deadlock:

Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock

cycle is eliminated

 In which order should we choose to abort?

 Priority of the process

 How long process has computed, and how much longer

to completion

 Resources the process has used

 Resources the process needs to complete

 How many processes will need to be terminated

 Is process interactive or batch?

7.42 SGG Operating System Concepts

Recovery from Deadlock:

Resource Preemption

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart

process for that state

 Starvation – same process may always be

picked as victim, include number of rollback

in cost factor

7.43 SGG Operating System Concepts

End of Chapter 7

None of the basic approaches alone is enough, but they
can be combined for different types of resources!

