
9.1 SGG Operating System Concepts

Chapter 9: Virtual Memory

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

Allow the OS to hand out more memory than existing physical memory

8.2 SGG Operating System Concepts

Chapter 9: Virtual Memory

 Background *

 Demand Paging *****

 Copy-on-Write *

 Page Replacement *****

 Memory-Mapped Files ***

 Allocation of Frames **

 Thrashing **

 Allocating Kernel Memory *

 Other Considerations *

 Operating-System Examples

8.3 SGG Operating System Concepts

Objectives

 To describe the benefits of a virtual memory system

 To explain

 the concepts of demand paging,

 page-replacement algorithms, and

 allocation of page frames

 To discuss the principle of the working-set model

 To consider other issues affecting the performance

8.4 SGG Operating System Concepts

Background

 (CH 8) A process must be in physical memory

 How to run a large program that does not fit into physical memory?

 Observation: Not all code or data needed at the same time

 Error handling codes

 Big arrays with max size

 Some options might not be needed at least at the same time

 Virtual memory

 Allows execution of processes that are not completely in the

main memory

 What are the benefits of executing a program which is partially in memory?

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

8.5 SGG Operating System Concepts

Benefits of Virtual Memory

 User will have a very large logical address space

 User can execute programs larger than physical memory

 Especially helpful in multiprogrammed systems

 Multiple processes can be executed concurrently because

 Each process occupies small portion of memory

 The only part of the program needs to be in physical memory is the

one that is needed for execution at a given time

 Less I/O to load or swap user programs

 Physical Memory de/allocation

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Keep recently used content in physical memory

 Move less recently used stuff to disk

 Movement to/from disk handled by the OS

C
o
m

p
a
re

 t
o
 s

w
a
p
p
in

g
!

8.6 SGG Operating System Concepts

Virtual Memory

 Separation of user logical memory
from physical memory

 Addresses local to the process

 Can be any size  limited by # of bits
in address (32/64)

 Virtual memory >> physical memory

 Holes are part of virtual address space
but require actual physical pages
(frames) only when needed for
growing heap stack or shared libs etc.

Stack

Text

Heap

Auxiliary

regions

0

2N

Natural extension
of paging in CH 8

8.7 SGG Operating System Concepts

Virtual Memory That is Larger Than

Physical Memory

Natural extension of paging in CH 8

How to get physical address from the virtual one?!

8.8 SGG Operating System Concepts

Recall: Paging and Page Systems

 Virtual (logical) address

 Divided into pages

 Physical memory

 Divided into frames

 Page vs. Frame

 Same size address blocks

 Unit of mapping/allocation

 A page is mapped to a frame

 All addresses in the same

virtual page are in the same

physical frame  offset in a

page

.

0–4K

4–8K

8–12K

12–16K

16–20K

20–24K

24–28K

28–32K

1

3

0

2

Physical
memory

2

0–4K

4–8K

8–12K

12–16K

0 16–20K

20–24K

24–28K

3 28–32K

Virtual (Logical)
memory

-

-

-

-

1

-

-

…
…

…

8.9 SGG Operating System Concepts

Virtual and Physical Addresses
same as in ch 8

 Virtual address space

 Determined by instruction width

 Same for all processes

 Physical memory indexed by

physical addresses

 Limited by bus size (# of bits)

 Amount of available memory

 Memory Management Unit (MMU)

 Translation: virtual  physical addr.

 Only physical addresses leave the

CPU/MMU chip

CPU chip

CPU

Memory

Disk
controller

MMU

Virtual addresses
from CPU to MMU

Physical addresses
on bus, in memory

How does MMU do the
translation & what is needed?

.

8.10 SGG Operating System Concepts

Translate Virtual to Physical Address
 same as in ch 8

 Split virtual address (from CPU) into two pieces

 Page number (p)

 Page offset (d)

 Page number

 Index into page table

 Page table contains base address of page in physical memory

 Page offset

 Added to base address to get actual physical memory address

 Page size = 2d bytes: determined by offset size

*

8.11 SGG Operating System Concepts

An Example of Virtual/Physical Addresses

 Example:

 64 KB virtual memory (16-bit)

 32 KB physical memory (15-bit)

 4 KB page/frame size (12-bit) as offset (d)

Page #:4bits Offset: 12 bits Virtual address:
16 bits

Frame #:3bits Offset: 12 bits Physical address:
15 bits

How many
pages?

How many
frames?

Address
Translation

.

8.12 SGG Operating System Concepts

DEMAND PAGING

How /when to load a page into memory

 load everything at once (ch8)

 load as needed (ch9)

8.13 SGG Operating System Concepts

Demand Paging

 Bring a page into memory

only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed 

reference to it

 Valid in memory  use it

 invalid reference  abort

 not-in-memory  bring to

memory

 Demand Paging vs. Swapper

Page only vs. contiguous space

 Lazy swapper – bring only the

pages that are needed

8.14 SGG Operating System Concepts

Valid-Invalid Bit

 With each page table
entry a valid–invalid bit
is associated
v  in-memory,

 i  not-in-memory)

 Initially valid–invalid bit
is set to i on all entries

 During address
translation,

 if valid–invalid bit in
page table entry

 is i  page fault (trap)

8.15 SGG Operating System Concepts

Page Fault

1. Reference to a page,

 If Invalid reference  abort

2. If not in memory, page
fault occurs (trap to OS)

3. Operating system
allocates an empty frame

4. Swap page into frame

5. Reset page tables,

 set validation bit = v

6. Restart the instruction
that caused the page fault

8.16 SGG Operating System Concepts

Page Fault (Cont.)

 Restart instruction

 During inst fetch, get the page and re-fetch

 During operand fetch, get the page and re-
fetch instruction
 (how many pages need depends on architecture, e.g., add

a b c)

 But how about block move

 Make sure both ends of the buffers are in the
memory

 Use temp buffer. If page fault occurs restore
before re-starting

8.17 SGG Operating System Concepts

Performance of Demand Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

 EAT = (1 – p) x memory_access + p x page_fault_time

 page_fault_time depends on several factors
 Save user reg and proc state,

 check page ref,

 read from the disk there might be a queue, (CPU can be

given to another proc),

 get interrupt,

 save other user reg and proc state,

 correct the page table,

 put this process into ready queue…..

 Due to queues, the page_fault_time is a random variable

8.18 SGG Operating System Concepts

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)

 = (1 – p) x 200 + p x 8,000,000

 = 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

 EAT = 8.2 microseconds.

 This is a slowdown by a factor of 40!

 If we want just 10% performance degradation, then p

should be

220 > (1 – p) x 200 + p (8 milliseconds)

p < 0.0000025 , i.e., 1 page fault out of 400,000 accesses

8.19 SGG Operating System Concepts

Disk I/O for Demand Paging

 Disk I/O to swap is generally faster than to the file system

 Larger blocks, no indirect lookups etc.

Option 1:

Prog in file system swap area memory

Option 2:

Prog swap area memory

8.20 SGG Operating System Concepts

PROCESS CREATION

Virtual memory has other benefits during process creation:

 - Copy-on-Write

 - Memory-Mapped Files (later)

8.21 SGG Operating System Concepts

Copy-on-Write

 Copy-on-Write (COW) allows both

parent and child processes to

initially share the same pages in

memory

 If either process modifies a shared

page, only then is the page copied

 COW allows more efficient process

creation as only modified pages

are copied

 vfork() virtual memory fork is not

like COW

 Suspend parent, use its address

space… be careful

 Use it when child calls exec

8.22 SGG Operating System Concepts

PAGE REPLACEMENT

What happens if there is no free frame?

 Terminate user program or

 Swap out some page

8.23 SGG Operating System Concepts

Page Replacement

 To prevent over-allocation of memory, modify page-fault

service routine to include page replacement, which finds

some page in memory and swaps it out

 Same page may be brought into memory several times

 We need algorithms to minimize the number of page faults

 Include other improvement, e.g., use modify (dirty) bit to

reduce overhead of page transfers – only modified pages

are written to disk

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can

be provided on a smaller physical memory

8.24 SGG Operating System Concepts

Need For Page Replacement

8.25 SGG Operating System Concepts

Basic Page Replacement

 Find the location of the

desired page on disk

 If there is a free frame, use it

 If there is no free frame, use a

page replacement algorithm

1. Select a victim frame, swap it

out (use dirty bit to swap out only

modified frames)

2. Bring the desired page into

the (newly) free frame;

3. update the page and frame

tables

 Restart the process

8.26 SGG Operating System Concepts

Page Replacement Algorithms

 How to select the victim frame?

 You can select any frame, the page replacement will work;

 but the performance???

 So we want an algorithms that gives the lowest page-fault rate

 Evaluate an algorithm by running it on a particular string of

memory references (reference string) and compute the

number of page faults on that string

 In all our examples, we will have 3 frames and the following

reference string

8.27 SGG Operating System Concepts

First-In-First-Out (FIFO) Algorithm

 Maintain an FIFO buffer

 + The code used before may not be needed

 - An array used early, might be used again and again

 Easy to implement

 Belady’s Anomaly: more frames  more page faults

8.28 SGG Operating System Concepts

FIFO Illustrating Belady’s Anomaly

8.29 SGG Operating System Concepts

Optimal Algorithm

 Replace page that will not be used for longest period of time

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know the future?

 Used for measuring how well your algorithm performs

1

2

3

4 X

1

2

3

5

8.30 SGG Operating System Concepts

Least Recently Used (LRU) Algorithm

 Use recent past as an approximation of the future

 Select the page that is not used for a long time…

 OPT if you look at from backward

 NO Belady’s Anomaly: so more frames  less page faults

 Hard to implement (why?)

8.31 SGG Operating System Concepts

LRU Algorithm (Cont.)

H
a
rd

w
a
re

 a
s
s
is

ta
n
c
e
 n

e
e
d
e
d
 t

o
 d

o
 u

p
d
a
te

s
 f

o
r

e
v
e
ry

 m
e
m

o
ry

 r
e
fe

re
n
c
e

 Counter (logical clock) implementation

 Increase the counter every time a page is referenced

 Save it into time-of-use field associated with this page’s entry in

the page table

 When a page needs to be replaced, find the one that has the

smallest time-of-use value

 Problems: Counter overflow and linear search

 Stack implementation – keep a stack of page numbers in a

double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement

 Least recently used one is at the bottom

8.32 SGG Operating System Concepts

LRU Approximation Algorithms

 Reference bit

 With each page associate a reference bit, initially = 0

 When page is referenced, set this bit to 1 by hardware

 Replace the one which is 0 (if one exists)

 We do not know the order, however

 Additional bits can help to gain more ordering information

 In the extreme case, use just reference bit, no additional bit

 Second chance Alg

 FIFO with an inspection of ref bit

 If ref bit is 0,

 replace that page

 set its ref bit to 1

 If ref bit is 1, /* give a second chance */

 set ref bit to 0

 leave page in memory

 go to next one
 Enhance it modify bit, avoid replacing modified pages

What if all

bits are 1 ….

All pages will

get second

chance….

Degenerates

FIFO

8.33 SGG Operating System Concepts

Counting Algorithms: LFU and MFU

 Keep a counter of the number of references that have been

made to each page

 LFU Algorithm: replaces page with smallest count

 + Active pages are likely to be used again

 - Code within a big loop may not be used again..

 Shift counters to form an exponential decaying

 MFU Algorithm: based on the argument that the page with

the smallest count was probably just brought in and has yet

to be used

 Expensive, don’t perform well in general, but might be useful

for some applications
 (database application may read a lot of data first then search, but LRU will remove the old ones

 LFU/MFU might work depending on the application)

8.34 SGG Operating System Concepts

Other improvements

 Page Buffering

 Have free frame pools

 First get the page from disk to free frame, then

 As before select victim and write it out

 Whenever paging device is idle write them out

 Mark a frame as free but remember for which page it was used (like

recycle bin) so if needed that frame can be used again without

going to disk

 Applications and Page Replacements

 For some applications general purpose solutions may not work well

 For example database application may make a better use of

resources as it understands the nature of data better….

8.35 SGG Operating System Concepts

Summary: Page Replacement Algorithms

Algorithm Comment

FIFO (First-In, First Out) Might throw out useful pages

Second chance Big improvement over FIFO

LRU (Least Recently Used) Excellent, but hard to implement exactly

OPT (Optimal) Not implementable, but useful as a benchmark

8.36 SGG Operating System Concepts

How paging may impact the performance of a Program

 Program structure

 int[128,128] data;

 Each row is stored in one page

 Increase locality, separate code and data, avoid
page boundaries for routines arrays,

 Stack has good locality but hash has bad locality

 Pointers, Objects may diminish locality

Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)

 data[i,j] = 0;

128 page faults

Program 1
 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)

 data[i,j] = 0;

128 x 128 = 16,384 page faults

8.37 SGG Operating System Concepts

MEMORY-MAPPED FILES

Treat file I/O as routine memory access

8.38 SGG Operating System Concepts

Memory-Mapped Files

 Map a disk block to a page in

memory, then file I/O can be

treated as routine memory access

and avoid avoiding system calls
like read() write()

 Data written into memory is not immediate

written to disk!

 A file is initially read using

demand paging. A page-sized

portion of the file is read from the

file system into a physical page.

Subsequent reads/writes to/from

the file are treated as ordinary

memory accesses.

 Also allows several processes to

map the same file allowing the

pages in memory to be shared.

8.39 SGG Operating System Concepts

Memory-Mapped Files in Java

8.40 SGG Operating System Concepts

User-Level Memory Mapping in C

void *mmap(void *start, int len,

 int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified by

file description fd, preferably at address start

 start: may be 0 for “pick an address”

 prot: PROT_READ, PROT_WRITE, ...

 flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)

 Anonymous: No backup on files

 File-backed mapping: Backed up by a file.

8.41 SGG Operating System Concepts

User-Level Memory Mapping

void *mmap(void *start, int len,

 int prot, int flags, int fd, int offset)

len bytes

start

(or address
chosen by kernel)

Process virtual memory Disk file specified by
file descriptor fd

len bytes

offset

(bytes)

0 0

8.42 SGG Operating System Concepts

Memory-Mapped I/O

 I/O is mapped to memory actually some ranges of

addresses are allocated for different devices

 CPU can communicate these devices through memory

accesses

 Programmed I/O vs. Interrupt driven I/O

 One at a time vs. all at once then followed by interrupt

8.43 SGG Operating System Concepts

ALLOCATION OF FRAMES

Two major allocation schemes

fixed allocation

priority allocation

8.44 SGG Operating System Concepts

Minimum Number of Frames

 Each process needs minimum number of pages

Examples

 add a b c might require 3 pages

 IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Level of indirection…

 Min depends on architecture

 Maximum depends on available memory

 How about the optimal to maximize CPU utilization?

8.45 SGG Operating System Concepts

Allocation Algorithms

 Fixed allocation

 Equal allocation: – Allocate

same amount to each process

 For example, if there are 100

frames and 5 processes, each

gets 20 frames.

 Proportional allocation –

Allocate according to the size

of process

m
S

s
pa

m

sS

ps

i
ii

i

ii









 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2











a

a

s

s

m

i

 Priority Allocation

 Use a proportional allocation

scheme using priorities rather

than size

 If process Pi generates a

page fault,

 select for replacement one of

its frames

 select for replacement a

frame from a process with

lower priority number

8.46 SGG Operating System Concepts

Global vs. Local Allocation

 Global replacement – process selects a replacement

frame from the set of all frames; one process can take a

frame from another

 High priority processes can take all frames from low priority

ones (cause thrashing)

 A process cannot control its page fault rate

 Local replacement – each process selects from only its

own set of allocated frames

 How determine the size of the set ???

8.47 SGG Operating System Concepts

THRASHING

A process is busy swapping pages in and out

Cover the rest as much as the time permits…

8.48 SGG Operating System Concepts

Thrashing

 If a process does not

have “enough” pages,

the page-fault rate is

very high. This leads

to:

 low CPU utilization

 operating system

thinks that it needs to

increase the degree

of multiprogramming

 another process

added to the system

 But then trashing

happens

increase the degree of
multiprogramming

Decrease the degree
of multiprogramming

8.49 SGG Operating System Concepts

Locality and Thrashing

 To prevent thrashing we

should give enough frames

to each process

 But how much is “enough”

Locality model

 Process migrates from one

locality to another (that is actually

why demand paging or cashing works)

 Localities may overlap

When  size of locality >

 total memory size,

thrashing occurs…

Increase locality in
your programs!

8.50 SGG Operating System Concepts

Working-Set Model

   working-set window  a fixed number of page references

Example: 10,000 instruction

 WSSi (working set of Process Pi) = total number of pages

referenced in the most recent  (varies in time)

 if  too small will not encompass entire locality

 if  too large will encompass several localities

 if  =   will encompass entire program

 D =  WSSi  total demand frames

 if D > (available frames) m  Thrashing

 Policy if D > m, then

 suspend one of the processes (reduce degree of multiprogramming)

8.51 SGG Operating System Concepts

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example:  = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and set the values of all

reference bits to 0

 If one of the bits in memory = 1  page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units

8.52 SGG Operating System Concepts

Page-Fault Frequency (PFF) Scheme

 Working set is a clumsy way to

control thrashing

 PFF takes more direct approach

 High PFF  more thrashing

 Establish “acceptable” page-

fault rate

 If actual rate is too low, process

loses frame

 If actual rate is too high, process

gains frame

 Suspend a process if PFF is

above upper bound and there is

no free frames!

8.53 SGG Operating System Concepts

USER MEMORY ALLOCATION

Typically, the user will get one big block of memory and setup its page table.

 Allocate 1 page even when 1 byte is needed…

Then this memory will be managed by user space memory manager.

 How to manage the memory inside user space?

8.54 SGG Operating System Concepts

Memory allocation (using mmap/brk)

#include <stdio.h>

#include <stdlib.h>

int main() {

 int * ptr = malloc(4);

 *ptr = 1;

 free(ptr);

}

08048000-08049000 r-xp test

08049000-0804a000 r—p test

0804a000-0804b000 rw-p test

b7e7b000-b7e7c000 rw-p 0

b7e7c000-b7fd8000 r-xp libc-2.9.so

b7fd8000-b7fd9000 ---p libc-2.9.so

b7fd9000-b7fdb000 r--p libc-2.9.so

b7fdb000-b7fdc000 rw-p libc-2.9.so

b7fdc000-b7fe1000 rw-p 0

b7fe1000-b7fe2000 r-xp 0 [vdso]

b7fe2000-b7ffe000 r-xp ld-2.9.so

b7ffe000-b7fff000 r—p ld-2.9.so

b7fff000-b8000000 rw-p ld-2.9.so

bffeb000-c0000000 rw-p [stack]

Currently, no heap space at all because we didn’t use any heap

8.55 SGG Operating System Concepts

Memory allocation

#include <stdio.h>

#include <stdlib.h>

int main() {

 int * ptr = malloc(4);

 *ptr = 1;

 free(ptr);

}

08048000-08049000 r-xp test

08049000-0804a000 r—p test

0804a000-0804b000 rw-p test

0804b000-0806c000 rw-p [heap]

b7e7b000-b7e7c000 rw-p 0

b7e7c000-b7fd8000 r-xp libc-2.9.so

b7fd8000-b7fd9000 ---p libc-2.9.so

b7fd9000-b7fdb000 r--p libc-2.9.so

b7fdb000-b7fdc000 rw-p libc-2.9.so

b7fdc000-b7fe1000 rw-p 0

b7fe1000-b7fe2000 r-xp 0 [vdso]

b7fe2000-b7ffe000 r-xp ld-2.9.so

b7ffe000-b7fff000 r—p ld-2.9.so

b7fff000-b8000000 rw-p ld-2.9.so

bffeb000-c0000000 rw-p [stack]

Now, the heap is allocated from the kernel, which means the virtual

address from 0x0804b000 to 0x0806c000 (total 33K) are usable.

ptr is actually 0x804b008.

8.56 SGG Operating System Concepts

Memory Mapping (mmap or brk)

#include <stdio.h>

#include <stdlib.h>

int main() {

 int * ptr = malloc(4);

 *ptr = 1;

 free(ptr);

}

0804b000-0806c000 rw-p [heap]

page table

Valid

0

0

0

0

0

0

0

0

0

0

0804b

0806c

……
……

8.57 SGG Operating System Concepts

Memory Mapping (mmap or brk)

#include <stdio.h>

#include <stdlib.h>

int main() {

 int * ptr = malloc(4);

 *ptr = 1;

 free(ptr);

}

0804b000-0806c000 rw-p [heap]

page table

Valid

1

0

0

0

0

0

0

0

0

0

0804b

0806c

……
……

1

Physical Page

8.58 SGG Operating System Concepts

ALLOCATING KERNEL

MEMORY

Treated differently from user memory (allocate 1 page even when 1 byte is needed)

Often allocated from a different free-memory pool

Kernel requests memory for structures of varying sizes

Some kernel memory needs to be contiguous

8.59 SGG Operating System Concepts

Buddy System

 Allocates memory from fixed-size

segment consisting of physically-

contiguous pages

 Memory allocated using power-of-2

allocator

 Satisfies requests in units sized as

power of 2

 Request rounded up to next highest

power of 2

 When smaller allocation needed than is

available, current chunk split into two

buddies of next-lower power of 2

 Continue until appropriate sized chunk

available

 When freed, combine buddies

(called coalescing)

Rounding up
causes
fragmentation,
e.g., 33K needs
64K …
50% might be
wasted

8.60 SGG Operating System Concepts

Slab Allocator

 Slab is one or more

physically contiguous pages

 Cache consists of one or

more slabs

 Single cache for each unique

kernel data structure (process

descriptions, file objects, semaphores)

 Each cache filled with objects –

instantiations of the data structure

 When cache created, filled with

objects marked as free

 When structures stored, objects

marked as used

 If slab is full, next object is

allocated from empty slab

 If no empty slabs, new slab allocated

Benefits include

 no fragmentation,

 memory request is

satisfied quickly

8.61 SGG Operating System Concepts

OTHER ISSUES

Main concerns were Replacement and Allocation

But we have several other issues too

8.62 SGG Operating System Concepts

Other Issues -- Prepaging

 Prepaging

 To reduce the large number of page faults that occurs at process

startup

 Prepage all or some of the pages a process will need, before they

are referenced

 But if prepaged pages are unused, I/O and memory was wasted

 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of prepaging

s * (1- α) unnecessary pages?

 α near zero  prepaging loses

8.63 SGG Operating System Concepts

Other Issues – Page Size

 Page size selection must take into consideration:

 Fragmentation (small size page is better)

 Table size (large size page is better)

 I/O overhead

 Seek

 Latency

 Transfer

 Locality

 New Oses tends to use larger an larger sizes….

8.64 SGG Operating System Concepts

Other Issues – TLB Reach

Increasing hit rate is good but associative memory is expensive and power hungry

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 Increases TLB reach but this may lead to an increase in

fragmentation as not all applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the opportunity

to use them without an increase in fragmentation

8.65 SGG Operating System Concepts

Other Issues – Program Structure

 Program structure

 int[128,128] data;

 Each row is stored in one page

 Increase locality, separate code and data, avoid
page boundaries for routines arrays,

 Stack has good locality but hash has bad locality

 Pointers, Objects may diminish locality

Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)

 data[i,j] = 0;

128 page faults

Program 1
 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)

 data[i,j] = 0;

128 x 128 = 16,384 page faults

8.66 SGG Operating System Concepts

Other Issues – I/O interlock

 Users I/O might be done through

kernel (mem-to-mem copy overhead)

 I/O Interlock – Pages must

sometimes be locked into memory

 Consider I/O - Pages that are used

for copying a file from a device

must be locked from being selected

for eviction by a page replacement

algorithm

 Lock bit might be dangerous

 What if it locked due to a bug in OS

 Some uses it as a hint but ignore it

 Some periodically clears it

8.67 SGG Operating System Concepts

OPERATING SYSTEM

EXAMPLES

Windows XP

Solaris

8.68 SGG Operating System Concepts

Windows XP

 Uses demand paging with clustering. Clustering brings in pages

surrounding the faulting page.

 Processes are assigned working set minimum and working set

maximum.

 Working set minimum is the minimum number of pages the

process is guaranteed to have in memory.

 A process may be assigned as many pages up to its working set

maximum.

 When the amount of free memory in the system falls below a

threshold, automatic working set trimming is performed to

restore the amount of free memory.

 Working set trimming removes pages from processes that have

pages in excess of their working set minimum.

8.69 SGG Operating System Concepts

Solaris

 Maintains a list of free pages to assign faulting processes

 Lotsfree – threshold parameter (amount of free memory) to

begin paging

 Desfree – threshold parameter to increasing paging

 Minfree – threshold parameter to being swapping

 Paging is performed by pageout process

 Pageout scans pages using modified clock algorithm

 Scanrate is the rate at which pages are scanned. This ranges

from slowscan to fastscan

 Pageout is called more frequently depending upon the amount

of free memory available

8.70 SGG Operating System Concepts

Solaris 2 Page Scanner

9.71 SGG Operating System Concepts

End of Chapter 9

