
9.1 SGG Operating System Concepts 

Chapter 9:  Virtual Memory 

Thanks to the author of the textbook [SGG] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

Allow the OS to hand out more memory than existing physical memory 



8.2 SGG Operating System Concepts 

Chapter 9:  Virtual Memory 

 Background   * 

 Demand Paging   ***** 

 Copy-on-Write   * 

 Page Replacement   ***** 

 Memory-Mapped Files  *** 

 Allocation of Frames   ** 

 Thrashing    ** 

 Allocating Kernel Memory  * 

 Other Considerations  * 

 Operating-System Examples 
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Objectives 

 To describe the benefits of a virtual memory system 
 

 To explain  

 the concepts of demand paging,  

 page-replacement algorithms, and  

 allocation of page frames 
 

 To discuss the principle of the working-set model 

 To consider other issues affecting the performance  
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Background 

 (CH 8) A process must be in physical memory 

 How to run a large program that does not fit into physical memory? 

 Observation: Not all code or data needed at the same time 

 Error handling codes 

 Big arrays with max size 

 Some options might not be needed at least at the same time 

 Virtual memory 

 Allows execution of processes that are not completely in the 

main memory  

 What are the benefits of executing a program which is partially in memory? 

 Virtual memory can be implemented via: 

 Demand paging  

 Demand segmentation 
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Benefits of Virtual Memory 

 User will have a very large logical address space 

 User can execute programs larger than physical memory 

 Especially helpful in multiprogrammed systems 

 Multiple processes can be executed concurrently because 

 Each process occupies small portion of memory 

 The only part of the program needs to be in physical memory is the 

one that is needed for execution at a given time 

 Less I/O to load or swap user programs 

 Physical Memory de/allocation 

 Allows address spaces to be shared by several processes 

 Allows for more efficient process creation 

 Keep recently used content in physical memory 

 Move less recently used stuff to disk 

 Movement to/from disk handled by the OS 
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Virtual Memory 

 Separation of user logical memory 
from physical memory 

 Addresses local to the process  

 Can be any size  limited by # of bits 
in address (32/64) 

 Virtual memory >> physical memory 

 Holes are part of virtual address space 
but require actual physical pages 
(frames) only when needed for 
growing heap stack or shared libs etc. 
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Virtual Memory That is Larger Than 

Physical Memory 

Natural extension of paging in CH 8 

How to get physical address from the virtual one?! 
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Recall: Paging and Page Systems 

 Virtual (logical) address  

 Divided into pages 

 Physical memory  

 Divided into frames 

 Page vs. Frame 

 Same size address blocks 

 Unit of mapping/allocation 

 A page is mapped to a frame 

 All addresses in the same 

virtual page are in the same 

physical frame  offset in a 

page 
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Virtual and Physical Addresses 
same as in ch 8 

 Virtual address space 

 Determined by instruction width 

 Same for all processes 

 Physical memory indexed by 

physical addresses 

 Limited by bus size (# of bits) 

 Amount of available memory 

 Memory Management Unit (MMU) 

 Translation: virtual  physical addr.  

 Only physical addresses leave the 

CPU/MMU chip 

CPU chip 

CPU 

Memory 

Disk 
controller 

MMU 

Virtual addresses 
from CPU to MMU 

Physical addresses 
on bus, in memory 

How does MMU do the 
translation & what is needed? 

. 
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Translate Virtual to Physical Address 
 same as in ch 8 

 Split virtual address (from CPU) into two pieces 

 Page number (p) 

 Page offset (d) 

 Page number 

 Index into page table 

 Page table contains base address of page in physical memory 

 Page offset 

 Added to base address to get actual physical memory address 

 Page size = 2d bytes: determined by offset size 

* 
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An Example of Virtual/Physical Addresses 

 Example: 

 64 KB virtual memory  (16-bit) 

 32 KB physical memory  (15-bit) 

 4 KB page/frame size   (12-bit) as offset (d) 

Page #:4bits Offset: 12 bits Virtual address: 
16 bits 

Frame #:3bits Offset: 12 bits Physical address: 
15 bits 

How many 
pages? 

How many 
frames? 

Address  
Translation 

. 
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DEMAND PAGING 

How /when to load a page into memory 

 load everything at once (ch8)  

 load as needed (ch9)  
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Demand Paging 

 Bring a page into memory 

only when it is needed 

 Less I/O needed 

 Less memory needed  

 Faster response 

 More users 
 

 Page is needed  

reference to it 

 Valid in memory  use it 

 invalid reference  abort 

 not-in-memory  bring to 

memory 
 

 

 Demand Paging vs. Swapper 

Page only vs. contiguous space 

 Lazy swapper – bring only the 

pages that are needed 
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Valid-Invalid Bit 

 With each page table 
entry a valid–invalid bit 
is associated 
v  in-memory,  

 i  not-in-memory) 

 Initially valid–invalid bit 
is set to i on all entries 

 During address 
translation,  

 if valid–invalid bit in 
page table entry 

      is i  page fault (trap) 
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Page Fault 

1.   Reference to a page,  

 If Invalid reference  abort 

2.   If not in memory, page 
fault occurs (trap to OS) 

3.   Operating system 
allocates an empty frame 

4.   Swap page into frame 

5.   Reset page tables,  

 set   validation bit = v 

6.  Restart the instruction 
that caused the page fault 
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Page Fault (Cont.) 

 Restart instruction 

 During inst fetch, get the page and re-fetch 

 During operand fetch, get the page and re-
fetch instruction  
 (how many pages need depends on architecture, e.g., add 

a b c) 

 But how about block move 

 Make sure both ends of the buffers are in the 
memory 

 Use temp buffer. If page fault occurs restore 
before re-starting 
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Performance of Demand Paging 

 Page Fault Rate 0  p  1.0 

 if p = 0 no page faults  

 if p = 1, every reference is a fault 
 

 Effective Access Time (EAT) 

    EAT = (1 – p) x memory_access + p x page_fault_time 

 page_fault_time depends on several factors  
 Save user reg and proc state,  

 check page ref,  

 read from the disk there might be a queue, (CPU can be 

given to another proc),  

 get interrupt,  

 save other user reg and proc state,  

 correct the page table,  

 put this process into ready queue…..  

 Due to queues, the page_fault_time is a random variable  
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Demand Paging Example 

 Memory access time = 200 nanoseconds 

 Average page-fault service time = 8 milliseconds 

 EAT = (1 – p) x 200 + p (8 milliseconds)  

         = (1 – p)  x 200 + p x 8,000,000  

              = 200 + p x 7,999,800 

 If one access out of 1,000 causes a page fault, then 

            EAT = 8.2 microseconds.  

            This is a slowdown by a factor of 40! 

 If we want just 10% performance degradation, then p 

should be 

220 > (1 – p) x 200 + p (8 milliseconds)  

p < 0.0000025 , i.e., 1 page fault out of 400,000 accesses 
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Disk I/O for Demand Paging 

 Disk I/O to swap is generally faster than to the file system  

 Larger blocks, no indirect lookups etc. 

Option 1: 

 

 

Prog in file system            swap area                  memory 

 

Option 2: 

 

 

Prog                          swap area                  memory 
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PROCESS CREATION 

Virtual memory has other benefits during process creation: 

 

 - Copy-on-Write 

 

 - Memory-Mapped Files (later) 
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Copy-on-Write 

 Copy-on-Write (COW) allows both 

parent and child processes to 

initially share the same pages in 

memory 

 If either process modifies a shared 

page, only then is the page copied 

 COW allows more efficient process 

creation as only modified pages 

are copied 

 vfork() virtual memory fork is not 

like COW 

 Suspend parent, use its address 

space… be careful 

 Use it when child calls exec  
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PAGE REPLACEMENT 

What happens if there is no free frame?  

 Terminate user program or 

 Swap out some page   
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Page Replacement 

 To prevent over-allocation of memory, modify page-fault 

service routine to include page replacement, which finds 

some page in memory and swaps it out 

 Same page may be brought into memory several times 

 We need algorithms to minimize the number of page faults 

 

 Include other improvement, e.g., use modify (dirty) bit to 

reduce overhead of page transfers – only modified pages 

are written to disk 
 

 Page replacement completes separation between logical 

memory and physical memory – large virtual memory can 

be provided on a smaller physical memory 
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Need For Page Replacement 
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Basic Page Replacement 

 Find the location of the 

desired page on disk 

 If there is a free frame, use it 

 If there is no free frame, use a 

page replacement algorithm 

1. Select a victim frame, swap it 

out (use dirty bit to swap out only 

modified frames) 

2. Bring  the desired page into 

the (newly) free frame;  

3. update the page and frame 

tables 
 

 Restart the process 
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Page Replacement Algorithms 

 How to select the victim frame? 

 You can select any frame, the page replacement will work;  

 but the performance??? 

 So we want an algorithms that gives the lowest page-fault rate 

 Evaluate an algorithm by running it on a particular string of 

memory references (reference string) and compute the 

number of page faults on that string 

 In all our examples, we will have 3 frames and the following 

reference string 
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First-In-First-Out (FIFO) Algorithm 

 Maintain an FIFO buffer 

 + The code used before may not be needed 

 - An array used early, might be used again and again 

 Easy to implement 

 Belady’s Anomaly: more frames  more page faults 
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FIFO Illustrating Belady’s Anomaly 
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Optimal Algorithm 

 Replace page that will not be used for longest period of time 
 

 

              1, 2, 3, 4, 1, 2, 5,         1, 2, 3, 4, 5 

 

 

 

 

 

 

 

 How do you know the future? 
 

 Used for measuring how well your algorithm performs 
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Least Recently Used (LRU) Algorithm 

 Use recent past as an approximation of the future 

 Select the page that is not used for a long time… 

 OPT if you look at from backward 

 NO Belady’s Anomaly: so more frames  less page faults 

 Hard to implement (why?) 
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LRU Algorithm (Cont.) 
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 Counter (logical clock) implementation 

 Increase the counter every time a page is referenced 

 Save it into time-of-use field associated with this page’s entry in 

the page table  

 When a page needs to be replaced, find the one that has the 

smallest time-of-use value   

 Problems: Counter overflow and linear search  

 Stack implementation – keep a stack of page numbers in a 

double link form: 

 Page referenced: 

 move it to the top 

 requires 6 pointers to be changed 

 No search for replacement 

 Least recently used one is at the bottom 
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LRU Approximation Algorithms 

 Reference bit 

 With each page associate a reference bit, initially = 0 

 When page is referenced, set this bit to 1 by hardware 

 Replace the one which is 0 (if one exists) 

 We do not know the order, however 

 Additional bits can help to gain more ordering information 

 In the extreme case, use just reference bit, no additional bit 

 Second chance Alg 

 FIFO with an inspection of ref bit 

 If ref bit is 0,  

 replace that page  

 set its ref bit to 1 

 If ref bit is 1, /* give a second chance */ 

 set ref bit to 0 

 leave page in memory 

 go to next one 
 Enhance it modify bit, avoid replacing modified pages  

What if all 

bits are 1 …. 

All pages will 

get second 

chance…. 

Degenerates 

FIFO 
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Counting Algorithms: LFU and MFU 

 Keep a counter of the number of references that have been 

made to each page 
 

 LFU Algorithm:  replaces page with smallest count 

 + Active pages are likely to be used again 

 - Code within a big loop may not be used again.. 

 Shift counters to form an exponential decaying 
 

 MFU Algorithm: based on the argument that the page with 

the smallest count was probably just brought in and has yet 

to be used 

 Expensive, don’t perform well in general, but might be useful 

for some applications  
 (database application may read a lot of data first then search, but LRU will remove the old ones  

 LFU/MFU might work depending on the application) 
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Other improvements 

 Page Buffering 

 Have free frame pools 

 First get the page from disk to free frame, then  

 As before select victim and write it out 

 Whenever paging device is idle write them out 

 Mark a frame as free but remember for which page it was used (like 

recycle bin) so if needed that frame can be used again without 

going to disk 

 Applications and Page Replacements 

 For some applications general purpose solutions may not work well 

 For example database application may make a better use of 

resources as it understands the nature of data better….  
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Summary: Page Replacement Algorithms 

Algorithm Comment 

FIFO (First-In, First Out) Might throw out useful pages 

Second chance Big improvement over FIFO 

LRU (Least Recently Used) Excellent, but hard to implement exactly 

OPT (Optimal) Not implementable, but useful as a benchmark 
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How paging may impact the performance of a Program 

 Program structure 

 int[128,128] data; 

 Each row is stored in one page  

 

 

 

 

 

 

 Increase locality, separate code and data, avoid 
page boundaries for routines arrays,  

 Stack has good locality but hash has bad locality 

 Pointers, Objects may diminish locality  

Program 2 
  for (i = 0; i < 128; i++) 

    for (j = 0; j < 128; j++) 

          data[i,j] = 0; 
 
128 page faults 

Program 1   
  for (j = 0; j <128; j++) 

    for (i = 0; i < 128; i++) 

       data[i,j] = 0; 

           
128 x 128 = 16,384 page faults  
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MEMORY-MAPPED FILES 

Treat file I/O as routine memory access 
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Memory-Mapped Files 

 Map a disk block to a page in 

memory, then file I/O can be 

treated as routine memory access 

and avoid avoiding system calls 
like read() write()  

 Data written into memory is not immediate 

written to disk! 

 A file is initially read using 

demand paging. A page-sized 

portion of the file is read from the 

file system into a physical page. 

Subsequent reads/writes to/from 

the file are treated as ordinary 

memory accesses. 

 Also allows several processes to 

map the same file allowing the 

pages in memory to be shared. 



8.39 SGG Operating System Concepts 

Memory-Mapped Files in Java 
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User-Level Memory Mapping in C 

void *mmap(void *start, int len, 

           int prot, int flags, int fd, int offset) 

 

 Map len bytes starting at offset offset of the file specified by 

file description fd, preferably at address start  

 start: may be 0 for “pick an address” 

 prot: PROT_READ, PROT_WRITE, ... 

 flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ... 

 Return a pointer to start of mapped area (may not be start) 

 Anonymous: No backup on files 

 File-backed mapping: Backed up by a file.  
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User-Level Memory Mapping 

void *mmap(void *start, int len, 

           int prot, int flags, int fd, int offset) 

len bytes 

start 

(or address  
chosen by kernel)

Process virtual memory Disk file specified by  
file descriptor fd 

len bytes 

offset 

(bytes) 

0 0 
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Memory-Mapped I/O 

 I/O is mapped to memory actually some ranges of 

addresses are allocated for different devices 

 CPU can communicate these devices through memory 

accesses  

 Programmed I/O vs. Interrupt driven I/O 

 One at a time vs. all at once then followed by interrupt 
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ALLOCATION OF FRAMES 

 

Two major allocation schemes 

fixed allocation 

priority allocation 
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Minimum Number of Frames 

 Each process needs minimum number of pages 

Examples 

 add a b c   might require 3 pages 

 IBM 370 – 6 pages to handle SS MOVE instruction: 

 instruction is 6 bytes, might span 2 pages 

 2 pages to handle from 

 2 pages to handle to 
 

 Level of indirection… 

 Min depends on architecture  

 Maximum depends on available memory 

 How about the optimal to maximize CPU utilization? 
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Allocation Algorithms 

 Fixed allocation   

 Equal allocation: – Allocate 

same amount to each process 

 For example, if there are 100 

frames and 5 processes, each 

gets 20 frames. 

 Proportional allocation – 

Allocate according to the size 

of process 
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 Priority Allocation 

 Use a proportional allocation 

scheme using priorities rather 

than size 
 

 If process Pi generates a 

page fault, 

 select for replacement one of 

its frames 

 select for replacement a 

frame from a process with 

lower priority number 
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Global vs. Local Allocation 

 Global replacement – process selects a replacement 

frame from the set of all frames; one process can take a 

frame from another 

 High priority processes can take all frames from low priority 

ones (cause thrashing)  

 A process cannot control its page fault rate 
 

 Local replacement – each process selects from only its 

own set of allocated frames 

 How determine the size of the set ??? 
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THRASHING 

 
 

A process is busy swapping pages in and out 

 

Cover the rest as much as the time permits… 
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Thrashing 

 If a process does not 

have “enough” pages, 

the page-fault rate is 

very high.  This leads 

to: 

 low CPU utilization 

 operating system 

thinks that it needs to 

increase the degree 

of multiprogramming 

 another process 

added to the system 

 But then trashing 

happens 

 
increase the degree of 
multiprogramming 

Decrease the degree 
of multiprogramming 
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Locality and Thrashing 

 To prevent thrashing we 

should give enough frames 

to each process 

 But how much is “enough” 
 

Locality model 

 Process migrates from one 

locality to another (that is actually 

why demand paging or cashing works) 

 Localities may overlap 

When    size of locality > 

   total memory size, 

thrashing occurs… 

 

 

 

Increase locality in 
your programs! 
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Working-Set Model 

   working-set window  a fixed number of page references  

Example:  10,000 instruction 

 WSSi (working set of Process Pi) = total number of pages 

referenced in the most recent  (varies in time) 

 if  too small will not encompass entire locality 

 if  too large will encompass several localities 

 if  =   will encompass entire program 
 

 D =  WSSi  total demand frames  

 if D > (available frames) m  Thrashing 

 Policy if D > m, then  

  suspend one of the processes (reduce degree of multiprogramming) 
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Keeping Track of the Working Set 

 Approximate with interval timer + a reference bit 

 Example:  = 10,000 

 Timer interrupts after every 5000 time units 

 Keep in memory 2 bits for each page 

 Whenever a timer interrupts copy and set the values of all 

reference bits to 0 

 If one of the bits in memory = 1  page in working set 

 Why is this not completely accurate? 

 Improvement = 10 bits and interrupt every 1000 time units 
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Page-Fault Frequency (PFF) Scheme 

 Working set is a clumsy way to 

control thrashing  

 PFF takes more direct approach  

 High PFF  more thrashing 

 Establish “acceptable” page-

fault rate 

 If actual rate is too low, process 

loses frame 

 If actual rate is too high, process 

gains frame 

 Suspend a process if PFF is 

above upper bound and there is 

no free frames! 
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USER MEMORY ALLOCATION 

Typically, the user will get one big block of memory and setup its page table.  

 Allocate 1 page even when 1 byte is needed… 

Then this memory will be managed by user space memory manager.  

 How to manage the memory inside user space? 
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Memory allocation (using mmap/brk) 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

 

  int * ptr = malloc(4); 

 

  *ptr = 1; 

 

  free(ptr); 

} 

08048000-08049000 r-xp   test 

08049000-0804a000 r—p  test 

0804a000-0804b000 rw-p  test 

b7e7b000-b7e7c000 rw-p  0  

b7e7c000-b7fd8000 r-xp    libc-2.9.so 

b7fd8000-b7fd9000 ---p     libc-2.9.so 

b7fd9000-b7fdb000 r--p     libc-2.9.so 

b7fdb000-b7fdc000 rw-p    libc-2.9.so 

b7fdc000-b7fe1000 rw-p    0  

b7fe1000-b7fe2000 r-xp     0      [vdso] 

b7fe2000-b7ffe000 r-xp      ld-2.9.so 

b7ffe000-b7fff000 r—p       ld-2.9.so 

b7fff000-b8000000 rw-p     ld-2.9.so 

bffeb000-c0000000 rw-p    [stack] 

Currently, no heap space at all because we didn’t use any heap 
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Memory allocation 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

 

  int * ptr = malloc(4); 

 

  *ptr = 1; 

 

  free(ptr); 

} 

08048000-08049000 r-xp   test 

08049000-0804a000 r—p  test 

0804a000-0804b000 rw-p  test 

0804b000-0806c000 rw-p  [heap] 

b7e7b000-b7e7c000 rw-p  0  

b7e7c000-b7fd8000 r-xp    libc-2.9.so 

b7fd8000-b7fd9000 ---p     libc-2.9.so 

b7fd9000-b7fdb000 r--p     libc-2.9.so 

b7fdb000-b7fdc000 rw-p    libc-2.9.so 

b7fdc000-b7fe1000 rw-p    0  

b7fe1000-b7fe2000 r-xp     0      [vdso] 

b7fe2000-b7ffe000 r-xp      ld-2.9.so 

b7ffe000-b7fff000 r—p       ld-2.9.so 

b7fff000-b8000000 rw-p     ld-2.9.so 

bffeb000-c0000000 rw-p    [stack] 

Now, the heap is allocated from the kernel, which means the virtual  

address from 0x0804b000 to 0x0806c000 (total 33K) are usable. 

ptr is actually  0x804b008.  
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Memory Mapping (mmap or brk) 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

 

  int * ptr = malloc(4); 

 

  *ptr = 1; 

 

  free(ptr); 

} 

0804b000-0806c000 rw-p  [heap] 

page table 

Valid 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0804b 

0806c 

…… 
…… 
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Memory Mapping (mmap or brk) 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

 

  int * ptr = malloc(4); 

 

  *ptr = 1; 

 

  free(ptr); 

} 

0804b000-0806c000 rw-p  [heap] 

page table 

Valid 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0804b 

0806c 

…… 
…… 

1 

Physical Page 
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ALLOCATING KERNEL 

MEMORY 

Treated differently from user memory (allocate 1 page even when 1 byte is needed) 

Often allocated from a different free-memory pool 

Kernel requests memory for structures of varying sizes 

Some kernel memory needs to be contiguous 
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Buddy System 

 Allocates memory from fixed-size 

segment consisting of physically-

contiguous pages 

 Memory allocated using power-of-2 

allocator 

 Satisfies requests in units sized as 

power of 2 

 Request rounded up to next highest 

power of 2 

 When smaller allocation needed than is 

available, current chunk split into two 

buddies of next-lower power of 2 

 Continue until appropriate sized chunk 

available 

 When freed, combine buddies 

(called coalescing) 

 

Rounding up 
causes 
fragmentation, 
e.g., 33K needs 
64K …  
50% might be 
wasted  
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Slab Allocator 

 Slab is one or more 

physically contiguous pages 

 Cache consists of one or 

more slabs 

 Single cache for each unique 

kernel data structure (process 

descriptions, file objects, semaphores) 

 Each cache filled with objects – 

instantiations of the data structure 

 When cache created, filled with 

objects marked as free 

 When structures stored, objects 

marked as used 

 If slab is full, next object is 

allocated from empty slab 

 If no empty slabs, new slab allocated 

 

 

Benefits include  

 no fragmentation,  

 memory request is 

satisfied quickly   
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OTHER ISSUES 

Main concerns were Replacement and Allocation 

But we have several other issues too 
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Other Issues -- Prepaging 

 Prepaging  

 To reduce the large number of page faults that occurs at process 

startup 

 Prepage all or some of the pages a process will need, before they 

are referenced 

 But if prepaged pages are unused, I/O and memory was wasted 

 Assume s pages are prepaged and α of the pages is used 

 Is cost of s * α  save pages faults > or < than the cost of prepaging  

s * (1- α) unnecessary pages?   

 α near zero  prepaging loses  
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Other Issues – Page Size 

 Page size selection must take into consideration: 

 Fragmentation   (small size page is better) 

 Table size   (large size page is better) 

 I/O overhead   

 Seek 

 Latency 

 Transfer  

 Locality 

 

 New Oses tends to use larger an larger sizes…. 
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Other Issues – TLB Reach  

Increasing hit rate is good but associative memory is expensive and power hungry 

 TLB Reach - The amount of memory accessible from the TLB 

 TLB Reach = (TLB Size) X (Page Size) 

 Ideally, the working set of each process is stored in the TLB 

 Otherwise there is a high degree of page faults 
 

 Increase the Page Size 

 Increases TLB reach but this may lead to an increase in 

fragmentation as not all applications require a large page size 
 

 Provide Multiple Page Sizes 

 This allows applications that require larger page sizes the opportunity 

to use them without an increase in fragmentation 
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Other Issues – Program Structure 

 Program structure 

 int[128,128] data; 

 Each row is stored in one page  

 

 

 

 

 

 

 Increase locality, separate code and data, avoid 
page boundaries for routines arrays,  

 Stack has good locality but hash has bad locality 

 Pointers, Objects may diminish locality  

Program 2 
  for (i = 0; i < 128; i++) 

    for (j = 0; j < 128; j++) 

          data[i,j] = 0; 
 
128 page faults 

Program 1   
  for (j = 0; j <128; j++) 

    for (i = 0; i < 128; i++) 

       data[i,j] = 0; 

           
128 x 128 = 16,384 page faults  
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Other Issues – I/O interlock 

 Users I/O might be done through 

kernel (mem-to-mem copy overhead) 

 I/O Interlock – Pages must 

sometimes be locked into memory 

 Consider I/O - Pages that are used 

for copying a file from a device 

must be locked from being selected 

for eviction by a page replacement 

algorithm 

 Lock bit might be dangerous 

 What if it locked due to a bug in OS 

 Some uses it as a hint but ignore it 

 Some periodically clears it 
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OPERATING SYSTEM 

EXAMPLES 

Windows XP 
 

Solaris  
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Windows XP 

 Uses demand paging with clustering. Clustering brings in pages 

surrounding the faulting page. 

 Processes are assigned working set minimum and working set 

maximum. 

 Working set minimum is the minimum number of pages the 

process is guaranteed to have in memory. 

 A process may be assigned as many pages up to its working set 

maximum. 

 When the amount of free memory in the system falls below a 

threshold, automatic working set trimming is performed to 

restore the amount of free memory. 

 Working set trimming removes pages from processes that have 

pages in excess of their working set minimum. 
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Solaris  

 Maintains a list of free pages to assign faulting processes 
 

 Lotsfree – threshold parameter (amount of free memory) to 

begin paging 
 

 Desfree – threshold parameter to increasing paging 
 

 Minfree – threshold parameter to being swapping 
 

 Paging is performed by pageout process 
 

 Pageout scans pages using modified clock algorithm 
 

 Scanrate is the rate at which pages are scanned. This ranges 

from slowscan to fastscan 
 

 Pageout is called more frequently depending upon the amount 

of free memory available 
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Solaris 2 Page Scanner 
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End of Chapter 9 


