
8.1 SGG Operating System Concepts

Chapter 8: Memory Management

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

Share the main memory among many processes

8.2 SGG Operating System Concepts

Chapter 8: Main Memory

 Background *

 Swapping **

 Contiguous Memory Allocation ***

 Paging *****

 Structure of the Page Table *****

 Segmentation **

 Example: The Intel Pentium

8.3 SGG Operating System Concepts

Objectives

 To provide a detailed description of various ways of

organizing memory hardware

 To learn how to share memory among multiple

processes using various memory-management

techniques , including paging and segmentation

 To provide a detailed description of the Intel Pentium,

which supports both pure segmentation and

segmentation with paging

8.4 SGG Operating System Concepts

 CPU can directly access main

memory and registers only

 But, programs and data are

stored in disks

 So, program and data must be

brought (from disk) into memory

 Memory accesses might
be the bottleneck
 Cache between memory and CPU registers

 Memory Hierarchy
 Cache: small, fast, expensive; SRAM; multiple levels

 Main memory: medium-speed, not that expensive; DRAM

 Disk: many gigabytes, slow, cheap, non-volatile storage

Internal

Memory

I/O

Devices

(disks)

CPU

(Processor/ALU)

Background

8.5 SGG Operating System Concepts

Background

 Let’s just ignore the cache and focus on

main memory

 Think memory as an array of words

containing program instructions and data

 How do we execute a program?

 Fetch an instruction  decode  may fetch

operands  execute  may store results

 Memory unit sees a stream of ADDRESSES

 The goal in this chapter is to study how to

manage and protect main memory while

sharing it among multiple processes

 Keeping multiple process in memory is essential to

improving the CPU utilization

Internal

Memory

I/O

devices

CPU

(Processor/ALU)

8.6 SGG Operating System Concepts

BASIC HARDWARE

8.7 SGG Operating System Concepts

Base and Limit Registers

Protection of memory is required to ensure correct operation

A pair of base and limit registers define the logical address space

OS in kernel mode updates these registers and
has unrestricted access to memory

8.8 SGG Operating System Concepts

Binding of Instructions and Data to Memory

 Address binding of instructions and data

to memory addresses can happen at

three different stages

 Compile time: If memory location known a

priori, absolute code can be generated; must

recompile code if starting location changes

 Load time: Must generate relocatable code

if memory location is not known at compile

time

 Execution time: Binding delayed until run

time if the process can be moved during its

execution from one memory segment to

another (e.g., base and limit registers)

 Need hardware support for address maps

Mapping from one address space to the other

8.9 SGG Operating System Concepts

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to

a separate physical address space is central to proper

memory management

 Logical address – generated by the CPU; also referred to as

virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-

time and load-time address-binding schemes;

 Logical (virtual) and physical addresses differ in

execution-time address-binding scheme

 The mapping form logical address to physical address is done by

a hardware device called a memory management unit (MMU).

 We will mainly study how this mapping is done and what hardware

support is needed

8.10 SGG Operating System Concepts

Memory-Management Unit (MMU)

 Hardware device that maps logical

(virtual) address to physical address

 In a simple MMU, the value in the

relocation register (base) is added to

every address generated by a user

process at the time it is sent to

memory

 The user program

 deals with logical

 addresses; it never

 sees the real physical

 addresses

Dynamic
relocation using a
relocation register

8.11 SGG Operating System Concepts

A simple MMU Example

 logical addresses (in the range

0~max) and physical

addresses (in the range R+0 to

R+max for a base value R).

 The user program generates

only logical addresses and

thinks that the process runs in

locations 0 to max.

 logical addresses must

 be mapped to physical

 addresses before they are

used

Dynamic
relocation using a
relocation register

8.12 SGG Operating System Concepts

Partitions for Memory Management

 Fixed Partitions

 Divide memory into fixed size of partitions (not necessarily

equal)

 Each partition for at most one process

 Base + limit registers for relocation and protection

 How to determine the partition sizes?

 Variable Partitions

 Partition sizes determined dynamically

 OS keeps a table of current partitions

 When a job finishes, leaves a partition hole

 Consolidate free partitions  compaction

8.13 SGG Operating System Concepts

Dynamic Loading

 Just load main routine

 Dynamically load other routines when they are called

 Why dynamic loading?

 Without this, the size of a process is limited to that of physical

memory

 Better memory-space utilization; unused routine is never loaded

 Useful when large amounts of code are needed to handle

infrequently occurring cases (error handling)

 No special support from the operating system is required,

implemented through program design

 OS may provide library functions

8.14 SGG Operating System Concepts

Dynamic Linking and Shared Libraries

 Static linking

 System language and library routines are included in the binary code

 Dynamic linking

 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate memory-

resident library routine

 Stub replaces itself with the address of the routine, and executes

the routine

 Operating system needed to check if routine is in processes’

memory address

 Dynamic linking is particularly useful for libraries
 (one copy, transparent updates)

 Requires support form OS

8.15 SGG Operating System Concepts

SWAPPING

8.16 SGG Operating System Concepts

Swapping

Reject it! But if you want to support more processes,

 Swap out an old process to a disk
 (waiting for long I/O, quantum expired etc)

OS OS OS OS OS OS OS

A A

B

A

B

C

B

C

B

C

D

C

D

C

D

A

What if no free
region is big

enough?

.

Consider a multi-programming environment:
 Each program must be in the memory to be executed

 Processes come into memory and

 Leave memory when execution is completed

D

8.17 SGG Operating System Concepts

Swapping

 A process can be swapped
temporarily out of memory to a
backing store, and then brought
back into memory for continued
execution

 Backing store – fast disk large
enough to accommodate
copies of all memory images
for all users; must provide
direct access to these memory
images

 Roll out, roll in – swapping
variant used for priority-based
scheduling algorithms; lower-
priority process is swapped out
so higher-priority process can
be loaded and executed

 Swapping would be needed to
free up memory for additional
processes.

8.18 SGG Operating System Concepts

Swapping (cont’d)

 Major part of swap time is transfer time;

 Total transfer time is directly proportional to the amount of

memory swapped (e.g., 10MB process / 40MB per sec = 0.25 sec)

 May take too much time to be used often

 When the old process is swapped in, can we relocate it?
(depends on address binding)

 What if the swapped out process was waiting for I/O

 Let OS kernel handle all I/O, extra copy from kernel to user space

 Modified versions of swapping are found on many

systems (i.e., UNIX, Linux, and Windows), but it is often

disabled

8.19 SGG Operating System Concepts

CONTIGUOUS ALLOCATION

8.20 SGG Operating System Concepts

Contiguous Allocation

 Main memory is usually divided into two partitions:

 Resident operating system, usually held in low memory with interrupt vector

 User processes, usually held in high memory

 Relocation registers are used

to protect user processes

from each other, and from

changing operating-system

code and data

 MMU maps logical address to

physical addresses dynamically

 But the physical addresses

should be contiguous

8.21 SGG Operating System Concepts

Contiguous Allocation (Cont)

 Multiple-partition allocation

 Hole – block of available memory;

 holes of various size are scattered throughout memory

 When a process arrives, OS allocates memory

from a hole large enough to accommodate it

 Operating system maintains information about:

a) allocated partitions b) free partitions (holes)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Process
must fit
into a
physical
hole…

What if no
free region

is big
enough?

OS

process 9

process 2

process 10

.

8.22 SGG Operating System Concepts

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough;

 Must search entire list, unless ordered by size

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole;

 Must also search entire list

 Produces the largest leftover hole

 First-fit and best-fit are better than worst-fit in terms of speed and

storage utilization

 But all suffer from fragmentation

How to satisfy a request of size n from a list of free holes

8.23 SGG Operating System Concepts

Fragmentation

 External Fragmentation

 total memory space exists to satisfy a request,

 but it is not contiguous

 Internal Fragmentation

 allocated memory may be slightly larger than

 requested memory;

 this size difference is called internal partition,

 How can we reduce external fragmentation

 Compaction: Shuffle memory contents to place

all free memory together in one large block

 Compaction is possible only if relocation is

dynamic, and is done at execution time

 I/O problems (Latch job in memory while it is involved in I/O,

Do I/O only into OS buffers)

How about
not
requiring
programs to
be loaded
contiguously

OS

process 9

process 2

process 10

8.24 SGG Operating System Concepts

PAGING

Physical address space of a process can be noncontiguous;

Why/how this would be useful?

8.25 SGG Operating System Concepts

Logical/Virtual and Physical Addresses

 Virtual address space

 Determined by instruction width

 Same for all processes

 Physical memory indexed by

physical addresses

 Limited by bus size (# of bits)

 Amount of available memory

CPU chip

CPU

Memory

Disk
controller

MMU

Logical/Virtual addresses

from CPU to MMU

Physical addresses

on bus, in memory Paging: a memory-management scheme
that permits address space of
process to be non-continuous.

8.26 SGG Operating System Concepts

Paging: Basic Ideas

Page Table

0–4K

4–8K

8–12K

12–16K

16–20K

20–24K

24–28K

28–32K

1

3

0

2

Physical
memory

2

0–4K

4–8K

8–12K

12–16K

0

3

Logical
memory

1

A page is mapped to a frame  Divide physical memory into

fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16MB or

more

 Divide logical memory into blocks

of same size called pages

 To run a program with size n

pages, we need n free frames

 Set up a page table to translate

logical to physical addresses

 User sees memory a contiguous

space (0 to MAX) but OS does not

need to allocate it this way

0 5

1 1

2 7

3 3

.

8.27 SGG Operating System Concepts

Address Translation Scheme

 Suppose the logical address space is 2m and page size is 2n

 so the number of pages is 2m / 2n , which is 2m-n

 Logical Address (m bits) generated by CPU is divided into:

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

page number page offset

p d

m - n n

244 = 24 210 210 210 210
 16 K M G T

8.28 SGG Operating System Concepts

Paging Hardware

8.29 SGG Operating System Concepts

Paging Model of Logical and Physical Memory

8.30 SGG Operating System Concepts

Paging Example

Suppose the page size is 4-byte pages.

Logical address space 16 bytes, and

physical address space is 32 bytes

of pages = 16/4 = 4
of frames = 32/4 = 8
Page number (p) : ?
Page offset (d) : ?
Frame number (f) : ?

8.31 SGG Operating System Concepts

Example: Determine Page/Frame Size

 Example:

 Logical (Virtual) address: 22 bits  4 MB

 Physical address (bus width): 20  1MB

Option 1: Page/frame size: 1KB, requiring 10 bits

 P#:12 bits Offset: 10 bits

F#:10 bits Offset: 10 bits

Virtual addr:

Physical addr:

What are the
problems with

this option?

.

 Number of pages: 12 bits  4K pages

 Number of frames: 10 bits  1K frames

 Size of page table:

 Each page entry must have at least 10 bits

 4K * 10 bits = 40 Kbits = 5KB (maximum)

 General design principle: Interplay between page number vs. offset size

 Try to fit page table into one frame

 Else, balance number of levels

8.32 SGG Operating System Concepts

Another Example

 Example:

 64 KB virtual memory

 32 KB physical memory

 4 KB page/frame size  12 bits as offset (d)

Page #:4bits Offset: 12 bits

Virtual address: 16 bits

Frame #:3bits Offset: 12 bits

Physical address: 15 bits

How many virtual pages?

How many physical frames?

Address

Translation

How about the size

of the page table?

8.33 SGG Operating System Concepts

page number

p d

page offset

0

1

p-1

p f

f d

frame number

.

.

.

page table

physical memory

0

1

.

.

.

f-1

f

f+1

f+2
.
.
.

CPU

Address Translation Architecture

Virtual address

physical address

.

.

.

. Where should the page table be?  main memory

. What is the address of the page table?  special registers

8.34 SGG Operating System Concepts

Size of Page/Frame: How Big?

 Determined by number of bits in offset (512B16KB

and become larger)

 Smaller pages

 + Less internal fragmentation

 + Better fit for various data structures, code sections

 - Too large page table: spin over more than one frame (need to be

continuous due to index), hard to allocate!

 Larger pages

 + Too small page table so less overhead to keep track of them

 + More efficient to transfer larger pages to/from disk

 - More internal fragmentation; waste of memory

 Desing principle: fit page table into one frame

 If not, multi-level paging (discussed later)

.

8.35 SGG Operating System Concepts

Memory Protection and Other bits

 Several bits might be associated with Page Table Entry

(PTE)

 Valid-invalid bit attached for memory protection

 “valid” indicates that the associated page is in the process’ logical address

space, and is thus a legal page

 “invalid” indicates that the page is not in the process’ logical address space

 Referenced bit: set if data on the page has been accessed

 Dirty (modified) bit: set if data on the page has been modified

 Protection information: read-only/writable/executable or not

 Size of each PTE is at least frame number plus 2/3 bits

Frame number V R D Protection

Valid bit Referenced bit Dirty bit

8.36 SGG Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page Table

internal fragmentation,
use length register -- PTRL

8.37 SGG Operating System Concepts

PAGING PROS/CONS

8.38 SGG Operating System Concepts

Paging Pros/Cons

 Pros/Cons

 + Allows sharing code among multiple processes

 + Provide dynamic relocation

 + No external fragmentation

 + Protection (allows access to addresses in the pages in page table)

 - Internal fragmentation (1 page +1 byte require 2 pages)

 - Keep track of all free frames,

 - Page table for each process (increase context switch time)

 Should we select big or small pages????

 Small: + less internal fragmentation, - big page table

 Big: + small page table, + efficient I/O, - more internal fragmentation

 Needs Hardware support

8.39 SGG Operating System Concepts

+ Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared

among processes (i.e., text editors, compilers,

window systems).

 Shared code must appear in the same location in

the logical address space of all processes

 Private code and data

 Each process keeps a separate copy of the code

and data

 The pages for the private code and data can

appear anywhere in the logical address space

8.40 SGG Operating System Concepts

+ Shared Pages Example

8.41 SGG Operating System Concepts

- Paging: Internal Fragmentation

 Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?  more entries

 Each page table takes memory to track

 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

8.42 SGG Operating System Concepts

- Free Frames

Before allocation After allocation

8.43 SGG Operating System Concepts

IMPLEMENTATION OF PAGE

TABLE

8.44 SGG Operating System Concepts

Implementation of Page Table

 Where should we store Page table?

 Registers (fast efficient but limited), main memory, dedicated lookup tables

 Memory

 Page-table base register (PTBR) points to the page table in memory

 Page-table length register (PRLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory

accesses. One for the page table and one for the data/instruction.

 Dedicated lookup tables

 The two memory access problem can be solved by the use of a

special fast-lookup hardware cache called associative memory or

translation look-aside buffers (TLBs) (see next slide)

 Some TLBs store address-space identifiers (ASIDs) in each TLB

entry – uniquely identifies each process to provide address-space

protection for that process. If there is no ASID, flush TLB (expensive context SW)

8.45 SGG Operating System Concepts

Associative Memory

 Associative memory (access by content) – parallel

search

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise, access the page table in memory, and get frame #

and put it into TLB

 (if TLB is full, replace an old entry. Wired down entries will not be removed)

Page # Frame #

Target Page #
If found

 Target Frame #

8.46 SGG Operating System Concepts

Paging Hardware With TLB

8.47 SGG Operating System Concepts

Effective Access Time

 Associative Lookup =  time

unit

 Assume memory cycle time is

m time unit

 Hit ratio – percentage of times

that a page number is found in

the associative registers; ratio

is related to number of

associative registers

 Hit ratio = 

 Effective Access Time (EAT)

 EAT = (m + )  +

 (2m + )(1 – )

 Associative Lookup = 20

nanosecond

 Memory cycle time is 100

nanosecond microsecond

 Hit ratio = 80%

 Effective Access Time

(EAT) would be

 EAT = (100 + 20) 0.8 +

 (200 + 20)(1 – 0.8)

 = 140 nanosecond vs. 200ns

 40% slow down

 With 98% hit rate, EAT

would be 122 seconds.

8.48 SGG Operating System Concepts

STRUCTURE OF THE PAGE

TABLE

Hierarchical Paging

Hashed Page Tables

Inverted Page Tables

8.49 SGG Operating System Concepts

Page Table size and allocation

 Logical address space varies in the range of 232 to 264

 Page size varies in the range of (512 B) 29 to 224 (16 MB)

 Number of pages = Logical address space  Page size

 Page table should be allocated contiguously in memory

Example:

 If logical address space is 232 = 4GB and page size is 212 = 4KB

 then number of pages will be 232 / 212 = 220 = 1M  106

 if each entry consist of 4 Bytes then

 the page table size will be 4MB for each process,

 So, we need 4MB/4KB = 210 = 1K frames for page table

 But we may not be able to allocate that many frames contiguously!

So, what to do?

8.50 SGG Operating System Concepts

Hierarchical Page Tables

 Break up the logical

 address space into

 multiple page tables

 A simple technique

 is a two-level page

 table

 Why is it good/bad?

 + We don’t have to allocate all levels
initially

 + They don’t have to be continuous

 - how about memory access

8.51 SGG Operating System Concepts

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 12-bit page number

 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within
the page of the outer page table

page number page offset

pi p2 d

12 10 10

8.52 SGG Operating System Concepts

Two-Level Address-Translation Scheme

8.53 SGG Operating System Concepts

. . .

. . .

Two-level Address Translation with TLB

p1 = 10 bits p2 = 10 bits offset = 12 bits

page offset page number

. . .

0

1

p1

. . .
18

0

1

p2

18
physical
address

1st level page table 2nd level page table

main
memory

0

1

 frame#

12
Page

table

base

. . .

. . .

p2 18

TLB

p1

Which tables
should

be in memory?

.

How can we
reduce

of memory
accesses?

8.54 SGG Operating System Concepts

Memory Requirement of Page Tables

 Only the 1st level page table and the required 2nd level

page tables need to be in memory

For example:

 Suppose we have 1GB memory and 32-bit logical (virtual)

address and 4KB page size (12-bit). Now we want to run a

process with size of 32 MB, how many pages do we need?

 32MB/4KB  8K virtual pages (minimum) to load this process

 Assuming each table entry is 4 Bytes, then one page can store 1K

page table entries. So we need at least 8K/1K = 8 pages, which will

be used as second level pages….

 We need a first level page table, for which we will allocate one page

 So overall, we need 9 pages (9 X4KB = 36 KB) to maintain the page tables

.

8.55 SGG Operating System Concepts

55

Page table size

 32bit machine, page size 4k, each entry 4 bytes, one level

page table (full 4GB linear address)

Page table size = 2^20 pages * 4 bytes = 2^22 = 4MB

 32bit machine, page size 4k, each entry 4 bytes, two level

page table (suppose we have accessed three pages

only!)

Page table size = (2^10 level-0 entries) *4bytes + (2^10 level-
1 entries * 4 bytes) * 3 = 16 Kbytes

The page table has to be physically

continuous!

8.56 SGG Operating System Concepts

How Many Levels are Needed?

 New architectures: 64-bits address?

 Suppose 4KB page(frame) size (12-bit offset)

 Then we need a page table with 264 / 212 = 252 entries!!!!

 If we use two-level paging, then inner page table could be one

page, containing 1K entries (10-bit) (assuming PTE size is 4 bytes)

 So the outer page needs to contain 242 entries !!!

 Similarly, we can page the outer page,

 giving us three-level paging

 If we continue this way, we will have 7-level paging (8 memory accesses)

 Problems with multiple-level page table

 One additional memory access for each level added (if not in TLB)

 Multiple levels are possible; but prohibitive after a few levels

 Is there any other alternative
to manage page/frame?

8.57 SGG Operating System Concepts

Hashed Page Tables

 The virtual page number

is hashed into a page

table that contains a

chain of elements

hashing to the same

location

 Virtual page numbers

are compared in this

chain searching for a

match. If a match is

found, the

corresponding physical

frame is extracted

 Clustered page tables,

each entry refers to

several pages…

Page numbers
hashing to

the same location

8.58 SGG Operating System Concepts

Inverted Page Table

 One entry for each real page (frame)

of memory

 Entry consists of the virtual address

of the page stored in that real

memory location, with information

about the process that owns that

page

 + Decreases memory needed to store

each page table, but

 - Increases time needed to search the

table when a page reference occurs.

 - Also hard to implement shared memory

 Use hash table to limit the search to

one — or at most a few — page-

table entries

8.59 SGG Operating System Concepts

pid1

pid

pid0

Inverted Page Table (cont.)

process ID p = 20bits offset = 12 bits

page number

12 “128”

physical address

inverted page table

main memory

. . .

0

1

. . .

 Page frame
number

page offset

pid p

p0

p1

p

. . .

. . .

0

1

128

search

128

How to improve
search performance?

.

8.60 SGG Operating System Concepts

Hashing for Inverted Page Table

 Hashing function

 Take virtual page number and process ID

 Hash value indicates the index for possible PTE

 Compare the PTE with virtual page # and PID

 If the same: hash value is the frame number

 If not ?

 Confliction of hash function

 Next PTE until either the entry is found or a limit is reached

 Second hash function/value

.

8.61 SGG Operating System Concepts

SEGMENTATION

Skip the rest

Memory-management scheme that supports user view of memory

Collection of variable size segments

8.62 SGG Operating System Concepts

Segmentation

 A user prefers to see a program as a collection of segments

 A segment is a logical unit such as:

 main program

 procedure

 Function

 Method

 Object

 local variables,

 global variables

 Common block

 Stack

 symbol table

 arrays

8.63 SGG Operating System Concepts

Logical View of Segmentation

 Looks like paging, but

 In paging user specifies a single address, which is partitioned by

the hardware

 In segmentation user specifies a segment name and an offset

1

3

2

4

1

4

2

3

User space Physical memory
 Logical address consists of a

two-tuple:

 <segment-number, offset>

 For example, C compiler

creates different segments

for code, global variables,

heap, stack, standard lib

 These two-dimensional

addresses need to be

translated (mapped) to

physical addresses

8.64 SGG Operating System Concepts

Segmentation Architecture

 Segment table – maps two-dimensional addresses to

physical addresses; each table entry has:

 base – contains the starting physical address where the segments reside in

memory

 limit – specifies the length of the segment

 Segment-table base register

 (STBR) points to the segment

 table’s location in memory

 Segment-table length register

 (STLR) indicates number of

 segments used by a program;

 segment number s is legal if s < STLR

8.65 SGG Operating System Concepts

Example of Segmentation

8.66 SGG Operating System Concepts

Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code

sharing occurs at segment level

 Since segments vary in length, memory

allocation is a dynamic storage-allocation

problem

 Paging can be used to store segments….

8.67 SGG Operating System Concepts

EXAMPLE: THE INTEL

PENTIUM

Supports both segmentation and segmentation with paging

8.68 SGG Operating System Concepts

Logical to Physical Address Translation in Pentium

 CPU generates logical address

 Given to segmentation unit

 Which produces linear addresses

 Linear address given to paging unit

 Which generates physical address in main memory

 Paging units form equivalent of MMU

8.69 SGG Operating System Concepts

Intel Pentium Segmentation

8.70 SGG Operating System Concepts

Pentium Paging Architecture

8.71 SGG Operating System Concepts

Linear Address in Linux

Broken into four parts:

8.72 SGG Operating System Concepts

Three-level Paging in Linux

8.73 SGG Operating System Concepts

End of Chapter 8

