
8.1 SGG Operating System Concepts 

Chapter 8:  Memory Management 

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

Share the main memory among many processes  



8.2 SGG Operating System Concepts  

Chapter 8:  Main Memory 

 Background    * 

 Swapping      ** 

 Contiguous Memory Allocation  *** 

 Paging     ***** 

 Structure of the Page Table  ***** 

 Segmentation    ** 

 Example: The Intel Pentium 



8.3 SGG Operating System Concepts  

Objectives 

 To provide a detailed description of various ways of 

organizing memory hardware 

 To learn how to share memory among multiple 

processes using various memory-management 

techniques , including paging and segmentation 

 To provide a detailed description of the Intel Pentium, 

which supports both pure segmentation and 

segmentation with paging 



8.4 SGG Operating System Concepts  

 CPU can directly access main 

memory and registers only 

 But, programs and data are 

stored in disks 

 So, program and data must be 

brought (from disk)  into memory   

 Memory accesses  might    
be the bottleneck 
 Cache between memory and CPU registers  

 Memory Hierarchy 
 Cache: small, fast, expensive; SRAM; multiple levels 

 Main memory: medium-speed, not that expensive; DRAM 

 Disk: many gigabytes, slow, cheap, non-volatile storage 

 

Internal 

Memory 

I/O  

Devices 

(disks) 

CPU 

(Processor/ALU) 

Background 



8.5 SGG Operating System Concepts  

Background 

 Let’s just ignore the cache and focus on 

main memory 

 Think memory as an array of words 

containing program instructions and data 

 How do we execute a program? 

 Fetch an instruction  decode  may fetch 

operands  execute  may store results 

 Memory unit sees a stream of ADDRESSES 

 The goal in this chapter is to study how to 

manage and protect main memory while 

sharing it among multiple processes  

 Keeping multiple process in memory is essential to 

improving the CPU utilization 

 

 

Internal 

Memory 

I/O  

devices 

CPU 

(Processor/ALU) 



8.6 SGG Operating System Concepts  

BASIC HARDWARE 



8.7 SGG Operating System Concepts  

Base and Limit Registers 

Protection of memory is required to ensure correct operation 

A pair of base and limit registers define the logical address space 

OS in kernel mode updates these registers and 
has unrestricted access to memory   



8.8 SGG Operating System Concepts  

Binding of Instructions and Data to Memory 

 

 Address binding of instructions and data 

to memory addresses can happen at 

three different stages 

 Compile time:  If memory location known a 

priori, absolute code can be generated; must 

recompile code if starting location changes 

 Load time:  Must generate relocatable code 

if memory location is not known at compile 

time   

 Execution time:  Binding delayed until run 

time if the process can be moved during its 

execution from one memory segment to 

another (e.g., base and limit registers)  

 Need hardware support for address maps 

Mapping from one address space to the other 



8.9 SGG Operating System Concepts  

Logical vs. Physical Address Space 

 The concept of a logical address space that is bound to 

a separate physical address space is central to proper 

memory management 

 Logical address – generated by the CPU; also referred to as 

virtual address 

 Physical address – address seen by the memory unit 

 Logical and physical addresses are the same in compile-

time and load-time address-binding schemes;  

 Logical (virtual) and physical addresses differ in 

execution-time address-binding scheme  

 The mapping form logical address to physical address is done by 

a hardware device called a memory management unit (MMU). 

 We will mainly study how this mapping is done and what hardware 

support is needed 

 



8.10 SGG Operating System Concepts  

Memory-Management Unit (MMU) 

 Hardware device that maps logical 

(virtual) address to physical address 

 In a simple MMU, the value in the 

relocation register (base) is added to 

every address generated by a user 

process at the time it is sent to 

memory 

 The user program  

 deals with logical  

 addresses; it never  

 sees the real physical  

 addresses 

Dynamic 
relocation using a 
relocation register 



8.11 SGG Operating System Concepts  

A simple MMU Example 

 logical addresses (in the range 

0~max) and physical 

addresses (in the range R+0 to 

R+max for a base value R). 

 The user program generates 

only logical addresses and 

thinks that the process runs in 

locations 0 to max. 

 logical addresses must  

    be mapped to physical  

    addresses before they are 

used 

Dynamic 
relocation using a 
relocation register 



8.12 SGG Operating System Concepts  

Partitions for Memory Management 

 Fixed Partitions 

 Divide memory into fixed size of partitions (not necessarily 

equal) 

 Each partition for at most one process 

 Base + limit registers for relocation and protection 

 How to determine the partition sizes?  

 Variable Partitions 

 Partition sizes determined dynamically 

 OS keeps a table of current partitions 

 When a job finishes, leaves a partition hole 

 Consolidate free partitions  compaction 



8.13 SGG Operating System Concepts  

Dynamic Loading 

 Just load main routine  

 Dynamically load other routines when they are called 

 Why dynamic loading? 

 Without this, the size of a process is limited to that of physical 

memory 

 Better memory-space utilization; unused routine is never loaded 

 Useful when large amounts of code are needed to handle 

infrequently occurring cases (error handling) 

 No special support from the operating system is required, 

implemented through program design 

 OS may provide library functions 



8.14 SGG Operating System Concepts  

Dynamic Linking and Shared Libraries 

 Static linking 

 System language and library routines are included in the binary code 

 Dynamic linking 

 Linking postponed until execution time 

 Small piece of code, stub, used to locate the appropriate memory-

resident library routine 

 Stub replaces itself with the address of the routine, and executes 

the routine 

 Operating system needed to check if routine is in processes’ 

memory address 

 Dynamic linking is particularly useful for libraries  
 (one copy, transparent updates) 

 Requires support form OS 



8.15 SGG Operating System Concepts  

SWAPPING 



8.16 SGG Operating System Concepts  

Swapping 

Reject it! But if you want to support more processes,  

 Swap out an old process to a disk 
 (waiting for long I/O, quantum expired etc) 

OS OS OS OS OS OS OS 

A A 

B 

A 

B 

C 

B 

C 

B 

C 

D 

C 

D 

C 

D 

A 

What if no free 
region is big 

enough? 

. 

Consider a multi-programming environment: 
 Each program must be in the memory to be executed  

 Processes come into memory and  

 Leave memory when execution is completed 

D 



8.17 SGG Operating System Concepts  

Swapping 

 A process can be swapped 
temporarily out of memory to a 
backing store, and then brought 
back into memory for continued 
execution 
 

 Backing store – fast disk large 
enough to accommodate 
copies of all memory images 
for all users; must provide 
direct access to these memory 
images 
 

 Roll out, roll in – swapping 
variant used for priority-based 
scheduling algorithms; lower-
priority process is swapped out 
so higher-priority process can 
be loaded and executed 

 Swapping would be needed to 
free up memory for additional 
processes.  
 



8.18 SGG Operating System Concepts  

Swapping (cont’d) 

 Major part of swap time is transfer time;  

 Total transfer time is directly proportional to the amount of 

memory swapped (e.g., 10MB process / 40MB per sec = 0.25 sec) 

 May take too much time to be used often  

 When the old process is swapped in, can we relocate it? 
(depends on address binding) 

 What if the swapped out process was waiting for I/O 

 Let OS kernel handle all I/O, extra copy from kernel to user space 

 

 Modified versions of swapping are found on many 

systems (i.e., UNIX, Linux, and Windows), but it is often 

disabled  



8.19 SGG Operating System Concepts  

CONTIGUOUS ALLOCATION 



8.20 SGG Operating System Concepts  

Contiguous Allocation 

 Main memory is usually divided into two partitions: 

 Resident operating system, usually held in low memory with interrupt vector 

 User processes, usually held in high memory 

 

 Relocation registers are used 

to protect user processes 

from each other, and from 

changing operating-system 

code and data 

 MMU maps logical address to 

physical addresses dynamically 

 But the physical addresses 

should be contiguous  



8.21 SGG Operating System Concepts  

Contiguous Allocation (Cont) 

 Multiple-partition allocation 

 Hole – block of available memory;  

 holes of various size are scattered throughout memory 

 When a process arrives, OS allocates memory 

from a hole large enough to accommodate it 

 Operating system maintains information about: 

a) allocated partitions    b) free partitions (holes) 

 

OS 

process 5 

process 8 

process 2 

OS 

process 5 

process 2 

OS 

process 5 

process 2 

OS 

process 5 

process 9 

process 2 

process 9 

process 10 

Process 
must fit 
into a 
physical 
hole… 

What if no 
free region 

is big 
enough? 

OS 

process 9 

process 2 

process 10 

. 



8.22 SGG Operating System Concepts  

Dynamic Storage-Allocation Problem 

 First-fit:  Allocate the first hole that is big enough 

 Best-fit:  Allocate the smallest hole that is big enough;  

 Must search entire list, unless ordered by size   

 Produces the smallest leftover hole 

 Worst-fit:  Allocate the largest hole;  

 Must also search entire list   

 Produces the largest leftover hole 

 

 First-fit and best-fit  are better than worst-fit in terms of speed and 

storage utilization 

 But all suffer from fragmentation  

 

How to satisfy a request of size n from a list of free holes 



8.23 SGG Operating System Concepts  

Fragmentation 

 External Fragmentation  

 total memory space exists to satisfy a request,  

 but it is not contiguous 

 Internal Fragmentation  

 allocated memory may be slightly larger than  

 requested memory;  

 this size difference is called internal partition, 

 How can we reduce external fragmentation  

 Compaction: Shuffle memory contents to place 

all free memory together in one large block 

 Compaction is possible only if relocation is 

dynamic, and is done at execution time 

 I/O problems (Latch job in memory while it is involved in I/O, 

Do I/O only into OS buffers) 

How about 
not 
requiring 
programs to 
be loaded 
contiguously 

OS 

process 9 

process 2 

process 10 



8.24 SGG Operating System Concepts  

PAGING 

 

Physical address space of a process can be noncontiguous;  

Why/how this would be useful? 



8.25 SGG Operating System Concepts  

Logical/Virtual and Physical Addresses 

 Virtual address space 

 Determined by instruction width 

 Same for all processes 

 

 Physical memory indexed by 

physical addresses 

 Limited by bus size (# of bits) 

 Amount of available memory 

CPU chip 

CPU 

Memory 

Disk 
controller 

MMU 

Logical/Virtual addresses 

from CPU to MMU 

Physical addresses 

on bus, in memory Paging: a memory-management scheme  
that permits address space of  
process to be non-continuous. 
 



8.26 SGG Operating System Concepts  

Paging: Basic Ideas 

Page Table 

0–4K 

4–8K 

8–12K 

12–16K 

16–20K 

20–24K 

24–28K 

28–32K 

1 

3 

0 

2 

Physical 
memory 

2 

0–4K 

4–8K 

8–12K 

12–16K 

0 

3 

Logical 
memory 

1 

A page is mapped to a frame  Divide physical memory into 

fixed-sized blocks called frames 
 Size is power of 2, between 512 bytes and 16MB or 

more 

 Divide logical memory into blocks 

of same size called pages 

 To run a program with size n 

pages, we need n free frames   

 Set up a page table to translate 

logical to physical addresses 

 User sees memory a contiguous 

space (0 to MAX) but OS does not 

need to allocate it this way 

0 5 

1 1 

2 7 

3 3 

. 



8.27 SGG Operating System Concepts  

Address Translation Scheme 

 Suppose the logical address space is 2m and page size is 2n  

 so the number of pages is 2m / 2n , which is 2m-n  

 

 Logical Address (m bits) generated by CPU is divided into: 

 Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory 

 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit 

page number page offset 

p d 

m - n n 

244 = 24     210 210   210   210 
        16   K    M   G    T 



8.28 SGG Operating System Concepts  

Paging Hardware 



8.29 SGG Operating System Concepts  

Paging Model of Logical and Physical Memory 



8.30 SGG Operating System Concepts  

Paging Example 

Suppose the page size is 4-byte pages.  

Logical address space 16 bytes, and  

physical address space is 32 bytes 

# of pages  = 16/4 = 4 
# of frames  = 32/4 = 8 
Page number (p)   :  ? 
Page offset (d)      :  ? 
Frame number (f) :  ? 



8.31 SGG Operating System Concepts  

Example: Determine Page/Frame Size 

 Example:  

 Logical (Virtual) address: 22 bits  4 MB 

 Physical address (bus width): 20  1MB 

Option 1: Page/frame size: 1KB, requiring 10 bits 

 P#:12 bits Offset: 10 bits 

F#:10 bits Offset: 10 bits 

Virtual addr: 

Physical addr: 

What are the 
problems with  

this option? 

 

. 

 Number of pages:  12 bits  4K pages 

 Number of frames: 10 bits  1K frames 

 Size of page table:  

 Each page entry must have at least 10 bits 

 4K * 10 bits = 40 Kbits = 5KB (maximum) 

 General design principle: Interplay between page number vs. offset size 

 Try to fit page table into one frame 

 Else, balance number of levels   



8.32 SGG Operating System Concepts  

Another  Example 

 Example: 

 64 KB virtual memory 

 32 KB physical memory 

 4 KB page/frame size  12 bits as offset (d) 

Page #:4bits Offset: 12 bits 

Virtual address: 16 bits 

Frame #:3bits Offset: 12 bits 

Physical address: 15 bits 

How many virtual pages? 

How many physical frames? 

Address  

Translation 

How about the size  

of the page table? 



8.33 SGG Operating System Concepts  

page number 

p d 

page offset 

0 

1 

p-1 

p f 

f d 

frame number 

. 

. 

. 

page table 

physical memory 

0 

1 

. 

. 

. 

f-1 

f 

f+1 

f+2 
. 
. 
. 

CPU 

Address Translation Architecture 

Virtual address 

physical address 

. 

. 

. 

. Where should the page table be?  main memory 

. What is the address of the page table?  special registers 



8.34 SGG Operating System Concepts  

Size of Page/Frame: How Big? 

 Determined by number of bits in offset (512B16KB 

and become larger) 

 Smaller pages   

 + Less internal fragmentation 

 + Better fit for various data structures, code sections 

 - Too large page table: spin over more than one frame (need to be 

continuous due to index), hard to allocate! 

 Larger pages   

 + Too small page table so less overhead to keep track of them 

 + More efficient to transfer larger pages to/from disk  

 - More internal fragmentation; waste of memory 

 Desing principle: fit page table into one frame 

 If not, multi-level paging (discussed later) 

. 



8.35 SGG Operating System Concepts  

Memory Protection and Other bits 

 Several bits might be associated with Page Table Entry 

(PTE) 

 Valid-invalid bit attached for memory protection 

 “valid” indicates that the associated page is in the process’ logical address 

space, and is thus a legal page 

 “invalid” indicates that the page is not in the process’ logical address space 

 Referenced bit: set if data on the page has been accessed 

 Dirty (modified) bit: set if data on the page has been modified 

 Protection information: read-only/writable/executable or not 

 Size of each PTE is at least frame number plus 2/3 bits 

 

Frame number V R D Protection 

Valid bit Referenced bit Dirty bit 



8.36 SGG Operating System Concepts  

Valid (v) or Invalid (i) Bit In A Page Table 

internal fragmentation,  
use length register -- PTRL 



8.37 SGG Operating System Concepts  

PAGING PROS/CONS 



8.38 SGG Operating System Concepts  

Paging Pros/Cons 

 Pros/Cons 

 + Allows sharing code among multiple processes  

 + Provide dynamic relocation  

 + No external fragmentation 

 + Protection (allows access to addresses  in the pages in page table) 

 

 - Internal fragmentation (1 page +1 byte require 2 pages) 

 - Keep track of all free frames,  

 - Page table for each process (increase context switch time) 

 Should we select big or small pages???? 

 Small: + less internal fragmentation, - big page table 

 Big: + small page table, + efficient I/O, - more internal fragmentation 

 Needs Hardware support 

 



8.39 SGG Operating System Concepts  

+ Shared Pages 

 Shared code 

 One copy of read-only (reentrant) code shared 

among processes (i.e., text editors, compilers, 

window systems). 

 Shared code must appear in the same location in 

the logical address space of all processes 

 Private code and data  

 Each process keeps a separate copy of the code 

and data 

 The pages for the private code and data can 

appear anywhere in the logical address space 



8.40 SGG Operating System Concepts  

+ Shared Pages Example 



8.41 SGG Operating System Concepts  

- Paging: Internal Fragmentation 

 Calculating internal fragmentation 

 Page size = 2,048 bytes 

 Process size = 72,766 bytes 

 35 pages + 1,086 bytes 

 Internal fragmentation of 2,048 - 1,086 = 962 bytes 

 Worst case fragmentation = 1 frame – 1 byte 

 On average fragmentation = 1 / 2 frame size 

 So small frame sizes desirable?  more entries 

 Each page table takes memory to track 

 Page sizes growing over time 

 Solaris supports two page sizes – 8 KB and 4 MB 



8.42 SGG Operating System Concepts  

- Free Frames 

Before allocation After allocation 



8.43 SGG Operating System Concepts  

IMPLEMENTATION OF PAGE 

TABLE 



8.44 SGG Operating System Concepts  

Implementation of Page Table 

 Where should we store Page table?  

 Registers (fast efficient but limited), main memory, dedicated lookup tables 

 Memory 

 Page-table base register (PTBR) points to the page table in memory 

 Page-table length register (PRLR) indicates size of the page table 

 In this scheme every data/instruction access requires two memory 

accesses.  One for the page table and one for the data/instruction. 

 Dedicated lookup tables 

 The two memory access problem can be solved by the use of a 

special fast-lookup hardware cache called associative memory or 

translation look-aside buffers (TLBs)  (see next slide) 

 Some TLBs store address-space identifiers (ASIDs) in each TLB 

entry – uniquely identifies each process to provide address-space 

protection for that process. If there is no ASID, flush TLB (expensive context SW) 



8.45 SGG Operating System Concepts  

Associative Memory 

 Associative memory (access by content) – parallel 

search  

 

 

 

 

 

 Address translation (p, d) 

 If p is in associative register, get frame # out 

 Otherwise, access the page table in memory, and get frame #  

and put it into TLB  

 (if TLB is full, replace an old entry. Wired down entries will not be removed) 

 

Page # Frame # 

Target Page # 
If found 

      Target Frame # 



8.46 SGG Operating System Concepts  

Paging Hardware With TLB 



8.47 SGG Operating System Concepts  

Effective Access Time 

 Associative Lookup =  time 

unit 

 Assume memory cycle time is 

m time unit  

 Hit ratio – percentage of times 

that a page number is found in 

the associative registers; ratio 

is related to number of 

associative registers 

 Hit ratio =  

 Effective Access Time (EAT) 

 EAT = (m + )  +  

              (2m + )(1 – )  

  

 Associative Lookup =  20 

nanosecond 

 Memory cycle time is 100 

nanosecond microsecond 

 Hit ratio = 80% 

 Effective Access Time 

(EAT) would be 

 EAT = (100 + 20) 0.8 +  

               (200 + 20)(1 – 0.8) 

        = 140 nanosecond vs. 200ns 

 40% slow down  

 With 98% hit rate, EAT 

would be 122 seconds. 

  



8.48 SGG Operating System Concepts  

STRUCTURE OF THE PAGE 

TABLE 

Hierarchical Paging 

Hashed Page Tables 

Inverted Page Tables 

 



8.49 SGG Operating System Concepts  

Page Table size and allocation 

 Logical address space varies in the range of 232 to 264 

 Page size varies in the range of (512 B) 29 to 224 (16 MB) 

 Number of pages = Logical address space  Page size 

 Page table should be allocated contiguously in memory 

Example: 

 If logical address space is 232 = 4GB and page size is 212 = 4KB 

  then number of pages will be 232 / 212 = 220 = 1M  106  

 if each entry consist of 4 Bytes then  

  the page table size will be 4MB for each process,  

 So, we need 4MB/4KB = 210 = 1K frames for page table 

 But we may not be able to allocate that many frames contiguously! 
 

So, what to do? 



8.50 SGG Operating System Concepts  

Hierarchical Page Tables 

 Break up the logical  

 address space into  

 multiple page tables 

 A simple technique 

 is a two-level page  

 table 

 Why is it good/bad? 

 + We don’t have to allocate  all levels 
initially  

 + They don’t have to be continuous 

 - how about memory access 

 



8.51 SGG Operating System Concepts  

Two-Level Paging Example 

 A logical address (on 32-bit machine with 1K page size) is divided into: 

 a page number consisting of 22 bits 

 a page offset consisting of 10 bits 

 Since the page table is paged, the page number is further divided into: 

 a 12-bit page number  

 a 10-bit page offset 

 Thus, a logical address is as follows: 
 
 
 
 
 
 
 

 
 
 
where pi is an index into the outer page table, and p2 is the displacement within 
the page of the outer page table 

page number page offset 

pi p2 d 

12 10 10 



8.52 SGG Operating System Concepts  

Two-Level Address-Translation Scheme 



8.53 SGG Operating System Concepts  

. . . 

. . . 

Two-level Address Translation with TLB 

p1 = 10 bits p2 = 10 bits offset = 12 bits 

page offset page number 

. . . 

0 

1 

p1 

. . . 
18 

0 

1 

p2 

18 
physical  
address 

1st level page table 2nd level page table 

main  
memory 

0 

1 

 frame# 

12 
Page 

table 

base 

. . . 

. . . 

p2 18 

TLB 

p1 

Which tables 
should  

be in memory? 

. 

How can we 
reduce 

# of memory 
accesses? 



8.54 SGG Operating System Concepts  

Memory Requirement of Page Tables 

 Only the 1st level page table and the required 2nd level 

page tables need to be in memory 

For example: 

 Suppose we have 1GB memory and 32-bit logical (virtual) 

address and 4KB page size (12-bit). Now we want to run a 

process with size of 32 MB, how many pages do we need?  

 32MB/4KB   8K virtual pages (minimum) to load this process 

 Assuming each table entry is 4 Bytes, then one page can store 1K 

page table entries. So we need at least 8K/1K = 8 pages, which will 

be used as second level pages…. 

 We need a first level page table, for which we will allocate one page 

 So overall, we need 9 pages (9 X4KB = 36 KB) to maintain the page tables  

 

. 



8.55 SGG Operating System Concepts  

55 

Page table size 

 32bit machine, page size 4k, each entry 4 bytes, one level 

page table (full 4GB linear address)  

Page table size = 2^20 pages * 4 bytes = 2^22 = 4MB 

 32bit machine, page size 4k, each entry 4 bytes, two level 

page table (suppose we have accessed three pages 

only!) 

Page table size = (2^10 level-0 entries) *4bytes + (2^10 level-
1 entries * 4 bytes) * 3 = 16 Kbytes 

The page table has to be physically 

continuous! 



8.56 SGG Operating System Concepts  

How Many Levels are Needed? 

 New architectures: 64-bits address? 

 Suppose 4KB page(frame) size (12-bit offset) 

 Then we need a page table with 264 / 212 = 252 entries!!!! 

 If we use two-level paging, then inner page table could be one 

page, containing 1K entries (10-bit) (assuming PTE size is 4 bytes)  

 So the outer  page needs to contain 242  entries !!! 

 Similarly, we can page the outer page,  

 giving us three-level paging 

 If we continue this way, we will have 7-level paging (8 memory accesses) 

 Problems with multiple-level page table 

 One additional memory access for each level added (if not in TLB) 

 Multiple levels are possible; but prohibitive after a few levels  

 Is there any other alternative  
to manage page/frame? 



8.57 SGG Operating System Concepts  

Hashed Page Tables 

 The virtual page number 

is hashed into a page 

table that contains a 

chain of elements 

hashing to the same 

location 

 Virtual page numbers 

are compared in this 

chain searching for a 

match. If a match is 

found, the 

corresponding physical 

frame is extracted 

 Clustered page tables, 

each entry refers to 

several pages… 

Page numbers 
hashing to  

the same location 



8.58 SGG Operating System Concepts  

Inverted Page Table 

 One entry for each real page (frame) 

of memory 

 Entry consists of the virtual address 

of the page stored in that real 

memory location, with information 

about the process that owns that 

page 

 + Decreases memory needed to store 

each page table, but  

 - Increases time needed to search the 

table when a page reference occurs.  

 - Also hard to implement shared memory 

 Use hash table to limit the search to 

one — or at most a few — page-

table entries 



8.59 SGG Operating System Concepts  

pid1 

pid 

pid0 

Inverted Page Table (cont.) 

process ID p = 20bits offset = 12 bits 

page number 

12 “128” 

physical address 

inverted page table 

main memory 

. . . 

0 

1 

. . . 

 Page frame 
number 

page offset 

pid p 

p0 

p1 

p 

. . . 

. . . 

0 

1 

128 

search 

128 

How to improve  
search performance? 

. 



8.60 SGG Operating System Concepts  

Hashing for Inverted Page Table 

 Hashing function 

 Take virtual page number and process ID 

 Hash value indicates the index for possible PTE 

 Compare the PTE with virtual page # and PID 

 If the same: hash value is the frame number 

 If not ? 

 

 Confliction of hash function 

 Next PTE until either the entry is found or a limit is reached 

 Second hash function/value 

. 



8.61 SGG Operating System Concepts  

SEGMENTATION 

Skip the rest 

 

Memory-management scheme that supports user view of memory 

Collection of variable size segments  



8.62 SGG Operating System Concepts  

Segmentation 

 A user prefers to see a program as a collection of segments 

 A segment is a logical unit such as: 

 main program 

 procedure  

 Function 

 Method 

 Object 

 local variables,  

 global variables 

 Common block 

 Stack 

 symbol table 

 arrays 



8.63 SGG Operating System Concepts  

Logical View of Segmentation 

 Looks like paging, but 

 In paging user specifies a single address, which is partitioned by 

the hardware 

 In segmentation user specifies a segment name and an offset 

 

1 

3 

2 

4 

1 

4 

2 

3 

User space  Physical memory  
 Logical address consists of a 

two-tuple:  

 <segment-number, offset> 

 For example, C compiler 

creates different segments 

for code, global variables, 

heap, stack, standard lib 

 These two-dimensional 

addresses need to be 

translated (mapped) to 

physical addresses 



8.64 SGG Operating System Concepts  

Segmentation Architecture  

 Segment table – maps two-dimensional addresses to 

physical addresses; each table entry has: 

 base – contains the starting physical address where the segments reside in 

memory 

 limit – specifies the length of  the segment 

 Segment-table base register  

 (STBR) points to the segment  

 table’s location in memory 

 Segment-table length register  

 (STLR) indicates number of  

 segments used by a program; 

 segment number s is legal if s < STLR 



8.65 SGG Operating System Concepts  

Example of Segmentation 



8.66 SGG Operating System Concepts  

Segmentation Architecture (Cont.) 

 Protection 

 With each entry in segment table associate: 

 validation bit = 0  illegal segment 

 read/write/execute privileges 

 Protection bits associated with segments; code 

sharing occurs at segment level 

 Since segments vary in length, memory 

allocation is a dynamic storage-allocation 

problem 

 Paging can be used to store segments…. 



8.67 SGG Operating System Concepts  

EXAMPLE: THE INTEL 

PENTIUM 

Supports both segmentation and segmentation with paging 

 



8.68 SGG Operating System Concepts  

Logical to Physical Address Translation in Pentium 

 CPU generates logical address 

 Given to segmentation unit 

 Which produces linear addresses  

 Linear address given to paging unit 

 Which generates physical address in main memory 

 Paging units form equivalent of MMU 

 



8.69 SGG Operating System Concepts  

Intel Pentium Segmentation 



8.70 SGG Operating System Concepts  

Pentium Paging Architecture 



8.71 SGG Operating System Concepts  

Linear Address in Linux 

Broken into four parts: 



8.72 SGG Operating System Concepts  

Three-level Paging in Linux 



8.73 SGG Operating System Concepts 

End of Chapter 8 


