
1.1 TS Distributed Systems

Chapter 0: COMPUTER NETWORKING

Part 2

Thanks to the authors of the textbook [TS] and [KR] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Communications in Distributed Systems
Client-server paradigm and Socket Programming

1.2 TS Distributed Systems

Chapter 0: Computer Networking

 Layered Protocols

 Grand tour of computer networking,

the Internet

 Client-server paradigm,

 Socket Programming

1.3 TS Distributed Systems

Objectives

 To understand how processes communicate (the

heart of distributed systems)

 To understand computer networks and their layers

(part 1)

 To understand client-server paradigm and low-level

message passing using sockets

1.4 TS Distributed Systems

CLIENT-SERVER

COMMUNICATION MODELS

Request (R) protocol

Request-Reply (RR) protocol

Request-Reply-Acknowledgement (RRA) protocol

1.5 TS Distributed Systems

Client-server architecture
clients:

 communicate with server

 may be intermittently

connected

 may have dynamic IP

addresses

 do not communicate

directly with each other

From Computer Networking by Kurose and Ross.

 Clients and servers

communicate through

 Socket, RPC, RMI

 servers:

 always-on host

 permanent IP address

 server farms for scaling

1.6 TS Distributed Systems

Request Protocol (R)

 If service

 does not have output parameters and

 does not have a return type

 client may not want to wait for server to finish.

request

send(...)

Client Server

receive(...)

 exec op;

Continue execution

1.7 TS Distributed Systems

Request-Reply protocol (RR)

send(...)

receive(...)

Client Server

receive(...)

 exec op;

send(...)

request

reply

blocked

 To be applied if client expects result from server

 Client requests service execution from server through

request message, and

 Delivery of service result in reply message

 Most client-server interactions are built on

RR protocol

1.8 TS Distributed Systems

Request-Reply-Acknowledge Protocol (RRA)

 In addition to RR protocol, client sends

acknowledgement after it received reply

 Acknowledgement sent asynchronously

send(...)

receive(...)

send (...)

Client Server

receive(...)

 exec op;

send(...)

receive(...)

request

reply

history

1.9 TS Distributed Systems

Issues in Client-Server Communication

 Addressing

 Blocking versus non-blocking

 Buffered versus unbuffered

 Reliable versus unreliable

 Server architecture:

 concurrent versus sequential

 Scalability

1.10 TS Distributed Systems

Addressing Issues

Question: how is the server

located?

Hard-wired address

 Machine address and process

address are known a priori

Broadcast-based

 Server chooses address from a

sparse address space

 Client broadcasts request

 Can cache response for future

Locate address via name server

user server

user server

user server NS

1.11 TS Distributed Systems

Blocking versus Non-blocking

 Blocking communication (synchronous)

 Sender blocks until message is actually sent

 Receiver blocks until message is actually received

 Non-blocking communication (asynchronous)

 Sender returns immediately

 Receiver does not block either

 Examples:

1.12 TS Distributed Systems

Buffering Issues

 Unbuffered communication

 Server must call receive

before client can call send

 Buffered communication

 Client send to a mailbox

 Server receives from a

mailbox

user server

user server

1.13 TS Distributed Systems

Reliability

 Unreliable channel

 Need acknowledgements (ACKs)

 Applications handle ACKs

 ACKs for both request and reply

 Reliable channel

 Reply acts as ACK for request

 Explicit ACK for response

 Reliable communication on
unreliable channels

 Transport protocol handles lost
messages

request

ACK

reply

ACK

U
s
e
r

S
e
rv

e
r

request

reply

ACK

U
s
e
r

S
e
rv

e
r

1.14 TS Distributed Systems

Server Architecture

 Sequential

 Serve one request at a time

 Can service multiple requests by employing events and

asynchronous communication

 Concurrent

 Server spawns a process or thread to service each request

 Can also use a pre-spawned pool of threads/processes

(apache)

 Thus servers could be

 Pure-sequential, event-based, thread-based, process-based

 Discussion: which architecture is most efficient?

1.15 TS Distributed Systems

Scalability

 Question: How can you scale the server capacity?

 Buy bigger machine!

 Replicate

 Distribute data and/or algorithms

 Ship code instead of data

 Cache

1.18 TS Distributed Systems

Putting it all together: Email

 User uses mail client to compose a message

 Mail client connects to mail server

 Mail server looks up address to destination

mail server

 Mail server sets up a connection and passes

the mail to destination mail server

 Destination stores mail in input buffer (user

mailbox)

 Recipient checks mail at a later time

1.19 TS Distributed Systems

SOCKETS

How do application and middleware layers use the services

provided by transport layer?

From Computer Networking by Kurose and Ross.

1.20 TS Distributed Systems

Socket programming

Socket API

 introduced in BSD4.1 UNIX, 1981

 explicitly created, used, released

by apps

 client/server paradigm

 two types of transport service via

socket API:

 unreliable datagram

 reliable, byte stream-oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages
to/from another

application process

socket

Goal: learn how to build client/server application that communicate

using sockets

From Computer Networking by Kurose and Ross.

1.21 TS Distributed Systems

SOCKET PROGRAMMING

C

From Computer Networking by Kurose and Ross.

1.22 TS Distributed Systems

Socket-programming using TCP

Socket: a door between application process and end-

end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one

process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

From Computer Networking by Kurose and Ross.

1.23 TS Distributed Systems

Socket programming with TCP

Client must contact server

 server process must first be

running

 server must have created

socket (door) that welcomes

client’s contact

Client contacts server by:

 creating client-local TCP

socket

 specifying IP address, port

number of server process

 When client creates socket:

client TCP establishes

connection to server TCP

 When contacted by client,

server TCP creates new

socket for server process to

communicate with client

 allows server to talk with

multiple clients

 source port numbers used

to distinguish clients (more

in Chap 3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

From Computer Networking by Kurose and Ross.

1.24 TS Distributed Systems

TCP Socket Primitives

Primitive Function

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Recv Receive some data over the connection

Close Release the connection

Connection
socket

1.25 TS Distributed Systems

Client/server socket interaction: TCP

wait for incoming

connection request
connectionSocket =

welcomeSocket.accept()

create socket,
port=x, for

incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Server (running on hostid, port x) Client (running on hostname ?, port ?)

send request using

clientSocket read request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

1.26 TS Distributed Systems

Example: C server (TCP)

/* server.c */

void main(int argc, char *argv[])

{

struct sockaddr_in sad; /* structure to hold an IP address */

struct sockaddr_in cad;

int welcomeSocket, connectionSocket; /* socket descriptor */

struct hostent *ptrh; /* pointer to a host table entry */

char clientSentence[128];

char capitalizedSentence[128];

port = atoi(argv[1]);

welcomeSocket = socket(PF_INET, SOCK_STREAM, 0);

 memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */

 sad.sin_family = AF_INET; /* set family to Internet */

 sad.sin_addr.s_addr = INADDR_ANY; /* set the local IP address */

 sad.sin_port = htons((u_short)port);/* set the port number */

bind(welcomeSocket, (struct sockaddr *)&sad, sizeof(sad));

Create welcoming socket at port
&

Bind a local address

1.27 TS Distributed Systems

Example: C server (TCP), cont
/* Specify the maximum number of clients that can be queued */

listen(welcomeSocket, 10)

while(1) {

 connectionSocket=accept(welcomeSocket, (struct sockaddr *)&cad, &alen);

 n=read(connectionSocket, clientSentence, sizeof(clientSentence));

 /* capitalize Sentence and store the result in capitalizedSentence*/

 n=write(connectionSocket, capitalizedSentence, strlen(capitalizedSentence)+1);

 close(connectionSocket);

 }

}

Write out the result to socket

End of while loop,
loop back and wait for
another client connection

Wait, on welcoming socket
for contact by a client

1.28 TS Distributed Systems

Example: C client (TCP)

/* client.c */

void main(int argc, char *argv[])

{

struct sockaddr_in sad; /* structure to hold an IP address */

int clientSocket; /* socket descriptor */

struct hostent *ptrh; /* pointer to a host table entry */

char Sentence[128];

char modifiedSentence[128];

host = argv[1]; port = atoi(argv[2]);

clientSocket = socket(PF_INET, SOCK_STREAM, 0);

 memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */

 sad.sin_family = AF_INET; /* set family to Internet */

 sad.sin_port = htons((u_short)port);

 ptrh = gethostbyname(host); /* Convert host name to IP address */

 memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

connect(clientSocket, (struct sockaddr *)&sad, sizeof(sad));

Create client socket,
connect to server

1.29 TS Distributed Systems

Example: C client (TCP), cont

gets(Sentence);

n=write(clientSocket, Sentence, strlen(Sentence)+1);

n=read(clientSocket, modifiedSentence, sizeof(modifiedSentence));

printf("FROM SERVER: %s\n”,modifiedSentence);

close(clientSocket);

}

Get
input stream

from user

Send line
to server

Read line
from server

Close
connection

1.30 TS Distributed Systems

Socket programming with UDP

UDP: no “connection” between

client and server

 no handshaking

 sender explicitly attaches IP

address and port of

destination to each packet

 server must extract IP

address, port of sender from

received packet

UDP: transmitted data may be

received out of order, or lost

application viewpoint

UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

From Computer Networking by Kurose and Ross.

1.31 TS Distributed Systems

Client/server socket interaction: UDP

close

clientSocket

Server (running on hostid, port x)

read reply from

clientSocket

create socket,

 clientSocket =

DatagramSocket()

Client (running on hostname ?, port ?)

Create, address (hostid, port=x,

send datagram request

using clientSocket

create socket,
port=x, for

incoming request:
serverSocket =

DatagramSocket()

read request from

serverSocket

write reply to

serverSocket

specifying client

host address,

port number

1.32 TS Distributed Systems

Example: C server (UDP)

/* server.c */

void main(int argc, char *argv[])

{

struct sockaddr_in sad; /* structure to hold an IP address */

struct sockaddr_in cad;

int serverSocket; /* socket descriptor */

struct hostent *ptrh; /* pointer to a host table entry */

char clientSentence[128];

char capitalizedSentence[128];

port = atoi(argv[1]);

serverSocket = socket(PF_INET, SOCK_DGRAM, 0);

 memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */

 sad.sin_family = AF_INET; /* set family to Internet */

 sad.sin_addr.s_addr = INADDR_ANY; /* set the local IP address */

 sad.sin_port = htons((u_short)port);/* set the port number */

bind(serverSocket, (struct sockaddr *)&sad, sizeof(sad));

Create welcoming socket at port
&

Bind a local address

1.33 TS Distributed Systems

Example: C server (UDP), cont

while(1) {

 n=recvfrom(serverSocket, clientSentence, sizeof(clientSentence), 0

 (struct sockaddr *) &cad, &addr_len);

 /* capitalize Sentence and store the result in capitalizedSentence*/

 n=sendto(connectionSocket, capitalizedSentence, strlen(capitalizedSentence)+1,0

 (struct sockaddr *) &cad, &addr_len);

 close(connectionSocket);

 }

}

Write out the result to socket

End of while loop,
loop back and wait for
another client connection

Receive messages from clients

1.34 TS Distributed Systems

Example: C client (UDP)

/* client.c */

void main(int argc, char *argv[])

{

struct sockaddr_in sad; /* structure to hold an IP address */

int clientSocket; /* socket descriptor */

struct hostent *ptrh; /* pointer to a host table entry */

char Sentence[128];

char modifiedSentence[128];

host = argv[1]; port = atoi(argv[2]);

clientSocket = socket(PF_INET, SOCK_DGRAM, 0);

/* determine the server's address */

 memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */

 sad.sin_family = AF_INET; /* set family to Internet */

 sad.sin_port = htons((u_short)port);

 ptrh = gethostbyname(host); /* Convert host name to IP address */

 memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

Create client socket,
NO connection to server

1.35 TS Distributed Systems

Example: C client (UDP), cont.

gets(Sentence);

addr_len =sizeof(struct sockaddr);

n=sendto(clientSocket, Sentence, strlen(Sentence)+1,

 (struct sockaddr *) &sad, addr_len);

n=recvfrom(clientSocket, modifiedSentence, sizeof(modifiedSentence).

 (struct sockaddr *) &sad, &addr_len);

printf("FROM SERVER: %s\n”,modifiedSentence);

close(clientSocket);

}

Get
input stream

from user

Send line
to server

Read line
from server

Close
connection

1.36 TS Distributed Systems

Other related functions

 getpeername()

 gethostbyname()

 gethostbyaddr()

 getsockopt()

 setsockopt ()

 signal(SIGINT,sigf);

 if ((pid=fork()) == 0) {
 /* CHILD PROC */
 close(welcomeSocket);

 /* give service */
 exit(0);
 }
 /* PARENT PROC */
 close(connectionSocket);

1.37 TS Distributed Systems

Waiting something from both

socket and stdin

FD_ZERO(&rset);

FD_SET(welcomeSocket, &rset);

FD_SET(fileno(stdin), &rset);

maxfd =max(welcomeSocket,fileno(stdin)) + 1;

select(maxfd, &rset, NULL, NULL, NULL);

if (FD_ISSET(fileno(stdin), &rset)){

 /* read something from stdin */

}

1.38 TS Distributed Systems

SOCKET PROGRAMMING

JAVA

From Computer Networking by Kurose and Ross.

1.39 TS Distributed Systems

Client/server socket interaction: TCP

wait for incoming

connection request
connectionSocket =

welcomeSocket.accept()

create socket,
port=x, for

incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Server (running on hostid, port x) Client (running on hostname ?, port ?)

send request using

clientSocket read request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

From Computer Networking by Kurose and Ross.

1.40 TS Distributed Systems

Socket programming with TCP

Example client-server app:

1) client reads line from standard input
(inFromUser stream) , sends to server

via socket (outToServer stream)

2) server reads line from socket

3) server converts line to uppercase,

sends back to client

4) client reads, prints modified line from
socket (inFromServer stream)

From Computer Networking by Kurose and Ross.
o

u
tT

o
S

e
rv

e
r

to network from network

in
F

ro
m

S
e

rv
e

r

in
F

ro
m

U
s
e

r

keyboard monitor

Process

clientSocket

input

stream

input

stream

output

stream

TCP

socket

Client
process

client TCP
socket

Stream jargon

 A stream is a sequence of characters that flow

into or out of a process.

 An input stream is attached to some input source

for the process, e.g., keyboard or socket.

 An output stream is attached to an output

source, e.g., monitor or socket.

1.41 TS Distributed Systems

Example: Java server (TCP)

import java.io.*;

import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception

 {

 String clientSentence;

 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =

 new BufferedReader(new

 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

From Computer Networking by Kurose and Ross.

1.42 TS Distributed Systems

Example: Java server (TCP), cont

 DataOutputStream outToClient =

 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);

 }

 }

}

Read in line
from socket

Create output
stream,

attached
to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

From Computer Networking by Kurose and Ross.

1.43 TS Distributed Systems

Example: Java client (TCP)

import java.io.*;

import java.net.*;

class TCPClient {

 public static void main(String argv[]) throws Exception

 {

 String sentence;

 String modifiedSentence;

 BufferedReader inFromUser =

 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket(“localhost", 6789);

 DataOutputStream outToServer =

 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server

Create
output stream

attached to socket

From Computer Networking by Kurose and Ross.

1.44 TS Distributed Systems

Example: Java client (TCP), cont.

 BufferedReader inFromServer =

 new BufferedReader(new

 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }

}

Create
input stream

attached to socket

Send line
to server

Read line
from server

From Computer Networking by Kurose and Ross.

1.45 TS Distributed Systems

Client/server socket interaction: UDP

Server (running on hostid)

close

clientSocket

read datagram from

clientSocket

create socket,

 clientSocket =

DatagramSocket()

Client (running on hostname ?, port ?)

Create datagram with server IP and

port=x; send datagram via

 clientSocket

create socket,

port= x.

serverSocket =

DatagramSocket()

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

From Computer Networking by Kurose and Ross.

1.46 TS Distributed Systems

Example: Java client (UDP)

se
n

d
P

a
ck

e
t

to network from network

re
ce

iv
e

P
a

ck
e

t

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

UDP

packet

input

stream

UDP

packet

UDP

socket

Output: sends
packet (recall
that TCP sent
“byte stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

client UDP
socket

From Computer Networking by Kurose and Ross.

1.47 TS Distributed Systems

Example: Java server (UDP)

import java.io.*;

import java.net.*;

class UDPServer {

 public static void main(String args[]) throws Exception

 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];

 byte[] sendData = new byte[1024];

 while(true)

 {

 DatagramPacket receivePacket =

 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagra

m
From Computer Networking by Kurose and Ross.

1.48 TS Distributed Systems

Example: Java server (UDP), cont

 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =

 new DatagramPacket(sendData, sendData.length, IPAddress,

 port);

 serverSocket.send(sendPacket);

 }

 }

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

From Computer Networking by Kurose and Ross.

1.49 TS Distributed Systems

Example: Java client (UDP)

import java.io.*;

import java.net.*;

class UDPClient {

 public static void main(String args[]) throws Exception

 {

 BufferedReader inFromUser =

 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName(“localhost");

 byte[] sendData = new byte[1024];

 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();

 sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
 hostname to IP

address using DNS

From Computer Networking by Kurose and Ross.

1.50 TS Distributed Systems

Example: Java client (UDP), cont.

 DatagramPacket sendPacket =

 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =

 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =

 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);

 clientSocket.close();

 }

}

Create datagram
with data-to-send,

length, IP addr,
port

 Send datagram
to server

Read datagram
from server

From Computer Networking by Kurose and Ross.

1.51 TS Distributed Systems

Multi threaded
import java.io.*;

import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception

 {

 String clientSentence;

 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =

 new BufferedReader(new InputStreamReader(connectionSocket.getInputStream()));

 DataOutputStream outToClient =

 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);

 }

 }

